
M u l t i m o d a l Visual izat ion of Geometr ica l Cons truc t ions

V a l ~ r i e B e l l y n c k
Laboratoire L E I B N I Z - Ins t i tu t IMAG

46, avenue FElix Viallet
38031 Grenoble C e d e x - France

A b s t r a c t 2 C a b r i I I

We present an environment for multimodal vi-
sualization of geometrical constructions, includ-
ing both graphical and textual realizations. The
graphic interface is programmed by direct ma-
nipulation, and this process is mirrored in the
text. The text resembles a program written
in a classical programming language, but no
computer science knowledge is required. The
guiding principle is that of textual and graph-
ical equivalence: the same linguistic resources
are used for graphical construction and for text
generation. During construction, the names
of several tools appear in pop-up menus. As
the tools are used, their names are written in
the text, and geometrical objects are simulta-
neously drawn in the figure and written in the
text. Text can be produced in a variety of " di-
alects" according to the user's mother tongue.
Moreover, the visualization system can be used
for interfaces which include a facility for pro-
gramming by demonstration (with macro defi-
nitions) and can offer textual support for inter-
action through other media.

1 I n t r o d u c t i o n

In this paper, we present an environment for
multimodal (graphical and textual) visualiza-
tion of geometrical constructions. We first
present CabriII, the program on which this work
is based. In the second section, we elaborate
on the definition of macro-constructions using
this software. Some of the reasons for introduc-
ing such a textual view in a geometry program
are explained in section three. The next section
focuses on the choices that have guided de:vel-
opment. The last section discusses results and
perspectives.

CabriII (or Cabri-g~om~tre II) is a direct
manipulation program for interactive "explo-
ration" of geometrical diagrams (Laborde, 85).
Many mathematics teachers and mathemati-
cians use it for teaching or for their own work.
It is the result of a tight collaboration be-
tween mathematicians, software researchers, ed-
ucators, and teachers in everyday contact with
pupils.

Using this software, the user is immersed
in an intelligent microworld. CabriII is an
excellent learning environment for geometry
(Laborde, 89), (Laborde, 95). Users construct
geometrical diagrams and create new tools with
macro-constructions. A teacher can profile the
environment for specific learning tasks by em-
bedding macro-constructions in his or her own
tools. Through interactive manipulation of geo-
metrical constructions, a pupil may for instance
observe invariant properties and recognize them
as constraints. All objects (for example, geo-
metric objects and interface elements) are ma-
nipulated directly.

r ; : i :,fii:~iiii~7,, ::i~il, i-iiii:ii:-:~: 6~i~ili,,ri;i ::-~iii~: i: , ::7:-,'::i::!

: " ' " A

• Perpendicul.*ire ~ cetle d f ' o i t e ~ .

i I ~ I ~ " ~ ~ I i ' . ~
i i i m l i m r l l . ' l ' " i i " " "

Figure 1: diagram for a symetric construction

9 1

Figure 1 shows a geometrical diagram draw-
ing in CabriII. The diagram represents a point
A, a line D and some other geometrical objects
used to construct the symmetrical point (called
B) of point A with respect to the line.

3 W h a t is a m a c r o ?

CabriII can store as "macros" construction
methods which users try out. This term is com-
monly used in the domain of programming by
demonstration.

The aim of writing a macro is to define a
new tool by using a list of repeatedly invoked
constructions (Sugiura, 96). For instance, it is
possible to define a macro to construct the sym-
metric point of a given point with respect to a
line.

As a mat ter of fact, CabriII does not store the
whole construction, but only its "useful" part,
determined automatically when the user indi-
cates the "initial" and "final" objects of the con-
struction. This method lets the user decide to
construct a macro after embarking on a complex
construction, rather than before. It also mini-
mizes the length of the macro (which is strongly
related to the number of objects retained). A
consequence of this freedom is that a macro defi-
nition has to pass a validation test which can fail
for various reasons, such as omission of neces-
sary initial objects, dependency loops (in which
an initial object depends on a final object), etc.

Figure 2 shows the dependencies between ge-
ometrical objects in the definition of a construc-
tion method for drawing the symmetric point of
a given point. The method chosen is the same
as in figure 1. The object names are written in
order of their creation, from left to right. The
names written in single quotes are the names
displayed in the diagram, and arrows are used
to represent object dependencies. The selected
initial object names are surrounded by thin rect-
angles, and the selected final objects by thicker
ones. The macro creation process extracts the
smallest graph tha t connects the final objects
to the initial ones.

