
Head-Driven Generat ion and Indexing in ALE

Gerald Penn
SFB 340

K1. Wilhelmstr. 113
72074 Tfibingen, Germany

gpenn@sfs.nphil.uni-tuebingen.de

Octav Popescu
Computational Linguistics Program

Carnegie Mellon University
Pittsburgh, PA 15213, USA

octav~cs.cmu.edu

A b s t r a c t

We present a method for compiling gram-
mars into efficient code for head-driven
generation in ALE. Like other compila-
tion techniques already used in ALE, this
method integrates ALE's compiled code
for logical operations with control-specific
information from (SNMP90)'s algorithm
along with user-defined directives to iden-
tify semantics-related substructures. This
combination provides far better perfor-
mance than typical bi-directional feature-
based parser/generators, while requiring a
minimum of adjustment to the grammar
signature itself, and a minimum of extra
compilation.

1 M o t i v a t i o n

Large-scale development systems for typed feature~
based grammars have typically oriented themselves
towards parsing, either ignoring generation entirely
(the usual case), or assuming that generation can
be achieved for free by using a bi-directional con-
trol strategy with a semantically, rather than phono-
logically, instantiated query. In the latter case, the
result has inevitably been a system which is unac-
ceptably slow in both directions. At the same time,
several lower-level logical operations over typed fea-
ture structures, such as inferring a type from the
existence of an appropriate feature, or the unifica-
tion of two feature structures, are indeed common
to both parsing and generation; and generators out-
side this logical domain, of course, can make no use
of them. What is required is a system which pro-
vides a common pool of these operations optimized
for this particular logic, while also providing modes
of processing which are suited to the task at hand,
namely parsing or generation.

This is exactly how the situation has developed
in other areas of logic programming. The Warren
Abstract Machine and its various enhancements are
now the de facto standard for Prolog compilation, for
example; and with that standard come techniques
for call stack management, heap data structures etc.;
but this does not mean that all Prolog programs are
created equal - - the more sophisticated compilers
use mode declarations in order to optimize particu-
lar programs to being called with certain argument
instantiations.

The Attribute Logic Engine (ALE,(CP94)) is a
logic programming language based on typed fea-
ture structures, which can compile common logi-
cal operations like type inferencing and unification
into efficient lower-level code. ALE also compiles
grammars themselves into lower-level instructions,
rather than simply running an interpreter over them,
which yields a substantial increase in efficiency. For
ALE, the question of efficient generation is then
how to compile grammars for use in semantically-
instantiated queries. To date, however, ALE has
fallen within the class of systems which have ig-
nored generation entirely. Its only control strategies
have been a built-in bottom-up chart parser, and
the usual SLD-resolution strategy for its Prolog-like
language.

On the other hand, only a few of the operations it
compiles are specific to the parsing direction. ALE's
lower level of instructions are expressed using Pro-
log itself as the intermediate code. ALE compiles
the various elements of a typed feature-based gram-
mar (type signature, feature declarations, lexical
rules, phrase structure-like grammar rules) into Pro-
log clauses which are then compiled further by a Pro-
log compiler for use at run-time. In fact, ALE also
has a Prolog-like logic programming language of its
own, based on typed feature structures. Goals from
this language can be used as procedural attachments
on lexical rules or grammar rules as well.

62

m

mm

m

m

m

mm

m

[]

m

m

[]

m

n

mm

m

m

m

m

mm

m

m

This paper describes a head-driven generator
which has recently been added to ALE ((Pop96)),
which provides a smooth integration of generation-
specific control information with the powerful logical
compilation that ALE already performs. We also
briefly consider the use of a lexical indexing strat-
egy for generation, which is compiled into efficient
lower-level instructions as well.

2 H e a d - D r i v e n G e n e r a t i o n

Our head-driven generator uses essentially the same
control strategy as proposed in (SNMP90), which
was first used in the BUG system of (Noo89). This
algorithm is quite well suited to large-scale HPSG
generation, as it avoids the termination problems
inherent to top-down processing of strongly lexic-
ocentric theories, and, at the same time, does not
require of its grammar rules the same naive form of
compositionality, known as semantic monotonicity,
as Earley-based strategies do. A semantically mono-
tonic grammar rule is one in which the semantic
contribution of every daughter category subsumes a
portion of the contribution of the mother category.
In general, wide-coverage theories cannot guarantee
this.

