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Abstract  

This paper describes measures for evaluating the 
three determinants of how well a probabilistic elas- 
sifter performs on a given test set. These determi- 
nants are the appropriateness, for the test set, of 
the results of (1)feature selection, (2) formulation 
of the parametric form of the model, and (3) pa- 
rameter estimation. These are part of any model 
formulation procedure, even if not broken out as 
separate steps, so the tradeoffs explored in this 
paper are relevant to a wide variety of methods. 
The measures are demonstrated in a large experi- 
ment, in which they are used to analyze the results 
of roughly 300 classifiers that perform word-sense 
disambiguation. 

Introduction 

This paper presents techniques that can be used 
to analyze the formulation of a probabilistic clas- 
sifter. As part of this presentation, we apply 
these techniques t o  the results of a large num- 
ber of classifiers, developed using the method- 
ology presented in (2), (3), (4), (5), (12) and 
(16), which tag words according to their meanings 
(i.e., that perform word-sense disambiguation). 
Other NLP tasks that have been performed using 
probabilistic classifiers include part-of-speech tag- 
ging (11), assignment of semantic classes (8), cue 
phrase identification (9), prepositional phrase at- 
tachment (15), other grammatical disambiguation 
tasks (6), anaphora resolution (7) and even trans- 
lation equivalence (1). In fact, it could be argued 
that any problem with a known set of possible so- 
lutions can be cast as a classification problem. 

A probabilistic classifier assigns, out of a set 
of possible classes, the one that is most probable 
according to a probabilistic model. The model ex- 
presses the relationships among the classification 
variable (the variable representing the classifica- 
tion tag) and var]ables that correspond to prop- 
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erties of the ambiguous object and the context in 
which it occurs (the non-classification variables). 
Each model uniquely defines a classifier. 

The basic premise of a probabilistic approach 
to classification is that the process of assigning ob- 
ject classes is non-deterministic, i.e., there is no in- 
fallible indicator of the correct classification. The 
purpose of a probabilistic model is to characterize 
the uncertainty in the classification process. The 
probabilistie model defines, for each class and each 
ambiguous object, the probability that the object 
belongs to that class, given the values of the non- 
classification variables. 

The main steps in developing a probabilistic 
classifier and performing classification on the basis 
of a probability model are the following. 1 

1. Fea ture  Selection: selecting informative 
contextual features. These are the properties of 
the ambiguous object and the context in which 
it occurs that are indicative of its classification. 
Typically, each feature is represented as a random 
variable (a non-classification variable) in the prob- 
abilistic model. Here we will use Fi to designate a 
random variable that corresponds to the ith con- 
textual feature, and fl to designate the value of 
Fi. The contextual features play a very important 
role in the performance of a model. They are the 
representation of context in the model, and it is on 
the basis of them that we must distinguish among 
the classes of objects. 

2. Selection of  the  pa r ame t r i c  form of  
the  model .  The form of the model expresses 
the joint distribution of all variables as a func- 
tion of the values of a set of unknown parameters. 
Therefore, the parametric form of a model spec- 
ifies a fami ly  of distributions. Each member of 
that family corresponds to a different set of values 
for the unknown parameters. The form of a model 

1Although these are always involved in developing 
probabilistic classifiers, they may not be broken out 
into three separate steps in a particular method; an 
example is decision tree induction (14). 
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specifies the stochastic relationships, the interde- 
pendencies, that  exist among the variables. The 
parameters define the distributions of the sets of 
interdependent variables, i.e., the probabilities of 
the various combinations of the values of the inter- 
dependent variables. As an illustration, consider 
the following three parametric forms, each spec- 
ifying different sets of interdependencies among 
variables in describing the joint distribution of 
a classification variable, Tag, and a set of non- 
classification variables, F1 through Fn. In the 
equations below, tag represents the value of the 
classification variable and the fi 's  denote the val- 
ues of the non-classification variables. 

The model for interdependence among all vari- 
ables: 

V tag, f l ,  f 2 , . . . ,  fn P(tag,  f l ,  f2 . . . .  , fn)  = 
P(tag, f l , f 2 , . . . , f n )  (1) 

The model for conditional independence 
among all non-classification variables given the 
value of the classification variable: 

V tag, f l , f 2 , . . . , f n  P(tag,  f l , f 2  . . . .  , f n )  = 
P( f l l tag)  x . . .  x P( fn l tag)  x P(tag)  (2) 

The model for independence among all vari- 
ables: 

V tag, f l , f ~ , . . . , f n  P ( t a g , f l , f 2 , . . . , f n )  = 
P(tag)  x P ( f l )  x P(f2)  x . . .  x P ( f n )  (3) 

The objective in defining the parametric form of 
a model is to describe the relationships among all 
variables in terms of only the most important  in- 
terdependencies. While it is always true that  all 
variables can be treated as interdependent (equa- 
tion 1), if there are several features, such a model 
could have too many parameters to estimate in 
practice. The greater the number of interdepen- 
deneies expressed in a model the more complex the 
model is said to be. 