Figure 2: Geometrical object dependencies

Notice that the macro obtained may not cor-
respond exactly to the user's expectations if
s /he has made mistakes in certain construction
choices. In that case, the user must debug the
macro. Using the text form is far better for tha t
purpose than redoing the whole construction.

4 W h y is a t e x t u a l v i e w u s e d in
g e o m e t r y ?

In mathematics, graphical visualization is a fun-
damental support for reasoning (Zimmermann,
91). The appearance of dynamic geometry
opens new doors by making the concept of di-
agraming more accessible: simply drawing, by
contrast, is more static and discrete.

However, in purely graphical interfaces, the
choices which guide the construction of various
diagram objects can only be tracked down by
observing their effect, i.e. by observing the rel-
ative behavior of the objects throughout dia-
gram deformations. There is no longer direct
access to the causes, only to the consequences.
The information displayed is not a complete his-
tory including the creation, deformations and
deletion of all objects, but rather only a record
of the construction steps (dependencies) of the
stored objects. One way to display all of the
constraints for the whole diagram would be to
display the program which drew the diagram.

Similarly, we can observe that macro defini-
tion is closely related to classical programming,
so that a textual medium becomes an absolute
must. We can also add to the software the
full range of classical programming environment
tools, such as a step-by-step replay tool asso-
ciated with cursor progression, or a tool aiding
visualization of the correspondence between ob-
ject value and graphic rendering. Specific tools
associated with the relevant domain (dynamic
geometry) are also useful. For instance, the use
of color allows visualization of dependencies be-
tween objects, and aids debugging if the macro
validation fails.

5 C o n s t r a i n t s , c h o i c e s , a n d s h a p e

Given the target audience for this software,
the programming langage chosen is as close as
possible to the graphic interface. The display
is based on the concept of textual and visual
equivalence (Lecolinet, 96) - although in this
case "graphical" might be a better term than

92

"visual".

5.1 Tex t genera t ion , objec t ub iqu i ty

Ubiquity is the ability to be in several places
at the same time. In the case of a multimodal
interface in a geometry program, ubiquity can
be applied to geometrical objects such as points,
straight lines, circles, conics, and so on as shown
below: to construct a new geometrical object,
the user selects a tool, then goes to the diagram
and specifies the objects to which that tool is
to be applied. Only objects whose types are ap-
propriate for the current tool can be selected.
CabriII produces demonstration strings which
help the user to choose which objects to select
and to understand how they will be used by
the current tool. Alongside the construction,
tools names are displayed in the textual area,
and strings are simultaneously displayed in the
textual area and under the cursor in the graph-
ical area, along with the names which identify
objects.

5 .2 M o v e s in cons truc t ion s e q u e n c e s

The user can revise a di.agram construction by
clicking on recorder buttons. The geometri-
cal objects appear in their drawing order with
respect to the object dependency constraints
(or disappear according to the selected recorder
buttons). The corresponding text for that move
in the sequence of effective objects is produced
in two colors: flat black for the drawn objects
and light blue for the object to be drawn. A
third color (red) is used to display current pro-
gram elements: when the user moves through
the macro's internal objects, the programming
langage commands are displayed in red.

5 .3 Value modi f i ca t ion

A "program" is a formal description of the ac-
tive constructions. Actual values of objects and
graphical attributes (color, thickness, and so
on) may be displayed in help bubbles associ-
ated with the object names. Clicking on a name
causes every textual occurrence of the relevant
object to be highlighted in green. With a dou-
ble click, all textual occurrences of the objects
which depend on the selected object are also
displayed in green, and a help bubble appears.

6 R e s u l t s P r e s e n t a t i o n

Figures 3 and 4 show a diagram and its tex-
tual view respectively in English (i.e. when the
language chosen by the user is English) and in
German. In this diagram, the macro "Sym" is
called on point E with respect to line D and
constructs point F.