Control in this algorithm is guided by meaning
rather than a particular direction over a string, and
thus requires the user to distinguish two classes of
rules: those in which a mother has the same seman-
tics as some daughter (a chain rule), and those in
which it does not (non-chain rule). The strategy is a
combination of bot tom-up and top-down steps based
on the location of a pivot, the lowest node in a deriva-
tion tree which has the same semantics as the root
goal. Once a pivot is located, one can recursively
process top-down from there with non-chain rules
(since the pivot must be the lowest such node), and
attach the pivot to the root bot tom-up with chain
rules. A pivot can either be a lexical entry or empty
category (the base cases), or the mother category
of a non-chain rule. The base case for bottom-up
processing is when the pivot and root are taken to
be the same node, and thus unified. The reader is
referred to (SNMP90) for the complete algorithm.

What we will be concerned with here is the adap-
tation of this algorithm to grammars based on a
logic of typed feature structures, such as HPSG.
(SNMP90) uses definite clause grammars, while
(Noo89) uses a Prolog-based extension of PATR-
II, which has features and atoms, but no feature-
bearing types, and thus no appropriateness. Unlike
both of these approaches, our goal is also to com-
pile the grammar itself into lower-level code which
is specifically suited to the particular requirements of

head-driven generation, very much as ALE already
does for its parser, and much as one would compile
a Prolog program for a particular set of mode spec-
ifications.

3 I n p u t S p e c i f i c a t i o n

The reader is referred to (CP94) for a complete spec-
ification of ALE's syntax as it pertains to parsing.
ALE allows the user to refer to feature structures
by means of descriptions, taken from a language
which allows reference to types (Prolog atoms), fea-
ture values (colon-separated paths), conjunction and
disjunction (as in Prolog), and structure sharing
through the use of variables (with Prolog variables).
ALE grammar rules simply consist of a series of these
descriptions, one for each daughter and one for the
mother, interspersed with procedural attachments
from ALE's Prolog-like language. The following is a
typical S ~ N P VP rule taken from a simple ALE
grammar:

srule rule
(s ,phon:SPhon,form:Form,sem:S) ===>
cat> (phon : SubjPhon), Subj,
seN_head> (vp, phon : VpPhon, form: Form,

subcat : [Subj] , sem: S) ,
goal> append (Subj Phon, VpPhon, SPhon).

The description of a sentence-typed feature struc-
ture before the ===> is the description of the mother
category. The operator, cat>, identifies a daughter
description, here used for the subject NP, and goal>
identifies a call to a procedural attachment, whose
arguments are Prolog variables instantiated to their
respective phonologies (the values of feature, phon).
seN..head> is a new operator which identifies the
daughter description corresponding to the semantic
head of a rule, according to (SNMP90)'s definition.
Grammar rules can have at most one seN_head> dec-
laration; and those which have one are identified as
chain rules.

The only other special information the user needs
to provide is what constitutes the semantic compo-
nent of a feature structure. ALE uses a distinguished
predicate, s e N _ s e l e c t (+, -) , from its procedural at-
tachment language in order to identify this material,
e.g.:

sem_select(seN:S,S) if true.

In general, this material may be distributed over var-
ious substructures of a given feature structure, in
which case the predicate may be more complex:

sem_seleet ((s ign, synsem: coat : Coat,
retrieved_quants : QR),

(seN, c:Cont,q:QR)) if
no_free_vats (QR).

63

Notice that such grammars can still be compiled
by ALE's parsing compiler: the sere_select /2 pred-
icate can simply be ignored, and a sem~ead> oper-
ator can be interpreted exactly as cat>. In the gen-
eral case, however, a particular grammar rule will
not compile into efficient, or even terminating, code
in both modes, particularly when procedural attach-
ments are used. Just as in the case of Prolog, the
user is responsible for ordering the procedural at-
tachments (subgoals) with respect to their daughter
categories and with respect to each other to ensure
proper termination for a particular mode of process-
ing. Just as in Prolog, one could also modify ALE
to assist, to an extent, by augmenting ALE's pro-
cedural attachments with mode declarations which
can be enforced by static analysis during compila-
tion. At this point, one could also adapt techniques
for automatic mode reversal from logic programming
((Str90; MGH93)) to grammar rules to obtain the
minimum amount of manual modification necessary.

