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A b s t r a c t  

We present a method for compiling gram- 
mars into efficient code for head-driven 
generation in ALE. Like other compila- 
tion techniques already used in ALE, this 
method integrates ALE's compiled code 
for logical operations with control-specific 
information from (SNMP90)'s algorithm 
along with user-defined directives to iden- 
tify semantics-related substructures. This 
combination provides far better perfor- 
mance than typical bi-directional feature- 
based parser/generators, while requiring a 
minimum of adjustment to the grammar 
signature itself, and a minimum of extra 
compilation. 

1 M o t i v a t i o n  

Large-scale development systems for typed feature~ 
based grammars have typically oriented themselves 
towards parsing, either ignoring generation entirely 
(the usual case), or assuming that generation can 
be achieved for free by using a bi-directional con- 
trol strategy with a semantically, rather than phono- 
logically, instantiated query. In the latter case, the 
result has inevitably been a system which is unac- 
ceptably slow in both directions. At the same time, 
several lower-level logical operations over typed fea- 
ture structures, such as inferring a type from the 
existence of an appropriate feature, or the unifica- 
tion of two feature structures, are indeed common 
to both parsing and generation; and generators out- 
side this logical domain, of course, can make no use 
of them. What is required is a system which pro- 
vides a common pool of these operations optimized 
for this particular logic, while also providing modes 
of processing which are suited to the task at hand, 
namely parsing or generation. 

This is exactly how the situation has developed 
in other areas of logic programming. The Warren 
Abstract Machine and its various enhancements are 
now the de facto standard for Prolog compilation, for 
example; and with that standard come techniques 
for call stack management, heap data structures etc.; 
but this does not mean that all Prolog programs are 
created equal - -  the more sophisticated compilers 
use mode declarations in order to optimize particu- 
lar programs to being called with certain argument 
instantiations. 

The Attribute Logic Engine (ALE,(CP94)) is a 
logic programming language based on typed fea- 
ture structures, which can compile common logi- 
cal operations like type inferencing and unification 
into efficient lower-level code. ALE also compiles 
grammars themselves into lower-level instructions, 
rather than simply running an interpreter over them, 
which yields a substantial increase in efficiency. For 
ALE, the question of efficient generation is then 
how to compile grammars for use in semantically- 
instantiated queries. To date, however, ALE has 
fallen within the class of systems which have ig- 
nored generation entirely. Its only control strategies 
have been a built-in bottom-up chart parser, and 
the usual SLD-resolution strategy for its Prolog-like 
language. 

On the other hand, only a few of the operations it 
compiles are specific to the parsing direction. ALE's 
lower level of instructions are expressed using Pro- 
log itself as the intermediate code. ALE compiles 
the various elements of a typed feature-based gram- 
mar (type signature, feature declarations, lexical 
rules, phrase structure-like grammar rules) into Pro- 
log clauses which are then compiled further by a Pro- 
log compiler for use at run-time. In fact, ALE also 
has a Prolog-like logic programming language of its 
own, based on typed feature structures. Goals from 
this language can be used as procedural attachments 
on lexical rules or grammar rules as well. 
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This paper describes a head-driven generator 
which has recently been added to ALE ((Pop96)), 
which provides a smooth integration of generation- 
specific control information with the powerful logical 
compilation that ALE already performs. We also 
briefly consider the use of a lexical indexing strat- 
egy for generation, which is compiled into efficient 
lower-level instructions as well. 

2 H e a d - D r i v e n  G e n e r a t i o n  

Our head-driven generator uses essentially the same 
control strategy as proposed in (SNMP90), which 
was first used in the BUG system of (Noo89). This 
algorithm is quite well suited to large-scale HPSG 
generation, as it avoids the termination problems 
inherent to top-down processing of strongly lexic- 
ocentric theories, and, at the same time, does not 
require of its grammar rules the same naive form of 
compositionality, known as semantic monotonicity, 
as Earley-based strategies do. A semantically mono- 
tonic grammar rule is one in which the semantic 
contribution of every daughter category subsumes a 
portion of the contribution of the mother category. 
In general, wide-coverage theories cannot guarantee 
this. 