_ _ _ _ m

Figu~re
Pomt
Line (B, v P1)
Point
SvmC : : , ~ ')
• Perpondioul~r Line (:.: i : , Perp~diou~ar to "D')
• ~terse¢,ion Poor(s) (' ~ ' , D2)
• C~r¢le (Using this centre point P2, : ')
> Intersection Poiat(s) (O2~ C1, ~.!i*~ : . i : " ~)
Fin de l a f i g u r e ~5

M a c r o : ~ r n
Initial Object•
FFin~l Object•
> Perpond~Jlar Line iBM °PI , Perpendioular to o91)
• Intersection Pc.int(s) (cOt, ~D2)
• C~r¢io (Us~g this centre point ~P2, ~nd this radius point ePI) '
• Intersection Point(s) (~D2, ~C1, other ~han °P1)
Fio de la macro : $9m

- • p _ ~ P I

-> P...~! .:i..i
- • p.~.t ..~2

- • ~ D2
- • p _ ~ P2
- • ~ CI

point OPt, Hne °OI,
point eP3,

-> line ~O2
-> point =p2

-> point ~p3

Figure 3: Macro calling in English.

F~,,-t

Get ado C ~ ¢ ~ dUe.sen I~miid P I)
Purkt
~ m ("E ' , " ~)
• ;~,nla"e~.~te ~ ~ m ~ "E ' , . ~ , k r ~ ~1~ :~ % ')
> S~-,nit*pur~t(e) ('> " , 02)
• Kreis (D ~ i ls Htttellxx~t P2, und ¢Heser als Krets~pur, k't "E")
• Schntt~puNdL(e) (D2, C I , d~eser 4fKiere Pwdkt "E')
Pin 4e la f 'kjare

~ r o : 5~m
Star td~4de >
ZielobjektO
• ,Senlo-eohte (D~,rdh dle~n Pmkt ~'PI,SeNored~t ¢u e4)1)
• s,:*v~tr~u,.~t~e)('¢,!, °o2)
• KPeL~ CPk~e,r als Plffte~v.iekt ~P2, u~4 ~ a~s Krt~b~,unkt ~J::l)
) Scchntttpunkt(e) (~D2, I t 1 , dieser andere Punkt °P1)
Fin de la macro : ~jrn

[]
- ~ ~"-aae "~"

I -~ P'unM 'T"
- ; " ~ D2
- • Ptmkt P2
-> Kreis C1

[]
Pudd raP1 • ~eradW "01 B B
Punkt ~P~, B B

-1" Punkt sP3

• I ~ l l

Figure 4: Macro calling in German.

The best way to edit macro constructions is

93

not yet clear. We are investigating whether edit-
ing would be most helpful in the diagram pro-
gram or directly in the macro program.

The equivalence of the material presented
textually and visually enables every user to pro-
gram comfortably. The user does not have to
type a single character, yet appropriate text is
generated in the current dialog language of the
interface. The text verifies relevant lexical and
syntactic rules. Since the syntax and semantics
of the programming language are made obvious,
the user learns them easily.

7 Conclusion

We have presented an environment for the dis-
play of geometrical data which emphasizes co-
ordinated textual and graphical presentation of
equivalent material and the ubiquity of micro-
world objects. The textual view is an important
aid to the construction of macros. The environ-
ment can facilitate exploration of macro debug-
ging techniques and has relevance for studies
of translation from readable diagram programs
to natural language instructions. It is also de-
signed for use in support of other interactive
media.

R e f e r e n c e s

Laborde Jean-Marie (1985), "Projet de cahier
de brouillon informatique pour la g~omfitrie',
Archives LSD2-IMAG.

Laborde Jean-Marie (1989), "Intelligent Mi-
croworlds and Learning Environments", in
Intelligent Learning Environments: The Case
of Geometry, edited by J-M. Laborde, NATO
Serie F: Computer and Systems Sciences,
(1995) vol. 117, pp. 113-132.

Laborde Jean-Marie (1995), "Des connaissances
abstraites aux rfialitfis artificielles, le con-
cept de micromonde Cabri", Environnements
Interactifs d'Apprentissage avec Ordinateur
(tome 2), Eyrolles Paris, pp. 29-41.

Eric Lecolinet (1996), "XXL: A Dual Approach
for Building User Interfaces", UIST'96, pp.
99-108, Seattle, November 6-8, 1996.

Atsushi Sugiura, Yoshiyuki Koseki (1996),
"Simplifying Macro Definition in Program-
ming by Demonstration", UIST'96, pp. 173-
182, Seattle, november 6-8, 1996.

Walter Zimmermann, Steve Cunningham
(1991) "Editor Introduction: What is

Mathematical Visualization?", pp. 1-7,
Visualization in Teaching and Learning
Mathematics, ed. W. Zimmermann, S.
Cunningham, 1991.

94