4 C o m p i l a t i o n

All ALE compilation up to, and including, the level
of descriptions applies to generation without change.
This includes compiled type inferencing, feature
value access functions, and the feature structure uni-
fication code itself. I This level is a very important
and convenient stage in compilation, because de-
scriptions serve as the basic building blocks of all
higher-level components in ALE. One of these com-
ponents, ALE's procedural attachment language,
can also be compiled as in the parsing case, since
it uses the same SLD resolution strategy. The rest
are described in the remainder of this section.

4.1 G r a m m a r R u l e s

Chain rules and non-chain rules are compiled differ-
ently because (SNMP90)'s Mgorithm uses a different
control strategy with each of them. Both of them are
different from the strategy which ALE's bottom-up
parser uses. All three, however, vary only slightly
in their use of building blocks of code for enforcing
descriptions on feature structures. These building
blocks of code will be indicated by square brackets,
e.g. [add Desc to FS].

4 .1 .1 N o n - c h i n a R u l e s :

Non-chain rules have no semantic head, and are
simply processed top-down, using the mother as a
pivot. We also process the daughters from left to
right. So the non-chain rule:

*(CP96) provides complete details about this level of
compilation.

DO ===> DI, ..., DN.

consisting of descriptions DO through DN, is compiled
to:

n o n _ c h a i n _ r u l e (+P ivo tF S , +RootFS, ?Ws,
?WsRest) "-

[add DO to PivotFS],
exists_chain (PivotFS, RootFS),

[add D1 to FS1],

generat • (FS i, SubWs, SubWs 2),
[add D2 to FS2],
generate (FS2, SubWs2, SubWs3),

[add DN to FSN],
generate (FSN, SubWsN, SubWsRest),
connect (PivotFS, RootFS, SubWs, SubWsRest,

Ws, WsRest).

non_chain_rule /4 is called whenever a non-chain
rule's mother is selected as the pivot (by successfully
adding the mother's description, DO, to PivotFS),
generating a string represented by the difference
list, Ws-WsRest. The algorithm says one must re-
cursively generate each daughter (genera te /3) , and
then connect this pivot-rooted derivation tree to the
root (connect /6) . Before we spend the effort on
recursive calls, we also want to know whether this
pivot can in fact be connected to the root; this is
accomplished by e x i s t s _ c h a i n / 2 . In general, the
mother category and daughter categories may share
substructures, through the co-instantiation of Pro-
log variables in their descriptions. After matching
the mother's description, which will bind those vari-
ables, we add each daughters' description to a new
structure gsi, initially a structure of type bot (the
most general type in ALE), before making the re-
spective recursive call. In this way, the appropri-
ate information shared between descriptions in the
user's grammar rule is passed between feature struc-
tures at run-time.

To generate, we use the user's distinguished selec-
tion predicate to build a candidate pivot, and then
try to match it to the mother of a non-chain rule
(the base cases will be considered below):

generate (+GoalFS, ?Ws, ?WsRest) : -
solve (sem_select (GoalFS, Sem)),
solve (sem_select (PivotFS, Sem)),
non_chain_rule (PivotFS, GoalFS, Ws, WsRest).

solve/1 is ALE's instruction for making calls to
its procedural attachment language. Its clauses are
compiled from the user's predicates, which have de-
scription arguments, into predicates with feature
structure arguments as represented internally in
ALE.

64

4.1.2 C h a i n Rules :

Chain rules are used to connect pivots to goals.
As a result, we use them bottom-up from semantic
head to mother, and then recursively generate the
non-head daughters top-down, left to right. So a
chain rule:

DO ===> D1, . . . , DK, HI), D(K+I) DN.

is compiled to:

c h a i n _ r u l e (+PivotFS, +RootFS, +SubWs,
-SubWsRest, ?Ws, ?WsRest) • -

[add HI) to P i v o t F S] ,
[add DO to MotherFS]
exist s_chain (MotherFS, RootFS),
[add D1 to FSI],
generate (FS1, SubWs, SubWs 2),

[add DK to FSK],
generate (FSK, SubWsK, SubWsK+1),
[add D(K+I) to FS(K+I)],
generate (FS (K+I), SubWsK+ i, SubWsK+2),
. . .

