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A b s t r a c t  

This paper presents a multidimensional Depen- 
dency Grammar (DG), which decouples the de- 
pendency tree from word order, such that sur- 
face ordering is not determined by traversing 
the dependency tree. We develop the notion 
of a word order domain structure, which is 
linked but structurally dissimilar to the syn- 
tactic dependency tree. We then discuss the 
implementation of such a DG using constructs 
from a unification-based phrase-structure ap- 
proach, namely Lexical-Functional Grammar 
(LFG). Particular attention is given to the anal- 
ysis of discontinuities in DG in terms of LFG's 
functional uncertainty. 

1 I n t r o d u c t i o n  

Recently, the concept of valency has gained con- 
siderable attention. Not only do all linguis- 
tic theories refer to some reformulation of the 
traditional notion of valency (in the form of 0- 
grid, subcategorization list, argument list, or ex- 
tended domain of locality); there is a growing 
number of parsers based on binary relations be- 
tween words (Eisner, 1997; Maruyama, 1990). 
Even theories based on phrase structure may 
have processing models based on relations be- 
tween lexical items (Rambow & Joshi, 1994). 

Against the background of this interest in the 
valency concept, and the fact that word order 
is one of the main difference between phrase- 
structure based approaches (henceforth PSG) 
and dependency grammar (DG), this paper will 
propose a word order description for DG and 
describe its implementation. First, we will mo- 
tivate the separation of surface order and depen- 
dency relations within DG, and make a specific 
architectural proposal for their linking. Second, 
we will briefly sketch Lexical-Functional Gram- 
mar (LFG), and then show in detail how one 

might use the formal constructs provided by 
LFG to encode the proposed DG architecture. 

Our position will be that dependency re- 
lations are motivated semantically (Tesni~re, 
1959), and need not be projective. We argue 
for so-called word order domains, consisting of 
partially ordered sets of words and associated 
with nodes in the dependency tree. These order 
domains constitute a tree defined by set inclu- 
sion, and surface word order is determined by 
traversing this tree. A syntactic analysis there- 
fore consists of two linked, but dissimilar trees. 

The paper thus sheds light on two questions. 
A very early result on the weak generative equiv- 
alence of context-free grammars and DGs sug- 
gested that DGs are incapable of describing sur- 
face word order (Gaifman, 1965). J This result 
has been criticised to apply only to impover- 
ished DGs which do not properly represent for- 
mally the expressivity of contemporary DG vari- 
ants (Neuhaus & BrSker, 1997), and our use of 
a context-free backbone with further constraints 
imposed by dependency relations further sup- 
ports the view that DG is not a notational ~r i -  
ant of context-free grammar. The second ques- 
tion addressed is that of efficient processing of 
discontinuous DGs. By converting a native DG 
grammar into LFG rules, we are able to profit 
from the state of the art in context-free parsing 
technology. A context-free base (or skeleton) 
has often been cited as a prerequisite for practi- 
cal applicability of a natural language grammar 
(Erbach & Uszkoreit, 1990), and we here show 
that a DG can meet this criterion with ease. 

Sec. 2 will briefly review approaches to word 
order in DG, and Sec. 3 introduces word order 
domains as our proposal. LFG is briefly intro- 
duced in Sec. 4, and the encoding of DG within 
the LFG framework is the topic of Sec. 5. 
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2 W o r d  O r d e r  in D G  

A very brief characterization of DG is that 
it recognizes only lexical, not phrasal nodes, 
which are linked by directed, typed, binary rela- 
tions to form a dependency tree (Tesni~re, 1959; 
Hudson, 1993). If these relations are moti- 
vated semantically, such dependency trees can 
be non-projective. Consider the extracted NP 
in "Beans, I know John likes". A projective tree 
would require "Beans" to be connected to either 
"1" or "know" - none of which is conceptually di- 
rectly related to "Beans". It is "likes" that deter- 
mines syntactic features of "Beans" and which 
provides a semantic role for it. The only con- 
nection between "know" and "Beans" is that the 
finite verb allows the extraction of"Beans", thus 
defining order restrictions for the NP. The fol- 
lowing overview of DG flavors shows that var- 
ious mechanisms (global rules, general graphs, 
procedural means) are generally employed to lift 
the limitation of projectivity and discusses some 
shortcomings of these proposals. 

