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A b s t r a c t  

Information extraction systems process 
natural language documents and locate 
a specific set of relevant items. Given 
the recent success of empirical or corpus- 
based approaches in other areas of natu- 
ral language processing, machine learning 
has the potential to significantly aid the 
development of these knowledge-intensive 
systems. This paper presents a system, 
RAPmrt, that takes pairs of documents and 
filled templates and induces pattern-match 
rules that directly extract fillers for the 
slots in the template. The learning al- 
gorithm incorporates techniques from sev- 
eral inductive logic programming systems 
and learns unbounded patterns that in- 
clude constraints on the words and part- 
of-speech tags surrounding the filler. En- 
couraging results are presented on learn- 
ing to extract information from com- 
puter job postings from the newsgroup 
misc. jobs. offered. 

1 I n t r o d u c t i o n  

An increasing amount of information is available in 
the form of electronic documents. The need to in- 
telligently process such texts makes information ex- 
traction (IE), the task of locating specific pieces of 
data from a natural language document, a particu- 
larly useful sub-area of natural language processing 
(NLP). In recognition of their significance, IE sys- 
tems have been the focus of DARPA's MUC program 
(Lehnert and Sundheim, 1991). Unfortunately, IE 
systems are difficult and time-consuming to build 
and the resulting systems generally contain highly 
domain-specific components, making them difficult 
to port to new domains. 

Recently, several researchers have begun to ap- 
ply learning methods to the construction of IE sys- 
tems (McCarthy and Lehnert, 1995, Soderland et 
ah, 1995, Soderland et al., 1996, Riloff, 1993, Riloff, 
1996, Kim and Moldovan, 1995, Huffman, 1996). 
Several symbolic and statistical methods have been 
employed, but learning is generally used to construct 
only part of a larger IE system. Our system, RAPIER 
(Robust Automated Production of Information Ex- 
traction Rules), learns rules for the complete IE 
task. The resulting rules extract the desired items 
directly from documents without prior parsing or 
subsequent processing. Using only a corpus of doc- 
uments paired with filled templates, RAPIER learns 
unbounded Eliza-like patterns (Weizenbaum, 1966) 
that utilize limited syntactic information, such as 
the output of a part-of-speech tagger. Induced pat- 
terns can also easily incorporate semantic class infor- 
mation, such as that provided by WordNet (Miller 
et al., 1993). The learning algorithm was inspired 
by several Inductive Logic Programming (ILP) sys- 
tems and primarily consists of a specific-to-general 
(bottom-up) search for patterns that characterize 
slot-fillers and their surrounding context. 

The remainder of the paper is organized as follows. 
Section 2 presents background material on IE and re- 
lational learning. Section 3 describes RAPIEK's rule 
representation and learning algorithm. Section 4 
presents and analyzes results obtained on extracting 
information from messages posted to the newsgroup 
mist.jobs.offered. Section 5 discusses related 
work in applying learning to IE, Section 6 suggests 
areas for future research, and Section 7 presents our 
conclusions. 

2 B a c k g r o u n d  

2.1  I n f o r m a t i o n  E x t r a c t i o n  

In information extraction, the data to be extracted 
from a natural language text is given by a template 
specifying a list of slots to be filled. The slot fillers 
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Pos t ing  f rom Newsgroup 

Telecommunications. SOLARIS Systems 
Administrator. 38-44K. Immediate need 

Leading telecommunications firm in need 
of an energetic individual to fill the 
following position in the Atlanta 
office: 

SOLARIS SYSTEMS ADMINISTRATOR 
Salary: 38-44K with full benefits 
Location: Atlanta Georgia, no 

relocation assistance provided 

Filled Template 
computer_science_job 
title: SOLARIS Systems Administrator 
salary: 38-44K 
state: Georgia 
city: Atlanta 
platform: SOLARIS 
area: telecommunications 

Figure 1: Sample Message and Filled Template 

may be either one of a set of specified values or 
strings taken directly from the document. For ex- 
ample, Figure 1 shows part of a job posting, and the 
corresponding slots of the filled computer-science job 
template. 