[add DN to FSN],
generate (FSN, SubWsN, SubWsRes t),
connect (MotherFS, RootFS, SubWs, SubWsRest,

Ws, WsRest).

c h a i n _ r u l e / 6 is called whenever a chain rule is se-
lected to connect a pivot (PivotFS) to a root goal
(RootFS), yielding the string Ws-WsRest, which con-
tains the substring, SubWs-SubWsRest. In the case
of both chain and non-chain rules, calls to a procedu-
ral at tachment between daughter Di and D (i + l) are
simply added between the code for Di and D(i+ l) .
Procedures which attach to the semantic head, in the
case of chain rules, must be distinguished as such,
so that they can be called earlier.

To connect a pivot to the root, we either unify
them (the base case):

connect (PivotFS, RootFS, Ws, WsRest, Ws,
WsRest) :-

unify (Pivot FS, RootFS).

or use a chain rule:

connect (+PivotFS, +RootFS, +SubNs, -SubWsRest,
?Ns, ?WsRest) :-

chain_rul e (P ivotFS, RootFS, SubWs,
SubWsRest ,Ws ,WsRest).

Similarly, to discover whether a chain exists, we ei-
ther unify, or attempt to use one or more chain rules.
For each chain rule, we can, thus, compile a separate
clause for exists_chain/2, for which that rule is the
last step in the chain. In practice, a set of chain rules
may have potentially unbounded length chains. For

this reason, we bound the length with a constant de-
clared by the user directive, max_chain_length/1.

4.2 Lex ica l E n t r i e s

Lexical entries are the base cases of the algorithm's
top-down processing, and can be chosen as pivots
instead of the mothers of non-chain rules. In fact,
lexical entries can be compiled exactly as a non-chain
rule with no daughters would be. So a lexical entry
for W, with description, D, can be compiled into the
non_cha in_ru le /4 clause:

non_cha in_ ru l e (P ivo tFS , RootFS, Ws, WsRest) : -
[add D to P i v o t F S] ,
c o n n e c t (P ivo tFS , RootFS, [W I SubWs], SubWs,

Ws, WsRest).

For ALE's bottom-up parser, lexical entries were
compiled into actual feature structures. Now they
are being compiled into code which executes on an
already existing feature structure, namely the most
general satisfier of what is already known about the
current pivot. Empty categories are compiled in the
same way, only with no phonological contribution.
This method of compilation is re-evaluated in Sec-
tion 6.

4.3 Lex ica l Ru l e s

ALE's lexical rules consist simply of an input and
output description, combined with a morphologi-
cal translation and possibly some procedural attach-
ments. In this present third singular lexical rule:

pres_sg3 lex_rule (vp,form:nonfinite,
subcat : Subcat,

sem: Sem)

**> (vp, form: f i n i t e ,
subcat : NewSubcat,
sem: Sem)

i f add_sg3(Subcat ,NewSubcat)
morphs (X , y) b e c o m e s (X , i , e , s) ,

X becomes (X , s) .

a non-finite VP is mapped to a finite VP, provided
the attachment, add .Jg3/2 succeeds in transforming
the SUBCAT value to reflect agreement.

For parsing, ALE unfolds the lexicon at compile-
time under application of lexical rules, with an up-
per bound on the depth of rule application. This
was possible because lexical items were feature struc-
tures to which the code for lexical rules could ap-
ply. In the generator, however, the lexical entries
themselves are compiled into pieces of code. One
solution is to treat lexical rules as special unary
non-chain rules, whose daughters can only have piv-
ots corresponding to lexical entries or other lexi-
cal rules, and with bounded depth. Because the

65

application depth is bounded, one can also unfold
these lexical rule applications into the lexical entries'
non_chain . . ru le /4 predicates themselves. Given
a lexical entry, W - - - > DescLex, and lexical rule,
DescIn **> DescOut morphs M, for example, we
can create the clause:

non_ chain_rule (Pivot FS, RootFS, Ws, WsRest) : -
[add DescOut to PivotFS],
[add DescIn to LexFS],
[add DescLex to LexFS],
connect (PivotFS, RootFS, [Morp:hW I SubWs],

SubWs ,Ws ,WsRest).

where MorphW is the result of applying N to W. For
most grammars, this code can be heavily optimized
by peephole filtering. At least part of all three de-
scriptions needs to be enforced if there are shared
structures in the input and output of the lexical rule,
in order to link this to information in the lexical en-
try.