3. E s t i m a t i o n  o f  the  m o d e l  parameters  
f r o m  the  training data.  While the form of a 
model identifies the relationships among the vari- 
ables, the parameters express the uncertainty in- 
herent in those relationships. Recall that  the pa- 
rameters of a model describe the distributions of 
the sets of interdependent variables by defining the 
likelihood of seeing each combination of the values 
of those variables. For example, the parameters of 
the model for independence are the following: 

V tag, f l , f ~ , . . . , f r ,  : 
P(tag),  P ( f l ) ,  P( f2)  . . . .  , P(f,~) 

There are no interdependencies in the model for 
independence, so the parameters describe the dis- 
tributions of the individual variables. 
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In the model for conditional independence 
stated in equation 2, the parameters are as fol- 
lows: 

V tag, f l , f 2 , . . . , f n  : 
P( f l l tag)  . . . .  , P( fnl tag) ,  P( tag)  

Each parameter in this model describes the dis- 
tribution of the tag in combination with a single 
contextual feature. 

The parameters of any model are eslima~ed 
if their values are based on functions of a data  
sample (i.e., statistics) as opposed to properties of 
the population. 

4. A s s e s s m e n t  o f  t h e  l i k e l i h o o d  o f  e ach  
tag: use of the completed model to compute the 
probability of assigning each tag to the ambiguous 
object, given the values of the non-classification 
variables. This probability function is the follow- 
ing conditional or context-specific distribution of 
tags, where the f i 's  now denote the values assumed 
by the non-classification variables in the specific 
context being considered. 

V ~ag P( tagl f l  , f2, f 3 , . . . ,  fn)  (4) 

5. A m b i g u i t y  r e s o l u t i o n :  assignment, to 
the ambiguous object, of the tag with the high- 
est probability of having occurred in combination 
with the known values of the non-classification 
variables. This assignment is based on the fol- 
lowing function (where t~g is the value assigned): 

a r  g r n a z :  

tag = tag P ( t a g l f l , f 2 , f 3 , . . . , f n )  (5) 

In most cases, 2 the process of applying a prob- 
abilistic model to classification (i.e., steps (4) and 
(5) above) is straightforward. The focus of this 
work is on formulating a probabilistic model (steps 
(1)-(3)); these steps are crucial to the success of 
any probabilistic classifier. We describe measures 
that  can be used to evaluate the effect of each of 
these three steps on classifier performance. Using 
these measures, we demonstrate that  it is possible 
to analyze the contribution of each step as well 
as the interdependencies that  exist between these 
steps. 

The remainder of this paper is organized as 
follows. The first section is a description of the 
experimental setup used for the investigations per- 
formed in this paper. Next, the evaluation mea- 
sures that  we propose are presented, followed by a 
discussion of the results and finally a presentation 
of our conclusions. 

2When the values of all non-classification variables 
are known and there are no interdependent ambigui- 
ties among the classes. 
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T h e  E x p e r i m e n t a l  S e t u p  

In this paper, we analyze the performance of clas- 
sifters developed for the disambiguation of twelve 
different words. For each of these words, we de- 
velop a range of classifiers based on models of vary- 
ing complexity. Our purpose is to study the con- 
tribution that  each of feature selection, selection 
of the form of a model, and parameter estima- 
tion makes to overall model performance. In this 
section, we describe the basic experimental setup 
used in these evaluations, in particular, the pro- 
tocol used in the disambiguation experiments and 
the procedure used to formulate each model. 

P r o t o c o l  f o r  t h e  D i s a m b i g u a t i o n  
E x p e r i m e n t s  

There are three parameters that  define a word- 
sense disambiguation experiment: ( 1 ) t h e  choice 
of words and word meanings (their number and 
type), (2) the method used to identify the "cor- 
rect" word meaning, and (3) the choice of text 
from which the data  is taken. In these experi- 
ments, the complete set of non-idiomatic senses 
defined in the Longman's Dictionary of Contem- 
porary English (LDOCE) (13) is used as the tag 
set for each word to be disambiguated. For each 
use of a targeted word, the best tag, from among 
the set of LDOCE sense tags, is determined by a 
human judge. The tag assigned by the classifier is 
accepted as correct only when it is identical to the 
tag pre-selected by the human judge. 

All data used in these experiments are taken 
from the Penn Treebank Wall Street Journal cor- 
pus (10). This corpus was selected because of its 
availability and size. Further, the POS categories 
assigned in the Penn 'IYeebank corpus are used to 
resolve syntactic ambiguity so that word-meaning 
disambiguation occurs only after the syntactic cat- 
egory of a word has been identified. 