Funct ional  Genera t ive  Descr ip t ion (Sgall 
et al., 1986) assumes a language-independent 
underlying order, which is represented as a pro- 
jective dependency tree. This abstract represen- 
tation of the sentence is mapped via ordering 
rules to the concrete surface realization. Re- 
cently, Kruijff (1997) has given a categorial- 
style formulation of these ordering rules. He as- 
sumes associative categorial operators, permut- 
ing the arguments to yield the surface ordering. 
One difference to our proposal is that we ar- 
gue for a representational account of word order 
(based on valid structures representing word or- 
der), eschewing the non-determinism introduced 
by unary categorial operators; the second differ- 
ence is the avoidance of an underlying structure, 
which stratifies the theory and makes incremen- 
tal processing difficult. 

Mean ing-Tex t  T h e o r y  (Melc'flk, 1988) as- 
sumes seven strata of representation. The rules 
mapping from the unordered dependency trees 
of surface-syntactic representations onto the an- 
notated lexeme sequences of deep-morphological 
representations include global ordering rules 
which allow discontinuities. These rules have 
not yet been formally specified (Melc'~k & 
Pertsov, 1987p.187f) (but see the proposal by 
Rambow & Joshi (in print)). 

30 

Word  G r a m m a r  (WG, Hudson (1990)) is 
based on general graphs instead of trees. The 
ordering of two linked words is specified together 
with their dependency relation, as in the propo- 
sition "object  of verb fol lows it". Extrac- 
tion of, e.g., objects is analyzed by establish- 
ing an additional dependency called v i s i t o r  
between the verb and the extractee, which re- 
quires the reverse order, as in " v i s i t o r  of 
verb precedes it". Resulting inconsistencies, 
e.g. in case of an extracted object, are not re- 
solved. This approach compromises the seman- 
tic motivation of dependencies by adding purely 
order-induced dependencies. 

D e p e n d e n c y  Unif icat ion G r a m m a r  
(DUG, Hellwig (1986)) defines a tree-like 
data structure for the representation of syntac- 
tic analyses. Using morphosyntactic features 
with special interpretations, a word defines 
abstract positions into which modifiers are 
mapped. Partial orderings and even discon- 
tinuities can thus be described by allowing 
a modifier to occupy a position defined by 
some transitive head. The approach requires 
that the parser interprets several features in a 
special way, and it cannot restrict the scope of 
discontinuities. 

Slot G r a m m a r  (McCord, 1990) employs a 
number of rule types, some of which are ex- 
clusively concerned with precedence. So-called 
head/slot and slot/slot ordering rules describe 
the precedence in projective trees, referring to 
arbitrary predicates over head and modifiers. 
Extractions (i.e., discontinuities) are merely 
handled by a mechanism built into the parser. 

3 W o r d  O r d e r  D o m a i n s  

Extending the previous discussion, we require 
the following of a word order description for DG: 

• not to compromise the semantic motivation 
of dependencies, 

• to be able to restrict discontinuities to cer- 
tain constructions and delimit their scope, 

• to be lexicalized without requiring lexical 
ambiguities for the representation of order- 
ing alternatives, 

• to be declarative (i.e., independent of an 
analysis procedure), and 
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for (1) 
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Figure 2: Order Domain Structure for (1) 

• to be formally precise and consistent. 

The subsequent definition of an order domain 
structure and its linking to the dependency tree 
satisify these requirements. 

