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Abstract 

We integrate super-tagging, guided-parsing 
and probabilistic parsing in the frame
work of an item-based LTAG chart parser. 
Items are based on a linear-typing of trees 
that encodes their expanding path, starting 
from their anchor. 

1 lntroduction 

Practical implementations of LTAG parsing bave to 
face heavy lexical ambiguity and parsing combinato
rial ambiguity. Main techniques to address these is
sues are super-tagging (Joshi and Srinivas, 1994), 
which consists in disambiguating elementary trees 
before parsing; guided-parsing, like head.-driven 
parsing (van Noord, 1994) or anchor driven pars
ing (Lavelli and Satta, 1991; Lopez, 1998); and 
probabilistic parsing (Schabes, 1992; Caroll and 
Weir, 1997). 

All of tbese approaches exploit specific properties 
of LTAG to improve parsing efficiency, but none is 
totally satisfactory. 

Guided-parsing is a very nsefull means to limit 
overgeneration of spurious items in the chart, but it 
does not provide a new ambiguity bound. Besides, 
lexical ambiguity remains the main factor of com
putational load and this problem is only undirectly 
addressed by such techniques. 

Super-tagging strength is to discard elementary 
trees while avoiding to go through actual tree com
binations. lt exploits instead. local models of Well
Formedness (WF), as those used for tagging, where 
parse depencies remain implicit or underspecified. 
The problem though is that if a single tree is in
correct the parse will fail. To be robust, parsing 
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must thus take several hypothesis into account. This 
leaves one with two regrets: first, parsing has still 
to find some way to tackle combinatorial ambigu
ity, and second, there is a lack of synergy between 
super-tagging and parsing , while they seem to share 
a kuowledge about tree potential-combinations. 

Probabilistic parsing offers a way to tune the com
promize between accuracy and speed, by thresh
olding partial parsing paths according to their cur
rent Inside probability. This incurs a well-known 
bias (Goodman, 1998): At a given derivation step, 
the lnside-probabilities of parse constituents esti
mate the relevance of the derivation past, but do 
not teil anything about its future. This can be cor
rected by A* cost functions, or Outside-probability 
estimates. 

To meet the weak points mentionned above, at 
least partialy, we develop a unified framework for tbe 
tbree techniques, and push their interactions further. 

Sharing a parsing framework We propose an 
item-based chart-parser, where the parsing scheme 
is expressed as a deduction system (Shieber, Sch
abes, and Pereira, 1994). This framework is 
also amenable for expressing probabilistic pars
ing (Goodman, 1998). 

Sharing models for super-tagging and item
pruning. Super-tagging can be seen as a tree
sequel)Ce WF-model, and extended to score derived 
item-sequences in the cbart, wrt their likelihood of 
completing a parse. This yields a sound threshold
ing technique (Rayner and Carter, 1996; Goodman, 
1998). 

Sharing tree-types for item-pruning and 
guided-parsing. To support the WF parametric 
mode!, trees and itcms are abstracted by theit lin
ear type, which consists in a list of connectors that 
represent combination properties. Guided-parsing 
relies on a specific ordering of these connectors, so 
that a single type drives the parsing deduction and 



Item form: 

Goal: 

Axioms: 

Anchor 

co-Anchor 

Rulcs: 

Substitution 

Right Adjunction 

Lcrt Adjunction 

Lcft Adj on spine 

Sub-tree extrnction 

Wrap Adj on spinc 

No Lcft Adjunction 

Gap crcation 

<•'Jl 1 .JS> n[O,n,-,-1 

Anchor(o·) = U!i r,' r r connectcd walks of a 

<:1e,.(. l .(.w,>unrooted(•,1+1.-,-I 

if<>r lert expansion, right is symetrical) 

<.\l !.JX> "'[q.f; .t:l <JXf df r>o(J,k,Ji ,Jrl 

<frlfr>o (i,f.:, 11$1:, Ir fB 1:J 
wrnp-3 and co-Anchor. recogrlition 

< ·„x, 1„,,rt !'~lrX(r001 J> JJ(•.1 ,-,-1<rX(,1>1L\(ryl f'df r>a11,k,Ji.1rl 

<-rr;ri1r r>o[1,k,Ji .Jr] 
ff E {IX*, S} 

<rl\ ,„„, J1Xroot>.i1„J1 .-.-1 <IXi„ifdf r> 0(11,k,/1 ,J,I 
ri (t sl spine(o) 

<f11r r> 0(1,k,fi ,fr] 

<"l\-1,,,,, 11~1Xroot> ß(„J.-.-1 <IX(„1r11f :1-X1„}>a!J,k,/1 ,/,J 
r~ E {~X,S} 

<fr]f rf~>n[J,k,fi./rl 
<1.\'lrX•> ßf•,J,Ji ,J<I <1-X(„11l\(„i fijf r> o(J,k,/„/d 

<·1 l\·(•'I) .\'r1.(. j .J-.\rirXt'l)>a()r,)r.-.-J < .j. X17fdf r> ofj,k,/r.!d > 
wrnp-1 