Control in this algorithm is guided by meaning 
rather than a particular direction over a string, and 
thus requires the user to distinguish two classes of 
rules: those in which a mother has the same seman- 
tics as some daughter (a chain rule), and those in 
which it does not (non-chain rule). The strategy is a 
combination of bot tom-up and top-down steps based 
on the location of a pivot, the lowest node in a deriva- 
tion tree which has the same semantics as the root 
goal. Once a pivot is located, one can recursively 
process top-down from there with non-chain rules 
(since the pivot must be the lowest such node), and 
attach the pivot to the root bot tom-up with chain 
rules. A pivot can either be a lexical entry or empty 
category (the base cases), or the mother category 
of a non-chain rule. The base case for bottom-up 
processing is when the pivot and root are taken to 
be the same node, and thus unified. The reader is 
referred to (SNMP90) for the complete algorithm. 

What  we will be concerned with here is the adap- 
tation of this algorithm to grammars based on a 
logic of typed feature structures, such as HPSG. 
(SNMP90) uses definite clause grammars, while 
(Noo89) uses a Prolog-based extension of PATR- 
II, which has features and atoms, but no feature- 
bearing types, and thus no appropriateness. Unlike 
both of these approaches, our goal is also to com- 
pile the grammar itself into lower-level code which 
is specifically suited to the particular requirements of 

head-driven generation, very much as ALE already 
does for its parser, and much as one would compile 
a Prolog program for a particular set of mode spec- 
ifications. 

3 I n p u t  S p e c i f i c a t i o n  

The reader is referred to (CP94) for a complete spec- 
ification of ALE's syntax as it pertains to parsing. 
ALE allows the user to refer to feature structures 
by means of descriptions, taken from a language 
which allows reference to types (Prolog atoms), fea- 
ture values (colon-separated paths), conjunction and 
disjunction (as in Prolog), and structure sharing 
through the use of variables (with Prolog variables). 
ALE grammar rules simply consist of a series of these 
descriptions, one for each daughter and one for the 
mother, interspersed with procedural attachments 
from ALE's Prolog-like language. The following is a 
typical S ~ N P  VP rule taken from a simple ALE 
grammar: 

srule rule 
(s ,phon:SPhon,form:Form,sem:S) ===> 
cat> (phon : SubjPhon), Subj, 
seN_head> (vp, phon : VpPhon, form: Form, 

subcat  : [Subj ] ,  sem: S ) ,  
goal> append (Subj Phon, VpPhon, SPhon). 

The description of a sentence-typed feature struc- 
ture before the ===> is the description of the mother 
category. The operator, cat>,  identifies a daughter 
description, here used for the subject NP, and goal> 
identifies a call to a procedural attachment,  whose 
arguments are Prolog variables instantiated to their 
respective phonologies (the values of feature, phon). 
seN..head> is a new operator which identifies the 
daughter description corresponding to the semantic 
head of a rule, according to (SNMP90)'s definition. 
Grammar  rules can have at most one seN_head> dec- 
laration; and those which have one are identified as 
chain rules. 

The only other special information the user needs 
to provide is what constitutes the semantic compo- 
nent of a feature structure. ALE uses a distinguished 
predicate, s e N _ s e l e c t  (+, - ) ,  from its procedural at- 
tachment language in order to identify this material, 
e.g.: 

sem_select(seN:S,S) if true. 

In general, this material may be distributed over var- 
ious substructures of a given feature structure, in 
which case the predicate may be more complex: 

sem_seleet ( (s ign, synsem: coat : Coat, 
retrieved_quants : QR), 

(seN, c:Cont,q:QR)) if 
no_free_vats (QR). 
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Notice that such grammars can still be compiled 
by ALE's parsing compiler: the sere_select /2 pred- 
icate can simply be ignored, and a sem~ead> oper- 
ator can be interpreted exactly as cat>. In the gen- 
eral case, however, a particular grammar rule will 
not compile into efficient, or even terminating, code 
in both modes, particularly when procedural attach- 
ments are used. Just as in the case of Prolog, the 
user is responsible for ordering the procedural at- 
tachments (subgoals) with respect to their daughter 
categories and with respect to each other to ensure 
proper termination for a particular mode of process- 
ing. Just as in Prolog, one could also modify ALE 
to assist, to an extent, by augmenting ALE's pro- 
cedural attachments with mode declarations which 
can be enforced by static analysis during compila- 
tion. At this point, one could also adapt techniques 
for automatic mode reversal from logic programming 
((Str90; MGH93)) to grammar rules to obtain the 
minimum amount of manual modification necessary. 