3.1 T h e  O r d e r  D o m a i n  S t r u c t u r e  

A word order domain is a set of words, general- 
izing the notion of positions in DUG. The car- 
dinality of an order domain may be restricted 
to at most one element, at least one element, 
or - by conjunction - to exactly one element. 
Each word is associated with a sequence of order 
domains, one of which must contain the word 
itself, and each of these domains may require 
that its elements have certain features. Order 
domains can be partially ordered based on set 
inclusion: If an order domain d contains word 
w (which is not associated with d), every word 
w' contained in a domain d t associated with w 
is also contained in d; therefore, d' C d for each 
d' associated with w. This partial ordering in- 
duces a tree on order domains, which we call 
the order domain structure. The order domain 
structure constitutes a projective tree over the 
input, where order domains loosely correspond 
to partial phrases. 

(1) Den Mann hat  der Junge gesehen. 
the manAcc  has the bOyNOM seen 
'The boy has seen the man. '  

Take the German example (1). Its dependency 
tree is shown in Fig. 1, with word order domains 
indicated by dashed circles. The finite verb, 
"hat", defines a sequence of domains, (dl, d2, d3), 
which roughly correspond to the topological 
fields in the German main clause. The nouns 
and the participle each define a single order do- 
main. Set inclusion gives rise to the domain 
structure in Fig. 2, where the individual words 
are attached by dashed lines to their including 
domains. 

3.2 Su r f ace  O r d e r i n g  

How is the surface order derived from an or- 
der domain structure? First of all, the ordering 
of domains is inherited by their respective ele- 
ments, i.e., "Mann" precedes (any element of) 
d2, "hat" follows (any element of) dl, etc. 

Ordering within a domain, e.g., of "hat" and 
d6, or ds and d6, is based on precedence pred- 
icates (adapting the precedence predicates of 
WG). There are two different types, one order- 
ing a word with respect to any other element of 
the domain it is associated with (e.g., "hat" with 
respect to d6), and another ordering two modi- 
tiers, referring to the dependency relations they 
occupy (d5 and d6, referring to subj and vpar t ) .  
A verb like "hat" introduces three precedence 
predicates, requiring other words (within the 
same domain) to follow itself and the participle 
to follow subject and object, resp.: 1 

"hat" => <. 
A subj < vpar t  
A obj < vpart 

Informally, the first conjunct is satisfied by 
ally domain in which no word precedes "hat", 
and the second and third conjuncts are satisfied 
by any domain ill which no subject or object 
follows a participle (vpart). The obj must be 
mentioned for "hat", although "hat" does not di- 
rectly govern objects, because objects may be 
placed by "hat", and not their immediate gov- 
ernors. The domain structure in Fig.2 satisfies 
these restrictions since nothing follows the par- 
ticiple, and because "den Mann" is not an ele- 
ment of (]2, which contains "hat". This is an im- 
portant interaction of order domains and prece- 
dence predicates: Order domains define scopes 

1For more details on the exact syntax and the seman- 
tics of these propositions, see (BrSker, 1998b). 
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for precedence predicates. In this way, we take 
into account that dependency trees are flatter 
than PS-based ones 2 and avoid the formal in- 
consistencies noted above for WG. 

3.3 L ink ing  D o m a i n  S t r u c t u r e  a n d  
D e p e n d e n c y  T r e e  

Order domains easily extend to discontinuous 
dependencies. Consider the non-projective tree 
in Fig.1. Assuming that the finite verb gov- 
erns the participle, no projective dependency 
between the object "den Mann" and the partici- 
ple "gesehen" can be established. We allow non- 
projectivity by loosening the linking between de- 
pendency tree and domain structure: A modi- 
fier (e.g., "Mann") may not only be inserted into 
a domain associated with its direct head ("gese- 
hen"), but also into a domain of a transitive head 
("hat"), which we will call the positional head. 