5 Example
An example derivation is given in Figure 1 which
uses these grammar rules:

sent rule
(sentence,sem:(pred:decl,args:[S])) ===>
cat> (s,form:finite,sem:S).

s rule

(s,form:Form,sem:S) ===>

cat> Subj,
sem_head> (vp,form:Form,subcat:[Subj],

sem:S).

vp rule

(vp, form: Form, subcat : Subcat, sem: S) ===>
sem_head> (vp, form: Form,

subcat : [Compl [Subcat], sere: S),
cat> Compl.

The rules, s and vp, are chain rules, as evidenced
by their possession of a semantic head. s en t is a
non-chain rule. Processing proceeds in alphabetical
order of the labels. Arrows show the direction of
control-flow between the mother and daughters of a
rule. Given the input feature structure shown in (a),
we obtain its semantics with sere_select and unify
it with that of s en t ' s mother category to obtain the
first pivot, s en t ' s daughter, (b), must then be re-
cursively generated. Its semantics matches that of
the lexieal entry for "calls," (c), which must then
be linked to (b) by chain rules. The semantic head
of chain rule vp matches (c), to produce a mother,
(d), which must be further linked, and a non-head

daughter, (e), which is recursively generated by us-
ing the lexical entry for "john." A second applica-
tion of vp matches (d), again producing a mother,
(f), and a non-head daughter, (g), which is recur-
sively generated by using the lexical entry for "up."
An application of chain rule, s, then produces a non-
head daughter, (h), and a mother. This mother is
linked to (b) directly by unification.

6 Indexing
In grammars with very large lexica, generation can
be considerably expensive. In the case of ALE's
bottom-up parser, our interaction with the lexicon
was confined simply to looking up feature structures
by their phonological strings; and no matter how
large the lexicon was, Prolog first argument index-
ing provided an adequate means of indexing by those
strings. In the case of generation, we need to look
up strings indexed by feature structures, which in-
volves a much more expensive unification operation
than matching strings. Given ALE's internal rep-
resentation of feature structures, first argument in-
dexing can only help us by selecting structures of
the right type, which, in the case of a theory like
HPSG, is no help at all, because every lexical entry
is of type, word. (SNMP90) does not consider this
problem, presumably because its data structures are
much smaller.

The same problem exists in feature-based chart
parsing, too, since we need to find matching feature
structure chart edges given a description in a gram-
mar rule. In the case of HPSG, this is not quite
as critical given the small number of rules the the-
ory requires. In a grammar with a large number of
rules, however, a better indexing technique must be
applied to chart edges as well.

The solution we adopt is to build a decision tree
with features and types on the inner nodes and arcs,
and code for lexical entries on the leaves. This struc-
ture can be built off-line for the entire lexicon and
then traversed on-line, using a feature structure in
order to avoid redundant, partially successful uni-
fication operations. Specifically, a node of the tree
is labelled with a feature path in the feature struc-
ture; and the arcs emanating from a node, with the
possible type values at that node's feature path.

The chief concern in building this tree is deciding
which feature paths should be checked, and in which
order. Our method, an admittedly preliminary one,
simply indexes by all feature paths which reach into
the substructure(s) identified as semantics-related
by sere_select/2, such that shorter paths are tra-
versed earlier, and equally short paths are traversed
alphabetically. An example tree is shown in Figure 2

66

(a) ntence
M: FRED:decl

IARGS:(FRED:calI-up
L ALRGS :(PRED :mRry'PRED :jo

(c)

sent(non-chain)

(d)

{'~F q I FORM:finite /
I SEM: FRED:call-up "7.1
L IARGS :(PRED :mary'PRED :j°hn-'~J

I n°x:sg3 I {FORM:finite /
I SEM:[PRED:mary, AROS"0]{ I S U B C A T : ([n p , A G R : s g 3 , S E M : [1]]) /
~ - = I s~ : F~q~, . , -u. ql L ALRGs :([llPRED :mary'PggO :j°hn-]J

mary

mary

vp P 3 FORM:finite p, ARGS:
SU BCAT:([p,SEM :PRED :up]