IE can be useful in a variety of domains. The var- 
ious MUC's have focused on domains such as Latin 
American terrorism, joint ventures, rnicroelectron- 
ics, and company management changes. Others have 
used IE to track medical patient records (Soderland 
et al., 1995) or company mergers (Huffman, 1996). 
A general task considered in this paper is extracting 
information from postings to USENET newsgroups, 
such as job announcements. Our overall goal is to 
extract a database from all the messages in a news- 
group and then use learned query parsers (Zelle and 
Mooney, 1996) to answer natural language questions 
such as "What jobs are available in Austin for C++ 
programmers with only one year of experience?". 
Numerous other Internet applications are possible, 
such as extracting information from product web 
pages for a shopping agent (Doorenbos, Etzioni, and 
Weld, 1997). 

2.2 Re la t iona l  Learn ing  

Most empirical natural-language research has em- 
ployed statistical techniques that base decisions on 
very limited contexts, or symbolic techniques such 
as decision trees that require the developer to spec- 
ify a manageable, finite set of features for use in 
making decisions. Inductive logic programming and 
other relational learning methods (Birnbaum and 

Collins, 1991) allow induction over structured exam- 
ples that can include first-order logical predicates 
and functions and unbounded data structures such 
as lists, strings, and trees. Detailed experimen- 
tal comparisons of ILP and feature-based induction 
have demonstrated the advantages of relational rep- 
resentations in two language related tasks, text cat- 
egorization (Cohen, 1995) and generating the past 
tense of an English verb (Mooney and Califf, 1995). 
While RAPIEa is not strictly an ILP system, its rela- 
tional learning algorithm was inspired by ideas from 
the following ILP systems. 

GOLEM (Muggleton and Feng, 1992) is a bottom- 
up (specific to general) ILP algorithm based on the 
construction of relative least-general generalizations, 
rlggs (Plotkin, 1970). The idea of least-general gen- 
eralizations (LGGs) is, given two items (in ILP, two 
clauses), finding the least general item that covers 
the original pair. This is usually a fairly simple com- 
putation. Rlggs are the LGGs relative to a set of 
background relations. Because of the difficulties in- 
troduced by non-finite rlggs, background predicates 
must be defined extensionally. The algorithm op- 
erates by randomly selecting several pairs of posi- 
tive examples and computing the determinate rlggs 
of each pair. Determinacy constrains the clause to 
have for each example no more than one possible 
valid substitution for each variable in the body of the 
clause. The resulting clause with the greatest cover- 
age of positive examples is selected, and that clause 
is further generalized by computing the rlggs of the 
selected clause with new randomly chosen positive 
examples. The generalization process stops when 
the coverage of the best clause no longer increases. 

The CHILLIN (Zelle and Mooney, 1994) system 
combines top-down (general to specific) and bottom- 
up ILP techniques. The algorithm starts with a most 
specific definition (the set of positive examples) and 
introduces generalizations which make the definition 
more compact. Generalizations are created by se- 
lecting pairs of clauses in the definition and com- 
puting LGGs. If the resulting clause covers negative 
examples, it is specialized by adding antecedent lit- 
erals in a top-down fashion. The search for new liter- 
als is carried out in a hill-climbing fashion, using an 
information gain metric for evaluating literals. This 
is similar to the search employed by FOIL (Quin- 
lan, 1990). In cases where a correct clause cannot 
be learned with the existing background relations, 
CHILLIN attempts to construct new predicates which 
will distinguish the covered negative examples from 
the covered positives. At each step, a number of 
possible generalizations are considered; the one pro- 
ducing the greatest compaction of the theory is im- 
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plemented, and the process repeats. CHILLIN uses 

the notion of empirical subsumption, which means 
that  as new, more general clauses are added, all of 
the clauses which are not needed to prove positive 
examples are removed from the definition. 

PROGOL (Muggleton, 1995) also combines 
bot tom-up and top-down search. Using mode decla- 
rations provided for both the background predicates 
and the predicate being learned, it constructs a 
most specific clause for a random seed example. The 
mode declarations specify for each argument of each 
predicate both the argument's type and whether 
it should be a constant, a variable bound before 
the predicate is called, or a variable bound by the 
predicate. Given this most specific clause, PROGOL 
employs a A*-like search through the set of clauses 
containing up to k literals from that  clause in order 
to find the simplest consistent generalization to add 
to the definition. Advantages of PROGOL are that  
the constraints on the search make it fairly efficient, 
especially on some types of tasks for which top-down 
approaches are particularly inefficient, and that  its 
search is guaranteed to find the simplest consistent 
generalization if such a clause exists with no more 
than k literals. The primary problems with the 
system are its need for the mode declarations and 
the fact that  too small a k may prevent PROGOL 
from learning correct clauses while too large a k 
may allow the search to explode. 