The possibility of inserting a word into a do- 
main of some transitive head raises the ques- 
tions of how to require continuity (as needed 
in nmst cases), and how to limit the distance 
between the governor and the modifier. Both 
questions will be soh,ed with reference to the 
dependency relation. From a descriptive view- 
point, the syntactic construction is often cited to 
determine the possibility and scope of disconti- 
nuities (Bhatt, 1990; Matthews, 1981). In PS- 
based accounts, the construction is represented 
by phrasal categories, and extraction is lim- 
ited 1)3-" bounding nodes (e.g., Haegeman (1994), 
Becker et al. (1991)). In dependency-based ac- 
counts, the construction is represented by the 
dependency relation, which is typed or labelled 
to indicate constructional distinctions which are 
configurationally defined in PSG. Given this cor- 
respondence, it is natural to employ dependen- 
cies in the description of discontinuities as fol- 
lows: For each modifier, a set of dependency 
types is defined which may link the direct head 
and the positional head of the modifier ("gese- 
hen" and "hat", respectively). If this set is 
empty, both heads are identical and a contin- 
uous at tachment results. The impossibility of 
extraction from, e.g., a finite verb phrase follows 
from the fact that the dependency embedding fi- 
nite verbs, propo, may not appear on any path 

2Note that each phrasal level in PS-based trees defines 
a scope for linear precedence rules, which only apply to 
sister nodes. 
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between a direct and a positional head. 

4 A B r i e f  R e v i e w  o f  L F G  

This section introduces key concepts of LFG 
which are of interest in Sec. 5 and is necessarily 
very short. Further information can be found in 
Bresnan & Kaplan (1982) and Dalrymple et al. 
(1995). 

LFG posits several different representation 
levels, called projections. Within a projection, 
a certain type of linguistic knowledge is repre- 
sented, which explains differences in the formal 
setup (data types and operations) of the projec- 
tions. The two standard projections, and those 
used here, are the constituent (c-) structure and 
the functional (f-) structure (Kaplan (1995) and 
Halvorsen & Kaplan (1995) discuss the projec- 
tion idea in more detail). C-structure is defined 
in terms of context-free phrase structure rules, 
and thus forms a projective tree of categories 
over the input. It is assumed to encode lan- 
guage particularities with respect to the set of 
categories and the possible orderings. The f- 
structure is constructed fi'om additional annota- 
tions attached to the phrase structure rules, and 
has the form of an attribute-value matrix or fea- 
ture structure. It is  assumed t o  represent more 
or less langnage-independent information about 
grammatical functions and predicate-argument 
structure. In addition to the usual unification 
operation, LFG employs existential and nega- 
tive constraints on features, which allow the for- 
nmlation of constraints about the existence of 
features without specifying the associated value. 

Consider the following rules, which are used 
for illustration only and do not constitute a 
canonical LFG analysis. 

S =~ NP VP 
(TosJ)=~ 1"=$ 

(,tcAsE)=acc 

NP =~ Det N 
(I"sPEC)~"~J " T--J, 

VP =~ V NP 
T = J .  (l"svsJ)=~ 

(,I.TENSE) (J.CASE)=nom 

V 
(TvcoMP)=J. 
,-,(~.'reNse) 

Assuming reasonable lexical insertion rules, 
the context-free part of these rules assigns the 
c-structure to the left of Fig. 3 to example 
(1). The annotations are associated with right- 
hand side elements of the rules and define the 
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Figure 3: C-structure (left) and f-structure (right) for (I) 

f-structure of the sentence, which is displayed to 
the right of Fig. 3. Each c-structure node is asso- 
ciated with an f-structure node as shown by the 
arrows. The f-structure node associated with 
the left-hand side of a rule may be accessed with 
the $ metavariable, while the f-structure node 
of a right-hand side element may be accessed 
with the $ metavariable. The mapping from c- 
structure nodes to f-structure nodes is not one- 
to-one, however, since the feature structures of 
two distinct c-structure nodes may be identi- 
fied (via the $=$ annotation), and additional 
embedded features may be introduced (such as 
CASE). Assuming that only finite verbs carry 
the TENSE feature, the existential constraint 
($TENSE) requires a finite verb at the begin- 
ning of the VP, while the negative constraint 
.~($TENSE) forbids finite verbs at the end of 
the VP. Note that  unspecified feature structures 
are displayed as [ ] in the figure, and that  much 
more information (esp. predicate-argument in- 
formation) will come from the lexical entries. 