4 C o m p i l a t i o n  

All ALE compilation up to, and including, the level 
of descriptions applies to generation without change. 
This includes compiled type inferencing, feature 
value access functions, and the feature structure uni- 
fication code itself. I This level is a very important 
and convenient stage in compilation, because de- 
scriptions serve as the basic building blocks of all 
higher-level components in ALE. One of these com- 
ponents, ALE's procedural attachment language, 
can also be compiled as in the parsing case, since 
it uses the same SLD resolution strategy. The rest 
are described in the remainder of this section. 

4.1 G r a m m a r  R u l e s  

Chain rules and non-chain rules are compiled differ- 
ently because (SNMP90)'s Mgorithm uses a different 
control strategy with each of them. Both of them are 
different from the strategy which ALE's bottom-up 
parser uses. All three, however, vary only slightly 
in their use of building blocks of code for enforcing 
descriptions on feature structures. These building 
blocks of code will be indicated by square brackets, 
e.g. [add Desc  to FS]. 

4 .1 .1  N o n - c h i n a  R u l e s :  

Non-chain rules have no semantic head, and are 
simply processed top-down, using the mother as a 
pivot. We also process the daughters from left to 
right. So the non-chain rule: 

*(CP96) provides complete details about this level of 
compilation. 

DO ===> DI, ..., DN. 

consisting of descriptions DO through DN, is compiled 
to: 

n o n _ c h a i n _ r u l e  (+P ivo tF S ,  +RootFS, ?Ws, 
?WsRest) "- 

[add DO to PivotFS], 
exists_chain (PivotFS, RootFS), 

[add D1 to FS1], 

generat • (FS i, SubWs, SubWs 2), 
[add D2 to FS2], 
generate (FS2, SubWs2, SubWs3), 

[add DN to FSN], 
generate (FSN, SubWsN, SubWsRest), 
connect (PivotFS, RootFS, SubWs, SubWsRest, 

Ws, WsRest). 

non_chain_rule /4  is called whenever a non-chain 
rule's mother is selected as the pivot (by successfully 
adding the mother's description, DO, to PivotFS), 
generating a string represented by the difference 
list, Ws-WsRest. The algorithm says one must re- 
cursively generate each daughter (genera te /3 ) ,  and 
then connect this pivot-rooted derivation tree to the 
root (connect /6) .  Before we spend the effort on 
recursive calls, we also want to know whether this 
pivot can in fact be connected to the root; this is 
accomplished by e x i s t s _ c h a i n / 2 .  In general, the 
mother category and daughter categories may share 
substructures, through the co-instantiation of Pro- 
log variables in their descriptions. After matching 
the mother's description, which will bind those vari- 
ables, we add each daughters' description to a new 
structure gsi, initially a structure of type bot (the 
most general type in ALE), before making the re- 
spective recursive call. In this way, the appropri- 
ate information shared between descriptions in the 
user's grammar rule is passed between feature struc- 
tures at run-time. 

To generate, we use the user's distinguished selec- 
tion predicate to build a candidate pivot, and then 
try to match it to the mother of a non-chain rule 
(the base cases will be considered below): 

generate (+GoalFS, ?Ws, ?WsRest) : - 
solve (sem_select (GoalFS, Sem) ), 
solve (sem_select (PivotFS, Sem) ), 
non_chain_rule (PivotFS, GoalFS, Ws, WsRest ). 

solve/1 is ALE's instruction for making calls to 
its procedural attachment language. Its clauses are 
compiled from the user's predicates, which have de- 
scription arguments, into predicates with feature 
structure arguments as represented internally in 
ALE. 
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4.1.2 C h a i n  Rules :  