3 R A P I E R  S y s t e m  

3.1 R u l e  R e p r e s e n t a t i o n  

I:LAPIER's rule representation uses patterns that  
make use of limited syntactic and semantic informa- 
tion, using freely available, robust knowledge sources 
such as a part-of-speech tagger and a lexicon with se- 
mantic classes, such as the hypernym links in Word- 
Net (Miller et al., 1993). The initial implementation 
does not use a parser, primarily because of the dif- 
ficulty of producing a robust parser for unrestricted 
text and because simpler patterns of the type we pro- 
pose can represent useful extraction rules for at least 
some domains. The extraction rules are indexed by 
template name and slot name and consist of three 
parts: 1) a pre-filler pattern that  must match the 
text immediately preceding the filler, 2) a pattern 
that  must match the actual slot filler, and 3) a post- 
filler pattern that  must match the text immediately 
following the filler. Each pattern is a sequence (pos- 
sibly of length zero in the case of pre- and post-filler 
patterns) of pattern items or pattern lists. A pattern 
item matches exactly one word or symbol from the 
document that  meets the item's constraints. A pat- 

Pre-filler Pattern: Filler Pattern: Post-filler Pattern: 
1) word: leading 1) list: len: 2 1) word: [firm, company] 

tags: Inn, nns] 

Figure 2: A Rule Extracting an Area Filler from the 
Example Document 

tern list specifies a maximum length N and matches 
0 to N words or symbols from the document that  
each must match the list's constraints. Possible con- 
straints are: a list of words, one of which must match 
the document item; a list of part-of-speech (POS) 
tags, one of which must match the document item's 
POS tag; a list of semantic classes, one of which 
must be a class that  the document item belongs to. 
Figure 2 shows a rule created by hand that  extracts 
the a r e a  filler from the example document in fig- 
ure reftemplate. This rule assumes that  the docu- 
ment has been tagged with the POS tagger of (Brill, 
1994). 

3.2 T h e  L e a r n i n g  A l g o r i t h m  

As noted above, RAPIER is inspired by ILP meth- 
ods, and primarily consists of a specific to gen- 
eral (bottom-up) search. First, for each slot, most- 
specific patterns are created for each example, speci- 
fying word and tag for the filler and its complete con- 
text.  Thus, the pre-filler pattern contains an item 
for each word from the beginning of the document to 
the word immediately preceding the filler with con- 
straints on the item consisting of the word and its 
assigned POS tag. Likewise, the filler pat tern has 
one item from each word in the filler, and the post- 
filler pattern has one item for each word from the 
end of the filler to the end of the document. 

Given this maximally specific rule-base, R~APIER. 
at tempts to compress and generalize the rules for 
each slot. New rules are created by selecting two 
existing rules and creating a generalization. The 
aim is to make small generalization steps, covering 
more positive examples without generating suprious 
fillers, so a standard approach would be to generate 
the least general generalization (LGG) of the pair 
of rules. However, in this particular representation 
which allows for unconstrained disjunction, the LGG 
may be overly specific. Therefore, in cases where the 
LGG of two constraints is their disjunction, we want 
to create two generalizations: one would be the dis- 
junction and the other the removal of the constraint. 
Thus, we often want to consider multiple generaliza- 
tion of a pair of items. This, combined with the fact 
that  patterns are of varying length, making the num- 
ber of possible generalizations of two long patterns 
extremely large, makes the computat ional  cost of 

Califf ~ Mooney 11 Relational Learning 



For each slot, S in the template being learned 
SlotRules = most specific rules from documents for S 
while compression has failed fewer than lira times 

randomly select 2 rules, R1 and R2, from S 
find the set L of generalizations of the fillers of R1 

and R2 
create rules from L, evaluate, and initialize 

RulesList 
let n -- 0 
while best rule in RuleList produces spurious 

fillers and the weighted information value 
of the best rule is improving 

increment n 
specialize each rule in RuleList with general- 

izations of the last n items of the 
pre-filler patterns of R1 and R2 and 
add specializations to RuleList 

specialize each rule in RuleList with general- 
izations of the first n item of the 
post-filler patterns of R1 and R2 and 
add specializations of RuleList 

if best rule in RuleList produces only valid fillers 
Add it to SlotRules and remove empirically 