Another important construct of LFG is func- 
tional uncertainty (Kaplan & Zaenen, 1995; 
Kaplan & Maxwell, 1995). Very often (most 
notably, in extraction or control constructions) 
the path of f-structure attributes to write down 
is indeterminate. In this case, one may write 
down a description of this path (using a regu- 
lar language over attr ibute names) and let the 
parser check every path described (possibly re- 
sulting in ambiguities warranted by f-structure 
differences only). Our little grammar may be 
extended to take advantage of functional uncer- 
tainty in two ways. First, if you want to permute 
subject and object (as is possible in German), 
you might change the S rule to the following: 

S =~ NP VP 
(t{os~ I susJ})=~ t=~ 

The f-structure node of the initial NP may 
now be inserted in either the OBJ or the SUBJ 
attribute of the sentence's f-structure, which is 
expressed by the disjunction {OBJiSUBJ} in 
the annotation. (Of course, you have to restrict 
the CASE feature suitably, which can be done in 
the verb's subcategorization.) The other regular 
notation which we will use is the Kleene star. 
Assume a different f-structure analysis, where 
the object of infinite verbs is embedded under 
VCOMP. The S rule from above would have t o  

be changed to the following: 

S => NP VP 
('~{(VCOMP) OBJ I SUBJ})=~ ~'=~, 

But this rule will only analyse verb groups 
with zero or one auxiliary, because the VCOMP 
attribute is optional in the path description. 
Examples like Den Mann will der Junge gese- 
hen haben with several auxiliaries are not cov- 
ered, because the main verb is embedded under 
(VCOMP VCOMP). The natural solution is to 
use the Kleene star as follows, which allows zero 
or more occurrences of the attribute VCOMP. 

S =~ NP VP 
(l"{vcoMP* oBJ I suBJ})=~ t--~. 

A property which is important for our use of 
functional uncertainty is already evident from 
these examples: Functional uncertainty is non- 
constructive, i.e., the attribute paths derived 
from such an annotation are not constructed 
anew (which in case of the Kleene star would 
lead to infinitely many solutions), but must al- 
ready exist in the f-structure. 
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5 E n c o d i n g  D G  in  L F G  5.2 Topologica l  fields 

5.1 T h e  I m p l e m e n t a t i o n  P l a t t f o r m  As we have seen in Sec. 3, the order domain 
The plattform used is the Xerox Lin- structure is a projective tree over the input. So 
guistic Environment (XLE, see also it is natural to encode the domain structure in 
http://www.parc.xerox, com/istl/groups/nltt/xlef~ ntext'free rules, resulting in a tree as shown 
which implements a large part of LFG theory in Fig. 4. Categories which have a status as or- 
plus a number of abbreviatory devices. It der domains are named dora*, to be distinguish- 
includes a parser, a generator, support for two- 
level morphology and different types of lexica 
as well as a user-friendly graphical interface 
with the ability to browse through the set of 
analyses, to work in batch mode for testing 
purposes, etc. 

We will be using two abbreviatory devices be- 
low, which are shortly introduced here. Both do 
not show up in the final output,  rather they al- 
low the grammar writer to state various general- 
izations more succintly. The first is the so-called 
metacategory, which allows several c-structure 
categories to be merged into one. So if we 
are writing (2), we introduce a metacategory 
domVfin (representing the domain sequence of 
finite verbs) to be used in other rules, but we 
will never see such a category in the c-structure. 
Rather, the expansion of the metacategory is di- 
rectly attached to the mother node of the meta- 
category (cf. Fig. 4). 