< "IXl1-X ·> ;Jl•.J.J1 ,Jr]<rX(„ifdf r 1Xc„l> o(Jt,Jr.f!,J:l 

<f11r r>of•.1.1: .1:1 

< IXj'll fi ll r> n(1.1.J, ./rl 

<l'd r r>[ •. J./1 ./rl 

<1X(rool)r, lf r> .il•./r.-.-l 
f1 (t {'IX, S} 

wrnp-2 adjunction an sub-tree 

Table l: Deducti \'e syslcm for an L TAG bidirectional chart-parser, lexica\ly guided and based majoritarily 
on trces. thanks to a prccomµilation of thcir nodes into left and right walks. 
The acllve ('QJIJlector IS µopcd on e•treme ldl (resp. right) of its Stack r, (resp. rr)- Each connector is associated with its node ~. 

thou11h we do not always mark 11. The spme 1s the path from anchor to root.wr&p-1, wrnp-2, wrap-3 identifie the three steps of a 

wrapping ndjuncuon an iln mtf:'rnal node. er tijl;Ure L 

estimates the pruning model. Tyµes are described 
in section 2, their use in t.hc deduction systcm, m 
section 3. their use for itcm-pruning in section 4. 

2 Linear Typing 

Guiding the Tree expansion \\'e guide the pars
ing by independent left and right connected-walks, 
inspired from ( Lavelli and Satta. 19!)1) bidirectional 
parscr and (Lopez, 1998) connected routes. Left and 
right connected walks follow respcctively left- and 
right- monolonic expansion, out ward. from thc an
chor to t hc root, as disµlayed in flgure 2. Thcy list 
node operations considercd as connectors. 

Link-Gramnrnr expression To express linear 
types. WP C"Xploit thc Link-Grammar formalism {Laf
fcrty. Sleator. and Temperley. l UU2). which is close 
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to Categorial Grammar. Left and right walks are ex
prcssed as stacks of connectors, so that the extreme 
connector is the one to connect the dosest to the 
anchor 1 An illustration is given in table 2 for the 
tree in figure 2. 

Typing strategy. In it.s own walk, the foot bears 
the adjunction, with type l or r inversly to the foot 
side. In the opposit walk, the foot-node may be 
reached as weil, provided that there is a direct path 
from root to foot. In the deduction system, in ta
ble 1, the foot-node of a left or right auxiliary tree 
achicves adjunction, but the foot-node of a wrapping 
auxiliaiy tree creates a gap and passes its adjunction 

1The derivation is represented as a fully connected 
and oricnted graph of trees whose edge labcls arc con
nector names (pr,,,ided that a sub-tree is extracted to 
decompose wrapping adjunction, cf. figure 1. 



Wr&p·I 
fnhlrJlllW)' itfp 
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figure l: lllustration of the dcduction rules in la
blc 1. 
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kh walk 

figurc 2: Lcft and right trce walks. 

capacities to the root-node, with an opposit type for 
the opposit. sides. 

lt. can bc noted that each nodc that can receive ad
junction yields two linked connectors, which bound 
t he su b-list of connectors of their su b-trce. 

3 Deductive Chart Parser 

\Ve wish to get elementary-like lypes on derived 
structure , so as to use a super-tagging-like model to 
prune derived paths. \Vc t.ry thus to keep as close as 
possible to trees when driving thc parsing. But we 
are not aiming at top-down parsing. since we wish 
lo evaluate deri,•ed paths that span the input. This 
lcads to isolating wrapping adjunction from left- an<l 
right-. adjunctions, since it is the only case where 
sub-tree extracting is unavoidable (cf. figure 1). Ac
tually this empha.sis on wrapping auxiliary trees is 
not surprising, since they accounl for LTAG context
sensitiveness (Schabes and Shicber. 1994). 

The full <leductive parsing system is defined in 
table 1. for the LTAG bidirectional-chart parscr. 

Our approach advantage is t.hreefukl : first, it con
siders only operat.ions that are IP.xically sound, ac
cording to the input string sequence; second, it keeps 
the number of spurious items VNY low, by creating 
\'Pry few sub-tree- (or node-) iterns; third , it isolatcs 

56 

left wnlk meta-rule: 
'Sfoot B* NP* -l.did ,.YP* NP -l. NP* N* <-• know 

right walk meta-rule: 
know •-+ *rV that-l. Sf"oot {NA*rVP) *rS 

left and right connector stncks: 
<N*. · · S* 'Sfoot 1 *rS ... *rV> 

type: abstraction on connector stacks, 
removes specialh:ed substitutions: 

co-Anchor: w-l.-+ LEX.). sub-trec: .\"17.).-+ X --l. 

Table 2: Typing thc tree in figure 2. 
In a right walk, ix• cxpreoses an auxiliary root-node and 'IX, a 

node expecting adjunct1on, X.j. expresses a Substitution Site and 

.jX, the root of an initial tree. In a left walk they work the other 

way around. 

clearly the CF-component, so that the parsing be
haves very nicely whcn faccd wit.h near-CF deriva
tions, which are a majority in practice. 