[np,AG R:sg3,SEM:[1]])
SEM : FRED :call-up q up

- - [ARGS :([1]PRED :mary,PRED :john n_]

B m vp
FORM:finite
SUBCAT:([Hp,SEM:[2]]

[p,SEM:PRED:up]
[np,AGR:sg3,SEM :[1]])

SEM: FRED:call-up q
-- I ARGS :([1]PRED:mary'[2]PRED :j°hnn]

(e)
PGR:Sg 3 q
M:[PRED:john,ARGS:0]]

john

john

calls

calls

Figure 1: A Sample Generation Tree.

67

e INDEX RF_~TR INDEX:GEN

nom._OblN ~ ~ x

DEX: ~

INDEX:PER (

i
they ---> [code for they]

plur

we ---> [code for we]

Figure 2: A sample lexical decision tree.

for the two HPSG-likele~calentries:

they ---> word
° . °

CONT: nom_obj

INDEX: index
GEN: gend

NUM: plur
PER: 3rd

RESTR: elist

we ---> word
° • .

CONT: nom_obj

INDEX: index
GEN: gend

NUM: plur
PER: Ist

RESTR: elist
. , .

A~er the tree is built, a number is assigned to each
node and the tree is compiled into a series of Prolog
predicates to be used for traversal at run-time, which
are then compiled by Prolog. The INDEX:PER node
in Figure 2 has the following compiled code:

node(6,SemFS,PivotFS,RootFS,Ns,WsRest) "-
IV := PivotFS~s value at INDEX:PER],
branch(6,V,SemFS,PivotFS,RootFS,Ws,

WsRest).
branch(6,V,SemFS,PivotFS,RootFS,Ws,

NsRest) :-
[add type 3rd to V],

node(7,SemFS,PivotFS,RootFS,Ns,WsRest).
branch(6,V,SemFS,PivotFS,RootFS,Ns,

WsRest) :-
[add type ist to V],
node(8,Se~S,PivotFS,RootFS,Ws,WsRest).

n o d e (7, _, PivotFS ,RootFS ,Ws ,WsRest) • -
[add code fo r he to PivotFS] ,
c o n n e c t (PivotFS ,RootFS, [he [SubWs],

SubWs ,Ws ,WsRest).
node (8, _, PivotFS, RootFS ,Ws, WsRest) :-

[add code for i to PivotFS1,
connect (PivotFS ,RootFS, [i [SubWs],

SubNs, Ws, WsRest).

Each clause of a non-terminM node/2 finds the value
of the current pivot at the current node's feature
path, and then calls branch/3, which branches to a
new node based on the type of that value. Leaf node
clauses add the code for one of possibly many lex-
ical entries. The non_chain.xule/4 clauses of Sec-
tion 4.2 are then replaced by:

non_chain_rule(PivotFS,RootFS,Ns ,NsRest) :-
solve (sem_select (PivotFS, SemFS))
node (0, SemFS, P ivotFS, RootFS, Ns, NsRe st).

As the type check on branches is made by unifi-
cation, traversal of a tree can, in general, be non-
deterministic. Using ALE's internal data structure
for feature structures, a check to avoid infinite loops
through cyclic structures during compile-time can be
made in linear time.

7 R e s u l t s a n d F u t u r e W o r k

Compilation of control code for head-driven gener-
ation, as outlined in Section 4, improves generation
performance by a factor of about 5 on three feature-
based grammars we have written and tested. The
use of our indexing code independently improves
generation speed by a factor of roughly 3. The
combined compile-time cost for producing and com-
piling the control and indexing code is a factor of
about 1.5. Taken as a function of maximum chain
length (also declared by the user), generation is, of
course, always slower with larger maxima; but per-
formance degrades somewhat more rapidly with in-
dexed generation than with non-indexed, and more
rapidly still with compiled generation than with in-
terpreted. In our experience, the factor of improve-
ment decreases no worse than logarithmically with
respect to maximum chain length in either case.