(2) domVfin = domINITIAL domMIDDLE domFINAL 

able from preterminal categories (such as Vfin, 
I, . . .  ; these cannot be converted to metacate- 
gories). As notational convention, domC will be 
the name of the (meta)category defining the or- 
der domain sequence for a word of class C. Elim- 
inating the preterminal categories yields exactly 
the  domain structure given in Fig. 2. 

A complete algorithmic description of how to 
derive phrase-structure rules from order domain 
definitions would require a lenghty introduction 
to more of XLE's c-structure constructs, and 
therefore we illustrate the conversion with hand- 
coded rules. For example, a noun introduces 
one order domain without cardinality restric- 
tions. Assuming a metacategory DOMAIN stand- 
ing for an arbitrary domain, we define the fol- 
lowing rules for the domain sequences of nouns, 
full stops, and determiners: 

(5) domN =~ DOMAIN* N DOMAIN*. 

domI =~ DOMAIN I. 
domD =~ D. 

The second abbreviatory construct is the tem- 
plate, which groups several functional annota- 
tions under one heading, possibly with some 
parameters. A very important template is the 
VALENCY template defined in (3), which defines 
a dependency relation on f-structure (see be- 
low for discussion). We require three parame- 
ters (each introduced by underscore), the first of 
which indicates optionality (opt vs. r eq  values), 
the second gives the name of the dependency re- 
lation, and the third the word class required of 
the modifier. (4) shows a usage of a template, 
which begins with an @ (at) sign and lists the 
template name with any parameters enclosed in 
parentheses. 

VALENCY (_o _d _c) = { _o = opt 
~(T_d) 

(3) ~ (?_d CLASS) = _c 
(?_d LEXEME) ) .  

(4) @(VALENCY req OBJ N). 

A complex example is the finite verb, which 
introduces three domains, each with different 
cardinality restrictions. This is encoded in the 
following rules: 

domVfin ffi domINITIAL domMIDDLE domFINAL. 

(6) domINITIAL~ DOMAIN. 
domMIDDLE ~ DOMAIN* Vfin DOMAIN*. 
domFINAL ~ ( DOMAIN ). 

Note tile use of a metacategory here, which 
does not appear in tlle c-structure output (as 
seen in Fig. 4), but still allows you to refer to 
all elements placed by a finite verb in one word. 
The definition of DOMAIN is trivial: It is just  a 
metacategory expandable to every domain: 3 

aA number of efficiency optimizations can be di- 
rectly compiled into these c-structure rules. Mentioning 
DOMAIN is much too permissive in most cases (e.g., within 
the NP), and can be optimized to allow only domains in- 
troduced by words which may actually be modifiers at 
this point. 

34 



! 

m ! 

ml 

C$ 1: R00T: 220i 

. .  ..I .......... 
d o ~ I  : 2 1 8  

...... ...::.:::?-?" ........... . ............... i ............... ~ : ' ~ . " : ' ~ ' 1 = : ' : . ~  -.-.> .......... 

domlNITI/~L : 1 5 9  do~IDDLE : 189 do~FIbrAL : 19S- : I : 117 

I . . . .  :""~":~'~'<::'= ................................. I 
d 0 ~ : 1 4 9  V £ i a : 4 2  do~N:lTSi :do~Vpp:188:  . .  :118  

. . . . . . . .  ¢ :  . . . . . . . .  "::~ . . . . . . . . . . . .  

dosaD:14S  N : 2 8  : . h a t : 4 3  d o ] a D : 1 7 3  : N : 7 4  Vpp: lO8 

I I .... I •1 • I • 
V : l  Mann:29 D:$2 J t m g e : 7 5  gesehen:109 

I I 
den : 2 d e r  : g l  

Figure 4: C-structure for (1) 

(7) DOMAIN = { domVfin I domI I domN I 
domD }. 