Chain rules are used to connect pivots to goals. 
As a result, we use them bottom-up from semantic 
head to mother, and then recursively generate the 
non-head daughters top-down, left to right. So a 
chain rule: 

DO ===> D1, . . . ,  DK, HI), D(K+I) . . . . .  DN. 

is compiled to: 

c h a i n _ r u l e  (+PivotFS,  +RootFS, +SubWs, 
-SubWsRest, ?Ws, ?WsRest) • - 

[add HI) to P i v o t F S ] ,  
[add DO to  MotherFS] 
exist s_chain (MotherFS, RootFS), 
[add D1 to FSI], 
generate (FS1, SubWs, SubWs 2), 

[add DK to FSK], 
generate (FSK, SubWsK, SubWsK+1 ), 
[add D(K+I) to FS(K+I)], 
generate (FS (K+I), SubWsK+ i, SubWsK+2), 
. . .  

[add DN to FSN], 
generate (FSN, SubWsN, SubWsRes t ), 
connect (MotherFS, RootFS, SubWs, SubWsRest, 

Ws, WsRest). 

c h a i n _ r u l e / 6  is called whenever a chain rule is se- 
lected to connect a pivot (PivotFS) to a root goal 
(RootFS), yielding the string Ws-WsRest, which con- 
tains the substring, SubWs-SubWsRest. In the case 
of both chain and non-chain rules, calls to a procedu- 
ral at tachment between daughter Di and D ( i + l )  are 
simply added between the code for Di and D( i+ l ) .  
Procedures which attach to the semantic head, in the 
case of chain rules, must be distinguished as such, 
so that they can be called earlier. 

To connect a pivot to the root, we either unify 
them (the base case): 

connect (PivotFS, RootFS, Ws, WsRest, Ws, 
WsRest) :- 

unify (Pivot FS, RootFS). 

or use a chain rule: 

connect (+PivotFS, +RootFS, +SubNs, -SubWsRest, 
?Ns, ?WsRest) :- 

chain_rul e (P ivotFS, RootFS, SubWs, 
SubWsRest ,Ws ,WsRest). 

Similarly, to discover whether a chain exists, we ei- 
ther unify, or attempt to use one or more chain rules. 
For each chain rule, we can, thus, compile a separate 
clause for exists_chain/2, for which that rule is the 
last step in the chain. In practice, a set of chain rules 
may have potentially unbounded length chains. For 

this reason, we bound the length with a constant de- 
clared by the user directive, max_chain_length/1.  

4.2 Lex ica l  E n t r i e s  

Lexical entries are the base cases of the algorithm's 
top-down processing, and can be chosen as pivots 
instead of the mothers of non-chain rules. In fact, 
lexical entries can be compiled exactly as a non-chain 
rule with no daughters would be. So a lexical entry 
for W, with description, D, can be compiled into the 
non_cha in_ru le /4  clause: 

non_cha in_ ru l e  (P ivo tFS ,  RootFS, Ws, WsRest) : - 
[add D to  P i v o t F S ] ,  
c o n n e c t  (P ivo tFS ,  RootFS, [W I SubWs], SubWs, 

Ws, WsRest). 

For ALE's bottom-up parser, lexical entries were 
compiled into actual feature structures. Now they 
are being compiled into code which executes on an 
already existing feature structure, namely the most 
general satisfier of what is already known about the 
current pivot. Empty categories are compiled in the 
same way, only with no phonological contribution. 
This method of compilation is re-evaluated in Sec- 
tion 6. 

4.3 Lex ica l  Ru l e s  

ALE's lexical rules consist simply of an input and 
output  description, combined with a morphologi- 
cal translation and possibly some procedural attach- 
ments. In this present third singular lexical rule: 

pres_sg3 lex_rule (vp,form:nonfinite, 
subcat : Subcat, 

sem: Sem) 

**> (vp,  form: f i n i t  e ,  
subcat  : NewSubcat, 
sem: Sem) 

i f  add_sg3(Subcat ,NewSubcat)  
morphs ( X , y ) b e c o m e s  ( X , i , e , s ) ,  

X becomes ( X , s ) .  

a non-finite VP is mapped to a finite VP, provided 
the attachment,  add .Jg3/2  succeeds in transforming 
the SUBCAT value to reflect agreement. 