subsumed rules 

Figure 3: RAPIER Algori thm for Inducing IE Rules 

producing all interesting generalizations of two com- 
plete rules prohibitive. But, while we do not want 
to arbitrari ly limit the length of a pre-filler or post- 
filler pat tern,  it is likely tha t  the impor tant  parts of 
the pat tern  will be close to the filler. Therefore, we 
s tar t  by comput ing the generalizations of the filler 
pat terns  of the two rules and create rules from those 
generalizations. We mainta in  a list of the best n 
rules created and specialize the rules under consid- 
eration by adding pieces of the generalizations of the 
pre- and post-filler pat terns  of the two seed rules, 
working outward from the fillers. The rules are or- 
dered using an information value metric (Quinlan, 
1990) weighted by the size of the rule (preferring 
smaller rules). When the best rule under consider- 
ation produces no negative examples, specialization 
ceases; tha t  rule is added to the rule base, and all 
rules empirically subsumed by it are removed. Spe- 
cialization will be abandoned if the value of the best 
rule does not improve across k specialization itera- 
tions. Compression of the rule base for each slot is 
abandoned when the number  of successive iterations 
of the compression algorithm which fail to produce 
a compressing rule exceed either a pre-defined limit 
or the number  of rules for tha t  slot. An outline of 
the algori thm appears in Figure 3 where RuleList is 
a prioritized list of no more than  Beam- Width rules. 
The  search is somewhat  similar to a beam search in 
tha t  a l imited number  of rules is kept for considera- 

tion, but all rules in RuleList are expanded at each 
iteration, rather than only the best. 

As an example of the creation of a new rule, con- 
sider generalizing the rules based on the phrases "lo- 
cated in Atlanta,  Georgia." and "offices in Kansas 
City, Missouri." The rules created f rom these 
phrases for the city slot would be 

Pre-fdler Pattern: Filler Pattern: Post-filler Pattern: 
1) word: located 1) word: atlanta 1) word: , 

tag: vbn tag: nnp tag: , 
2) word: in 2) word: georgia 

tag: in tag: nnp 
3) word: . 

tag: . 
and 

Pre-filler Pattern: Filler Pattern: Post-filler Pattern: 
1) word: offices 1) word: kansas 1) word: , 

tag: nns tag: imp tag: , 
2) word: in 2) word: city 2) word: missouri 

tag: in tag: imp tag: nnp 
3) word: . 

tag: . 

The fillers are generalized to produce two possible 
rules with empty  pre-filler and post-filler patterns.  
Because one filler has two items and the other only 
one, they generalize to a list of no more than  two 
words. The word constraints generalize to either a 
disjunction of all the words or no constraint.  The  tag 
constraints on all of the items are the same, so the 
LGG's  tag constraints are also the same. Since the 
three words do not belong to a single semantic class 
in the lexicon, the semantics remain unconstrained. 
The fillers produced are: 

Pre-filler Pattern: Filler Pattern: Post-filler Pattern: 
1) list: len: 2 

word: [atlanta, kansas, city] 
tag: nnp 

and 

Pre-filler Pattern: Filler Pattern: Post-filler Pattern: 
1) list: len: 2 

tag: nnp 

Either of these rules is likely to cover spurious exam- 
ples, so we add pre-filler and post-filler LGGs.  The 
items produced from the "in" 's and the c o m m a s  are 
identical and, therefore, unchanged. Assuming tha t  
our lexicon contains a semantic class for states, gen- 
eralizing the state names produces a semantic  con- 
straint o f t h a t  class along with a tag constraint  nnp 
and either no word constraint or the disjunction of 
the two states. Thus, a final best rule would be: 

Pre-filler Pattern: Filler Pattern: Post-filler Pattern: 
1) word: in 1) list: len: 2 1) word: , 

tag: in tag: nnp tag: , 
2) tag: nnp 

semantic: state 

4 Evalua t ion  

The task we have chosen for initial tests of RAPIER 
is to extract information from computer-related job 
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Figure 4: Performance on job postings 

postings that  could be used to create a database 
of available jobs. The computer-related job post- 
ing template contains 17 slots, including informa- 
tion about the employer, the location, the salary, 
and job requirements. Several of the slots, such as 
the languages and platforms used, can take multiple 
values. The current results do not employ semantic 
categories, only words and the results of Brill's POS 
tagger. 

The results presented here use a data  set of 100 
documents paired with filled templates. We did 
a ten-fold cross-validation, and also ran tests with 
smaller subsets of the training examples for each test 
set in order to produce learning curves. We use three 
measures: precision, the percentage of slot fillers 
produced which are correct; recall, the percentage 
of slot fillers in the correct templates which are pro- 
duced by the system; and an F-measure, which is 
the average of the recall and the precision. 