5.3 v a l e n c i e s  a n d  D e p e n d e n c y  
R e l a t i o n s  

The dependency tree is, at least in our ap- 
proach, an unordered tree with labelled rela- 
tions between nodes representing words. This 
is very  similar to the formal properties of the f- 
structure, which we will therefore use to encode 
it. We have already presented the VALENCY tem- 
plate in (3) and will now explain it. {.-- I ""}  
represents a disjunction of possibilities, and the 
parameter _o (for optionality)controls their se- 
lection. In case we provide the opt value, there 

• is an option to forbid the existence of the de- 
pendency, expressed by the negative constraint 
--~($_d). Regardless of the value of _o, there is 
another option to introduce an attr ibute named 
_d (for dependency) which contains a CLASS 
attribute with a value specified by the third 
parameter, _c. The existential constraint for 
the LEXEME attribute requires that  some other 
word (which specifies a LEXFA~IE) is unified into 
the feature _d, thereby filling this valency slot. 
The use of a defining constraint for the CLASS 
attribute constructs the feature, allowing non- 
constructive functional uncertainty to fill in the 
modifier (as explained below). 

A typical lexical entry is shown in (8), where 
the surface form is followed by the c-structure 
category and some template invocations. These 
expand to annotations defining the CLASS and 
LEXEME features, and use the VALENCY template 
to define the valency frame. 

( 8 )  
hat  Vfin ©(Vfin a u x - p e r f e c t _ )  

@(VALENCY req SUBJ N) 
@(VALENCY req VPART Vpp). 

5 .4  C o n t i n u o u s  a n d  D i s c o n t i n u o u s  
A t t a c h m e n t  

So far we get only a c-structure where words 
are associated with f-structures containing va- 
lency frames. To get the f-structure shown in 
Fig. 5~ (numbers refer to c-structure node num- 
bers of Fig. 4) we need to establish dependency 
relations, i.e., need to put the f-structures asso- 
ciated with preterminal nodes together into one 
large f-structure. Establishing dependency re- 
lations between the words relies heavily on the 
mechanism of functional uncertainty. First, we 
must identify on f-structure the head of each 
order domain sequence. For this, we annotate 
in every c-structure rule the category of the 
head word with the template ~(HEAV), which 
identifies the head word's f-structure with the 
order domain's f-structure (cf. (9)). Second, 
all other c-structure categories (which represent 
modifiers) are annotated with the ~(MODIFIER) 
template defined in (10). This template states 
that the f-structure of the modifier (referenced 
by .~) may be placed under some dependency at- 
tribute path of the f-structure of the head (ref- 
erenced by ~). These paths are of the form p d, 
where p is a (possibly empty) regular expression 
over dependency attributes, and d is a depen- 
dency attribute, d names the dependency rela- 
tion the modifier finally fills, while p describes 
the path of dependencies which may separate 
the positional from the direct head of the mod- 
ifier. The MODIFIER template thus completely 
describes the legal discontinuities: If p is empty 
for a dependency d, modifiers in dependency d 
are always continuously attached (i.e., in an or- 
der domain defined by their direct head). This 
is thecase  for the subject (in dependency SUB J) 
and the determiner (in dependency SPEC), in 
this example. On the other hand, a non-empty 
path p allows the modifier to 'float up' the de- 
pendency tree to any transitive head reachable 
via p. In our example, objects depending on par- 
ticiples may thus float into domains of the finite 
verb (across VPART dependencies), and relative 
clauses (in dependency RELh) may float from the 
noun's domain into the finite verb's domains. 