The following words were selected for disam- 
biguation based on their relatively high frequency 
of occurrence and the appropriateness of their 
sense distinctions for the textual domain. 

* Nouns: interest, bill, concern, and drug. 

• Verbs: close, help, agree, and include. 

• Adjectives: chief, public, last, and common. 

Because word senses from a particular dictionary 
are used, the degree of ambiguity for each word is 
fixed, and the overall level of ambiguity addressed 
by the experiment is determined by this selection 
of words. For each of these words, the sense tags 
and their distributions in the data are presented 
in Tables 1 through 3. 
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Noun senses of interest: (total count: 2368) 
1 "readiness to give attention": 15% 
2 "quality of causing attention to 

be given" : <1~ 
3 "activity, subject, etc., which one 

gives time and attention to": 3~ 
4 "advantage, advancement, or favor": 8~ 
5 "a share in a company, business, etc.": 21~ 
6 "money paid for the use of money" : 53°~ 
Noun senses of concern: (total count: 1488) 
1 "a mat ter  that  is of interest or 

importance": 3~ 
2 "serious care or interest": 2~ 
3 "worry; anxiety": 32~ 
4 "a business; firm" : 64~ 
Noun senses of bill: (total count: 1335) 
1 "a plan for a law, written down for 

the government to consider": 69~ 
2 "a list of things bought and their 

price": 10g 
4 "a piece of paper money" (extended 

to include treasury bills): 21~ 
Noun senses of drug: (total count: 1217) 
1 "a medicine or material used for 

making medicines": 58~ 
2 "a habit-forming substance": 42~ 

Table 1: Data s u m m a r y -  Nouns. 

Feature  Se lect ion 

For simplicity, the contextual features used in all 
models were selected per the following schema. All 
models developed for each of the 12 words incorpo- 
rate the following types of contextual features: one 
morphological feature, three collocation-specific 
features, and four class-based features, with POS 
categories serving as the word classes. All models 
developed for the same word (which are models of 
varying complexity) contain the same features. 

The morphological feature describes only the 
suffix of the base lexeme of the word to be dis- 
ambiguated: the presence or absence of the plu- 
ral form, in the case of the nouns, and the suffix 
indicating tense, in the case of the verbs; the ad- 
jectives have no morphological feature under this 
definition. 

The values of the class-based variables are a 
set of 25 POS tags derived from the first letter of 
the tags used in the Penn Treebank corpus. Each 
model contains four variables representing class- 
based contextual features: the POS tags of the two 
words immediately preceding and the two words 
immediately succeeding the ambiguous word. All 
variables are confined to sentence boundaries; ex- 
tension beyond the sentence boundary is indicated 
by a null POS tag (e.g., when the ambiguous word 



Verb senses of close: (total count: 1534) 
1 "to (cause to) shut": 2% 
2 "to (cause to) be not open to 

the public": 2~ 
3 "to (cause to) stop operation": 20~ 
4 "to (cause to) end": 68~ 
6 "to (cause to) come together by 

making less space between": 2~ 
7 "to close a deal" (extended from 

an idiomatic usage): 6~ 
Verb senses of agree: (total count: 1356) 
1 "to accept an idea, opinion, etc., esp. 

after unwillingness or argument": 78~ 
2 "to have or share the same opinion, 

feeling, or purpose": 22°~ 
3 "to be happy together; 

get on well together": <1~  
Verb senses of include: (total count: 1558) 
1 "to have as a part; contain in 

addition to other parts": 91~ 
2 "to put in with something else - 

human subject": 9% 
Verb senses of help: (total count: 1398) 
1 "to do part of the work for - 

human object": 20% 
2 "to encourage, improve, or produce 

favorable conditions for - 
inanimate object": 75~  

3 "to make better human object": 
4 "to avoid; prevent; change - 

inanimate object": 1 

Table 2: Data summary - Verbs. 