For parsing, ALE unfolds the lexicon at compile- 
time under application of lexical rules, with an up- 
per bound on the depth of rule application. This 
was possible because lexical items were feature struc- 
tures to which the code for lexical rules could ap- 
ply. In the generator, however, the lexical entries 
themselves are compiled into pieces of code. One 
solution is to treat lexical rules as special unary 
non-chain rules, whose daughters can only have piv- 
ots corresponding to lexical entries or other lexi- 
cal rules, and with bounded depth. Because the 
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application depth is bounded, one can also unfold 
these lexical rule applications into the lexical entries' 
non_chain . . ru le /4  predicates themselves. Given 
a lexical entry, W - - - >  DescLex, and lexical rule, 
DescIn **> DescOut morphs M, for example, we 
can create the clause: 

non_ chain_rule (Pivot FS, RootFS, Ws, WsRest ) : - 
[add DescOut to PivotFS], 
[add DescIn to LexFS], 
[add DescLex to LexFS], 
connect (PivotFS, RootFS, [Morp:hW I SubWs], 

SubWs ,Ws ,WsRest). 

where MorphW is the result of applying N to W. For 
most grammars, this code can be heavily optimized 
by peephole filtering. At least part of all three de- 
scriptions needs to be enforced if there are shared 
structures in the input and output  of the lexical rule, 
in order to link this to information in the lexical en- 
try. 

5 Example 
An example derivation is given in Figure 1 which 
uses these grammar rules: 

sent rule 
(sentence,sem:(pred:decl,args:[S])) ===> 
cat> (s,form:finite,sem:S). 

s rule 

(s,form:Form,sem:S) ===> 

cat> Subj, 
sem_head> (vp,form:Form,subcat:[Subj], 

sem:S). 

vp rule 

(vp, form: Form, subcat : Subcat, sem: S) ===> 
sem_head> (vp, form: Form, 

subcat : [Compl [ Subcat], sere: S), 
cat> Compl. 

The rules, s and vp, are chain rules, as evidenced 
by their possession of a semantic head. s en t  is a 
non-chain rule. Processing proceeds in alphabetical 
order of the labels. Arrows show the direction of 
control-flow between the mother  and daughters of a 
rule. Given the input feature structure shown in (a), 
we obtain its semantics with sere_select  and unify 
it with that  of s en t ' s  mother category to obtain the 
first pivot, s en t ' s  daughter, (b), must then be re- 
cursively generated. Its semantics matches that of 
the lexieal entry for "calls," (c), which must then 
be linked to (b) by chain rules. The semantic head 
of chain rule vp matches (c), to produce a mother, 
(d), which must be further linked, and a non-head 

daughter, (e), which is recursively generated by us- 
ing the lexical entry for "john." A second applica- 
tion of vp matches (d), again producing a mother, 
(f), and a non-head daughter, (g), which is recur- 
sively generated by using the lexical entry for "up." 
An application of chain rule, s, then produces a non- 
head daughter, (h), and a mother. This mother is 
linked to (b) directly by unification. 

6 Indexing 
In grammars with very large lexica, generation can 
be considerably expensive. In the case of ALE's 
bottom-up parser, our interaction with the lexicon 
was confined simply to looking up feature structures 
by their phonological strings; and no matter  how 
large the lexicon was, Prolog first argument index- 
ing provided an adequate means of indexing by those 
strings. In the case of generation, we need to look 
up strings indexed by feature structures, which in- 
volves a much more expensive unification operation 
than matching strings. Given ALE's internal rep- 
resentation of feature structures, first argument in- 
dexing can only help us by selecting structures of 
the right type, which, in the case of a theory like 
HPSG, is no help at all, because every lexical entry 
is of type, word. (SNMP90) does not consider this 
problem, presumably because its data  structures are 
much smaller. 

The same problem exists in feature-based chart 
parsing, too, since we need to find matching feature 
structure chart edges given a description in a gram- 
mar rule. In the case of HPSG, this is not quite 
as critical given the small number of rules the the- 
ory requires. In a grammar with a large number of 
rules, however, a better indexing technique must be 
applied to chart edges as well. 