Now, regarding complexity, first t.hree "near-CF" 
rules yield a worst-casc complexity of O(n 5 ), wrap
ping adjunction on a lexical spine yields 0(116), but 
the sub-tree rule yields O(n 7 ). We could change that 
rule into a "systematic" snb-tree extraction with ar
bitrary gap frontiers, in order to go down to O(n5 ), 

bnt this would generate a lot of spnrious items. 
Thcrefore we prefer a lexical check with a wrapping 
auxiliary t.ree, since their occurrence is marginal. 

4 Probabilistic Thresholding 

Probabilistic parsing is expressed through thc de
ductive system as fo!lows: 

= Pr(iitemi) = P(item ='* w; ... Wj) 

= P(r11le) 

Rufe, [;itemifüitemk] 
~~~~~~~~~~~~~~d 

(;itemk] = Rule * (;item1] * f)temk] 

Probabilities of items are inside probabilities i.e gen
erative probability that an itcm dominatcs its cur
rent span of input. Now thc usefulness of an item 
in reaching full derivations is mainly in the outside 
probabiJity Po o[ that item, defined for LTAG in 
( 1), following (Schabes, 1992) 

for pos = [i,j, /1, /,] 
I'O([s]po•J = l:uvT P([Sj:; U(s)po•FTj 

s.t.U ~Wo .•• \~ J. W1„„ T ~ W11.1. 

Pprior([s]) = Lu.v.T,W' P(S d;. U[s]\IT) 
s.tU\l[s}T * W' 

(1) 

('.2) 



P([s}po•) =Lu ~· T. P(S~ h ,..\"i p(s]„o,T1 .9 ) 
"'' P• 'f 

s.tU1..mVi .. „[s}po1T1 q,; W 
(3) 

For an item-path, outside probability accounts for 
parsing-deductions to come. i.c t hc connectors of 
t.he item stacks. \Vhereas consumed connectors are 
rcsponsible for the inside probability. Thcre is no 
way to computc the outsidc prohability without. the 
knowledgc of thc actual ··rnn11cct ion„ of connec
tors. but this decomposition g1\·rs u:i a very prC!cious 
means to normalize insidc probabilities. which put. 
\'cry low probabilit.ies 011 large itl'ms. 

item-path 
rcmaininl!; stacks: 

consum1ned stacks: 

Pr(U):::::: 

Po((') :::::: 

r~1C1 .. „l'rl 
< r;1r~ > 
< r;'1r~' > 

Irr 1··'1·•' d P.' V • t , µro • o 

. in r"r· V , t r 

(Goodman, 1998) proposes two useful approxima
tion of the outside score of itcm[s] . in ordcr to cor
rect t hc inside probabilily hi<L~ . \\'r express them 
in thc contexl of LTAG in (:./) and (:~) . The iirst 
one simp!y corresponds to t he prior probabi!it.y of 
t he item calegory. The second one is the curnulated 
probability of all item-paths / ' = ( l ·,, „, Cp) that 
indude (s]. This \'aluc can be c·ornputed in several 
passes (Goodman. Hl98; llayner and Cartcr, 1996) . 

C'omputing path probabilitics 1·ntails estimating 
thc probability that sequences llf itcms. which span 
t he input. can build a complete derivation . This is 
t he aim of Super-tagging, which rnn be \•iewed as a 
model for the first step of t hc chart. \Vr generalize 
it to model steps n. i.c a str.p whrre cdges have max
imal length n. Here are some approximations which 
have been proposed: 

PI(U) P{U1„U„) Real 

H 
P(l',) 

: P({',IC.-1 l 
Min,min(P(l',lt",_1 ). 
Ppnor(C,), P(f',Jl".+1 IJ 

rully independent 
~larkovian 

Fully dependent 

lt ern sequences ressemble r.lementary 1 ree sequences. 
as thcy share types. and connecl through the same 
c:onnectors (provided the t)•pe abstraction explained 
in table 2 for specialized substitutions) . llence the 
possible re-use, in a first approximalion. of super
t agging training for the generalize<l itern-model. 

Smoothing: types decompose into a very small 
sf'l of connectors, with straigtforward interprelat.ion. 
They can serve as a useiui basis for compnting back
orf probabilities. For instance by distributing the 
probability mass of each connection among all types 
1 hat. allow t.his connection. in t hr same way as ( Laf
fcrly. Slealor, and Temperley. 19n'2) . 
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5 Discussion 

\Ve have presented a general framework for deduc
tive parsing , probabilistic parsing and super-tagging. 
This unified approach opens a lot of perspective in 
the design of efficient and robust LTAG parsing. 
However. it rc•mains lobe fully validated. 

,\s far as supper-tagging is concerne<l, supertags 
should pcrform betler than linear lypes as lheir def
inition integrales a !arge amounl of linguistic knowl
cdge. Types nonelheless provide for thal t.ask a very 
simple. and yet relevant, smoothing scheme. As for 
further steps of parsing, types turn out vcry ade
quate. as thcy allow to express in a simple manner 
the essential computations involved. 
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