Figure 4 shows the learning curves generated. 
At 90 training examples, the average precision was 
83.7% and the average recall was 53.1%. These num- 
bers look quite promising when compared to the 
measured performance of other information extrac- 
tion systems on various domains. This performance 
is comparable to that  of CRYSTAL on a medical do- 
main task (Soderland et al., 1996), and better than 
that  of AuTOSLOG and AUTOSLOG-TS on part of 
the MUC4 terrorism task (Riloff, 1996). It also com- 
pares favorably with the typical system performance 
on the MUC tasks (ARPA, 1992, ARPA, 1993). All 
of these comparisons are only general, since the tasks 
are different, but  they do indicate that  RAPIER is do- 
ing relatively well. The relatively high precision is an 
especially positive result, because it is highly likely 
that  recall will continue to improve as the number 
of training examples increases. 

The rules RAPIER, learns are of several different 
types. Some are fairly simple memorizations of 
words or phrases that  consistently appear in par- 
ticular slots: these include things like programming 
languages and operating systems. Others learn the 
context of the filler, usually also constraining the 
parts of speech of the filler: for example, a rule for 
the language slot where the prefix is constrained to 
"familiarity with", the suffix is "programming" and 
the filler is a list of up to three items which must be 
proper nouns or symbols. 

5 R e l a t e d  W o r k  

Previous researchers have generally applied machine 
learning only to parts of the IE task and their sys- 
tems have typically required more human interaction 
than just providing texts with filled templates. RE- 
SOLVE uses decision trees to handle coreference deci- 
sions for an IE system and requires annotated coref- 
erence examples (McCarthy and Lehnert, 1995). 
CRYSTAL USeS a form of clustering to create a dictio- 
nary of extraction patterns by generalizing patterns 
identified in the text by an expert (Soderland et al., 
1995, Soderland et al., 1996). AUTOSLOG creates 
a dictionary of extraction patterns by specializing a 
set of general syntactic patterns (Riloff, 1993, Riloff, 
1996). It assumes that  an expert will later examine 
the patterns it produces. PALKA learns extraction 
patterns relying on a concept hierarchy to guide gen- 
eralization and specialization (Kim and Moldovan, 
1995). AUTOSLOG, CRYSTAL, and PALKA all rely 
on prior sentence analysis to identify syntactic ele- 
ments and their relationships, and their output  re-- 
quires further processing to produce the final filled 
templates. LIEP also learns IE patterns (Huffman, 
1996). Line's primary limitations are that  it also re- 
quires a sentence analyzer to identify noun groups, 
verbs, subjects, etc.; it makes no real use of semantic 
information; it assumes that  all information it needs 
is between two entities it identifies as "interesting"; 
and it has been applied to only one domain in which 
the texts are quite short (1-3 sentences). 

6 F u t u r e  R e s e a r c h  

Currently, RAPIER, assumes slot values are strings 
taken directly from the document; however, MUC 
templates also include slots whose values are taken 
from a pre-specified set. We plan to extend the sys- 
tem to learn rules for such slots. Also, the current 
system at tempts to extract the same set of slots from 
every document. RAPIER must be extended to learn 
patterns that  first categorize the text  to determine 
which set of slots, if any, should be extracted from a 
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given document. Finally, the same pattern learning 
algorithm may prove applicable to other natural lan- 
guage processing tasks such as identifying the sense 
of an ambiguous word based on its surrounding con- 
text. 

7 Conclusion 

The ability to extract desired pieces of information 
from natural language texts is an important task 
with a growing number of potential applications. 
Tasks requiring locating specific data in newsgroup 
messages or web pages are particularly promising 
applications. Manually constructing such informa- 
tion extraction systems is a laborious task; however, 
learning methods have the potential to help auto- 
mate the development process. The RAPIER system 
described in this paper uses relational learning to 
construct unbounded pattern-match rules for infor- 
mation extraction given only a database of texts and 
filled templates. The learned patterns employ lim- 
ited syntactic and semantic information to identify 
potential slot fillers and their surrounding context. 
Results on extracting information from newsgroup 
jobs postings have shown that for one realistic ap- 
plication, fairly accurate rules can be learned from 
relatively small sets of examples. Future research 
will hopefully demonstrate that similar techiques 
will prove useful in a wide variety of interesting ap- 
plications. 
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