The solution we adopt is to build a decision tree 
with features and types on the inner nodes and arcs, 
and code for lexical entries on the leaves. This struc- 
ture can be built off-line for the entire lexicon and 
then traversed on-line, using a feature structure in 
order to avoid redundant, partially successful uni- 
fication operations. Specifically, a node of the tree 
is labelled with a feature path in the feature struc- 
ture; and the arcs emanating from a node, with the 
possible type values at that  node's feature path. 

The chief concern in building this tree is deciding 
which feature paths should be checked, and in which 
order. Our method, an admittedly preliminary one, 
simply indexes by all feature paths which reach into 
the substructure(s) identified as semantics-related 
by sere_select/2, such that shorter paths are tra- 
versed earlier, and equally short paths are traversed 
alphabetically. An example tree is shown in Figure 2 
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(a) ntence 
M: FRED:decl 

IARGS:(FRED:calI-up 
L ALRGS :(PRED :mRry'PRED :jo  

(c) 

sent(non-chain) 

(d) 

{'~F q I FORM:finite / 
I SEM: FRED:call-up "7.1 
L IARGS :(PRED :mary'PRED :j°hn-'~J 

I n°x:sg3 I {FORM:finite / 
I SEM:[PRED:mary, AROS"0]{ I S U B C A T : ( [ n p , A G R : s g 3 , S E M : [ 1 ] ] )  / 
~ -  = I s~ :  F~q~, . , -u.  ql L ALRGs :([llPRED :mary'PggO :j°hn-]J 

mary 

mary 

vp P 3 FORM:finite p, ARGS: 
SU BCAT:([p,SEM :PRED :up] 

[np,AG R:sg3,SEM:[1]]) 
SEM : FRED :call-up q up 

- -  [ ARGS :([1]PRED :mary,PRED :john n_] 

B m vp 
FORM:finite 
SUBCAT:([Hp,SEM:[2]] 

[p,SEM:PRED:up] 
[np,AGR:sg3,SEM :[1]]) 

SEM: FRED:call-up q 
-- I ARGS :( [1]PRED:mary'[2]PRED :j°hnn] 

(e) 
PGR:Sg 3 q 
M:[PRED:john,ARGS:0] ] 

john 

john 

calls 

calls 

Figure 1: A Sample Generation Tree. 
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e INDEX RF_~TR INDEX:GEN 

nom._OblN ~ ~ x  

DEX: ~ 

INDEX:PER ( 

i 
they ---> [code for they] 

plur 

we ---> [code for we] 

Figure 2: A sample lexical decision tree. 

for the two HPSG-likele~calentries: 

they ---> word 
° . °  

CONT: nom_obj 

INDEX: index 
GEN: gend 

NUM: plur 
PER: 3rd 

RESTR: elist 

we ---> word 
° • . 

CONT: nom_obj 

INDEX: index 
GEN: gend 

NUM: plur 
PER: Ist 

RESTR: elist 
. , . 

A~er the tree is built, a number is assigned to each 
node and the tree is compiled into a series of Prolog 
predicates to be used for traversal at run-time, which 
are then compiled by Prolog. The INDEX:PER node 
in Figure 2 has the following compiled code: 

node(6,SemFS,PivotFS,RootFS,Ns,WsRest) "- 
IV := PivotFS~s value at INDEX:PER], 
branch(6,V,SemFS,PivotFS,RootFS,Ws, 

WsRest). 
branch(6,V,SemFS,PivotFS,RootFS,Ws, 

NsRest) :- 
[add type 3rd to V], 

node(7,SemFS,PivotFS,RootFS,Ns,WsRest). 
branch(6,V,SemFS,PivotFS,RootFS,Ns, 

WsRest) :- 
[add type ist to V], 
node(8,Se~S,PivotFS,RootFS,Ws,WsRest). 

n o d e  (7, _, PivotFS ,RootFS ,Ws ,WsRest) • - 
[add code fo r  he to PivotFS] ,  
c o n n e c t  (PivotFS ,RootFS, [he [ SubWs], 

SubWs ,Ws ,WsRest). 
node (8, _, PivotFS, RootFS ,Ws, WsRest ) :- 

[add code for i to PivotFS1, 
connect (PivotFS ,RootFS, [i [ SubWs], 

SubNs, Ws, WsRest ). 