There are several directions in which our approach
could be improved. The most important is the
use of a better decision-tree growing method such
as impurity-based classification ((Qui83; Utg88;

68

Cho91)) or concept clustering over lexical entries
((CR92)). Our current approach only guarantees
that semantics-related paths are favoured over unre-
lated ones, and reduces redundant unifications when
compared with naive lookup in a table of feature
structures. What is needed is a arrangement of
nodes which minimizes the average length of traver-
sal to a failed match, in order to prune search as soon
as possible. For generation with fixed large-scale
grammars, this could also involve a training phase
over a corpus to refine the cost estimate based on a
lexical entry's frequency. This direction is pursued
further in (Pen97).

One could also explore the use of memoization for
generation, to avoid regeneration of substrings, such
as the "chart-based" generator of (Shi88), which was
originally designed for a bottom-up generator. The
best kind of memoization for a semantically driven
generator would be one in which a substring could
be reused at any position of the final string, possibly
by indexing semantics values which could be checked
for subsumption against later goals.

Another direction is the incorporation of this
strategy into a typed feature-based abstract ma-
chine, such as the ones proposed in (Qu94; Win96).
Abstract machines allow direct access to pointers
and stack and heap structures, which can be used
to make the processing outlined here even more effi-
cient, at both compile-time and run-time. They can
also be used to perform smarter incremental compi-
lation, which is very important for large-scale gram-
mar development. This direction is also considered
in (Pen97).

8 C o n c l u s i o n

We have presented the steps in compiling head-
driven generation code for ALE grammar signatures,
which can make use of ALE's efficient compilation
of descriptions. We have also outlined a method for
compiling feature-based decision trees which can be
used to alleviate the lexicon indexing problem for
generation, as well as the chart edge indexing prob-
lem for large-scale feature-based parsers.

All of these techniques have been implemented
and will be available beginning with version 3.0
of ALE, which will be released in Spring, 1997.
By compiling both logical operations and, in a
processing-specific fashion, higher-level control op-
erations, ALE can be used for very efficient, large-
scale feature-based grammar design.

R e f e r e n c e s

Carpenter, B., and G. Penn, 1994. The Attribute
Logic Engine, User's Guide, Version 2.0.1, CMU
Technical Report.

Carpenter, B., and G. Penn, 1996. Compiling Typed
Attribute-Value Logic Grammars, in H. Bunt, M.
Tomita (eds.), Recent Advances in Parsing Tech-
nology, Kluwer.

Carpineto, C. and G. Romano, 1992. GALOIS: An
order-theoretic approach to conceptual clustering.
Proceedings of AAAL

Chou, P.A., 1991. Optimal Partitioning for Clas-
sification and Regression Trees. IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, 13(4).

Minnen, G., D. Gerdemann, and E.W. Hinrichs,
1993. Direct Automated Inversion of Logic Gram-
mars. Proceedings of the 4th Workshop on Natural
Language Understanding and Logic Programming.

van Noord, G., 1989. BUG: A Directed Bottom
Up Generator for Unification Based Formalisms.
Utrecht/Leuven working papers in Natural Lan-
guage Processing 1989.

Penn, G., forthcoming. Statistical Optimization in a
Feature Structure Abstract Machine. CMU Doc-
toral Thesis.

Popescu, O., 1996. Head-Driven Generation for
Typed Feature Structures. CMU Master's Thesis.

Qu, Y., 1994. An Abstract Machine for Typed
Attribute-Value Logic. CMU Master's Thesis.

Quinlan, J., 1983. Learning Efficient Classifica-
tion Procedures. In Michalski, Carbonell, Mitchell
(eds.), Machine Learning: an artificial intelli-
gence approach, Morgan Kaufmann.

Shieber, S.M., 1988. A Uniform Architecture for
Parsing and Generation. Proceedings of the 12th
International Conference on Computational Lin-
guistics, pp. 614-619.

Shieber, S.M., G. van Noord, R.C. Moore and
F.C.N. Pereira, 1990. Semantic-head-driven Gen-
eration. Computational Linguistics, 16.

Strzalkowski, T., 1990. Reversible Logic Gram-
mars for Natural Language Parsing and Genera-
tion. Canadian Computational Intelligence Jour-
nal, 6(3), pp. 145-171.

Utgoff, 1988. ID5: an incremental ID3. International
Machine Learning Conference, Ann-Arbor.

Wintner, S., 1996. An Abstract Machine for Unifi-
cation Grammars. Technion Doctoral Thesis.

69