(9) HEAD = I=$. 
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• L -, FIELD ~iddl eJ 

;OBJ ;PEC 5112:XE~ definit_, CLASS D. CASE no 
74 .r~l~: Junge_. CLASS N. CASE nora 

ROPO )RDER ~L - ,  FIELD middle] 

~n~ [FIELD initial ] 
F . . . . .  ~ L  [42.0~'R-PZLr~0 IJ 

/P/L~T )B3 ~PEC I~EXEME def ini t_~ CLASS D, CASE ace 
28~.EI~G: Mann~ CLASS N, C,~E a c c  

108 .E:~IG: sehen_. C~SS Vpp 
42 .E~G: aux-'>erfect_, CLASS Vfin 

.E~ME aussage_, CLASS I 

Figure 5: F-structure for (1) 

(lO) 

MODIFIER = $=(T{PROPO 
ISUBJ 
IVPART* OBJ 
IVPART 
ISPEC 
[ {SUBJ[OBJ[VPART}* RELA}) 

The g rammar  defined so far overgenerates in 
that, e.g., relative clauses may be placed into the 
middle field. To require placement in specific 
domains, additional features are used, which dis- 
tinguish topological fields (e.g., via ($FIELD) = 
middle annotations on c-structure). A relative 
clause can then be constrained to occur only in 
the final field by adding constraints on these fea- 
tures. This mechanism is very similar to de- 
scribing agreement or government (e.g., of case 
or number), which also uses standard features 
not discussed here. With these additions, the 
final rules for finite verbs look as follows: 

domINITIAL 

domMIDDLE 

(11) 

doBFINAL 

DOMAIN:@(MODIFIER) 
(~FIELD) = initial. 

Vfin:@(HEAD) 
(~FIELD) = middle; 

DOMAIN*:~(MODIFIER) 
($FIELD) = middle; 

(DOMAIN:©(MODIFIER) 
(~FIELD) = final ). 

5 . 5  Miss ing  Links  

As is to be expected if you use something for 
purposes it was not designed to be used for, 
there are some missing links. The most promi- 
nent one is the lack of binary precedence predi- 
cates over dependency relations. There is, how- 
ever, a close relative, which might be used for 

implementing precedence predicates. Zaenen & 
Kaplan (1995) introduced f-precedence < !  into 
LFG, which allows to express on f-structure con- 
straints on the order  of the c-structure nodes 
mapping to the current f-structure. So we might 
write the following annotations to order the fi- 
nite verb with respect to its modifiers, or to or- 
der subject and object. 

(12) (T) </ (T{SUBJIOBJ[VPART}). 
(J'SUBJ) </ (J'oBa). 

Tile problem with f-precedence, however, is 
that is does not respect the scope restrictions 
which we defined for precedence predicates• I.e., 
a topicalized object is not exempt from the 
above constraints, and thus would result in pars- 
ing failure. To restrict the scope of f-precedence 
to order domains (aka, certain c-structure cat- 
egories) would require an explicit encoding of 
these domains on f-structure• 

6 C o n c l u s i o n  

We have presented a new approach to word 
order which preserves traditional notions (se- 
mantically motivated dependencies, topological 
fields) while being fully lexicalized and formally 
precise (BrSker, 1997). Word order domains are 
sets of partially ordered words associated with 
words. A word is contained in an order domain 
of its head, or may float into an order domain 
of a transitive head, resulting in a discontinu- 
ous dependency tree while retaining a projec- 
tive order domain structure. Restrictions on the 
floating are expressed in a lexicalized fashion in 
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t e rms of dependency relations. V~re have also 
shown how the order domains can be used to 
define a context-free backbone for DG, and used 
a grammar development environment for anno- 
tated phrase-structure grammars to encode the 
DG. 

A number of questions immediately arise, 
some of which will hopefully be answered un- 
til the time of the workshop. On the theoretical 
side, this work has argued for a strict separa- 
tion of precedence and categorial information in 
LFG (or PSG in general, see (BrSker, 1998a)). 
Can these analyses and insights be transferred? 
On the practical side, can the conversion we 
sketched be used to create efficient large-scale 
DGs? Or will the amount of f-structural inde- 
terminacy introduced b y  our use of functional 
uncertainty lead to overly long processing? And, 
last and most challenging, when will the first 
large treebank with dependency annotation be 
available, and will it be derived from XLE's f- 
structure output? 
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