Each clause of a non-terminM node/2 finds the value 
of the current pivot at the current node's feature 
path, and then calls branch/3, which branches to a 
new node based on the type of that value. Leaf node 
clauses add the code for one of possibly many lex- 
ical entries. The non_chain.xule/4 clauses of Sec- 
tion 4.2 are then replaced by: 

non_chain_rule(PivotFS,RootFS,Ns ,NsRest) :- 
solve (sem_select (PivotFS, SemFS) ) 
node (0, SemFS, P ivotFS, RootFS, Ns, NsRe st). 

As the type check on branches is made by unifi- 
cation, traversal of a tree can, in general, be non- 
deterministic. Using ALE's internal data structure 
for feature structures, a check to avoid infinite loops 
through cyclic structures during compile-time can be 
made in linear time. 

7 R e s u l t s  a n d  F u t u r e  W o r k  

Compilation of control code for head-driven gener- 
ation, as outlined in Section 4, improves generation 
performance by a factor of about 5 on three feature- 
based grammars we have written and tested. The 
use of our indexing code independently improves 
generation speed by a factor of roughly 3. The 
combined compile-time cost for producing and com- 
piling the control and indexing code is a factor of 
about 1.5. Taken as a function of maximum chain 
length (also declared by the user), generation is, of 
course, always slower with larger maxima; but per- 
formance degrades somewhat more rapidly with in- 
dexed generation than with non-indexed, and more 
rapidly still with compiled generation than with in- 
terpreted. In our experience, the factor of improve- 
ment decreases no worse than logarithmically with 
respect to maximum chain length in either case. 

There are several directions in which our approach 
could be improved. The most important is the 
use of a better decision-tree growing method such 
as impurity-based classification ((Qui83; Utg88; 
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Cho91)) or concept clustering over lexical entries 
((CR92)). Our current approach only guarantees 
that semantics-related paths are favoured over unre- 
lated ones, and reduces redundant unifications when 
compared with naive lookup in a table of feature 
structures. What is needed is a arrangement of 
nodes which minimizes the average length of traver- 
sal to a failed match, in order to prune search as soon 
as possible. For generation with fixed large-scale 
grammars, this could also involve a training phase 
over a corpus to refine the cost estimate based on a 
lexical entry's frequency. This direction is pursued 
further in (Pen97). 

One could also explore the use of memoization for 
generation, to avoid regeneration of substrings, such 
as the "chart-based" generator of (Shi88), which was 
originally designed for a bottom-up generator. The 
best kind of memoization for a semantically driven 
generator would be one in which a substring could 
be reused at any position of the final string, possibly 
by indexing semantics values which could be checked 
for subsumption against later goals. 

Another direction is the incorporation of this 
strategy into a typed feature-based abstract ma- 
chine, such as the ones proposed in (Qu94; Win96). 
Abstract machines allow direct access to pointers 
and stack and heap structures, which can be used 
to make the processing outlined here even more effi- 
cient, at both compile-time and run-time. They can 
also be used to perform smarter incremental compi- 
lation, which is very important for large-scale gram- 
mar development. This direction is also considered 
in (Pen97). 

8 C o n c l u s i o n  

We have presented the steps in compiling head- 
driven generation code for ALE grammar signatures, 
which can make use of ALE's efficient compilation 
of descriptions. We have also outlined a method for 
compiling feature-based decision trees which can be 
used to alleviate the lexicon indexing problem for 
generation, as well as the chart edge indexing prob- 
lem for large-scale feature-based parsers. 

All of these techniques have been implemented 
and will be available beginning with version 3.0 
of ALE, which will be released in Spring, 1997. 
By compiling both logical operations and, in a 
processing-specific fashion, higher-level control op- 
erations, ALE can be used for very efficient, large- 
scale feature-based grammar design. 
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