Adjective senses of common:(total count:l 111) | 
1 "belonging to or shared equally / 

" 7~1 
b y 2 o r m o r e  : 

2 "found or happening often and 
in many places; usual": 8 

3 "widely known; general; ordinary": 3% 
4 "of no special quality; ordinary": 1% 
6 "technical, having the same 

relationship to 2 or more 
quantities" : < 1% 

7 "as in the phrase 'common stock' " 
(not in LDOCE): 80% 

Adjective senses of last: (total count: 3180) 
1 "after all others": 6% 
2 "on the occasion nearest in the past": 93% 
3 "least desirable (not in LDOCE)": <1% 
Adjective senses of chief. (total count: 1036) I 

86% 1 "highest in rank": 
2 "most important; main": 14~ 
Adjective senses of public: (total count: 867) 
1 "of, to, by, for, or concerning 

people in general": 56~ 
2 "for the use of everyone; not private": 8~ 
3 "in the sight or hearing of many 

people; not secret or private 11~ 
4 "known to all or to many":  3~ 
5 "connected or concerned with the 

affairs of the people, 
esp. with government": 165 

6 "(of a company) to become a 
public company" (extended 
from an idiomatic usage): 6~ 

7 "as in the phrase 'public TV' 
or 'public radio"' (not in LDOCE): 1~ 

Table 3: Data summary - Adjectives. 

appears at the start of the sentence, the POS tags 
to the left have the value null). 

Three collocation-specific variables are in- 
cluded in each model, where the term collocation 
is used loosely to refer to a specific spelling form 
occurring in the same sentence as the ambigu- 
ous word. While collocation-specific variables are, 
by definition, specific to the word being disam- 
biguated, the procedure used to select them is gen- 
eral. The search for collocation-specific variables 
is limited to the 400 most frequent spelling forms 
in a data sample composed of sentences containing 
the ambiguous word. Out of those 400, the three 
spelling forms whose presence was found to be the 
most dependent on the value of the classification 
variable, using the test for independence described 
in (12), were selected as the collocational variables 
for that  word. 
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F o r m u l a t i o n  o f  a R a n g e  o f  P a r a m e t r i c  
F o r m s  

To support these experiments, for each word, a 
range of models of varying complexity were for- 
mulated, with each model defining a new classifier. 
To distinguish among these models, we introduce 
a measure of model complexity: the total number 
of pairwise interdependencies that  are specified in 
the model. For each word, the model of maximal 
complexity is the model in which all variables are 
considered to be interdependent (equation 1). The 
model of minimal complexity formulated for each 
word is the model in which all non-classification 
variables are considered to be conditionally inde- 
pendent given the value of the classification vari- 
able (equation 2); this is the simplest model that  
still uses each non-classification variable in pre- 
dicting the value of the classification variable. 

The formulation of these models is conducted 



as a series of stepwise refinements, starting with 
the model of maximal  complexity. At each step, a 
new model is formulated from the current model as 
follows (initially the current model is the starting 
model). Each of the pairwise interdependencies in 
the current model is evaluated, using a goodness- 
of-fit test. The test used is an exact test (12) for 
evaluating the interdependency between two vari- 
ables, where two variables are interdependent if 
they are not conditionally (or fully) independent. 
The test determines the degree to which that  in- 
terdependency is manifested in the training data. 
The new (less complex) model formulated is the 
current model with the interdependency that  is 
least apparent in the training data removed. The 
new model is used to classify the test data  and 
then serves as the current model in the next sim- 
plification step. A more complete description of 
this procedure can be found in (2). 

P a r a m e t e r  E s t i m a t i o n  

In these experiments, we use maximum-likelihood 
estimates (M.£. estimates) of the model parame- 
ters. The theoretical motivation behind this ap- 
proach is intuitively appealing: the model param- 
eters are represented by the numerical values that  
maximize the probability of generating the train- 
ing data from a model of the specified form. The 
implementation is straightforward. For each set of 
interdependent variables in the model, the associ- 
ated parameters are the probabilities of the combi- 
nations of the values of those variables. The esti- 
mates of those parameters are equal to the relative 
frequencies with which those combinations occur 
in the training data. The drawback is that  the esti- 
mates of parameters corresponding to events that  
occur infrequently in the training data are not re- 
liable; for example, if an event is not observed in 
the training data, then the estimated probability 
of that  event is zero. 

D e s c r i p t i o n  o f  E v a l u a t i o n  M e a s u r e s  

This paper describes measures that  can be used 
to examine the appropriateness, for the test set, 
of the features used in a model, the parametric 
form of the model, and the parameter estimates. 
Figures 1-12 plot model complexity against a num- 
ber of model performance measures. The gaps be- 
tween the overall classification performance of a 
model (indicated as "Overall Model" in the fig- 
ures) and the other measures is variously due to 
error introduced by the three factors under study. 
We first define all of the performance measures 
shown in the figures, and then discuss what can 
be concluded from the relationships among mea- 
sures. 

Below, a completed model is a model in which 

the features have been specified; the parametric 
form has been specified; and the parameters have 
been estimated. 

1. O v e r a l l  M o d e l  P e r f o r m a n c e .  Given 
a completed model in which the parameters have 
been estimated from the training data: 

the overall model performance is the percent- 
age of the test set tagged correctly by a classifier 
using that  model to tag the test set. 

C o m m e n t s :  Other widely-used loss func- 
tions are entropy, cross-entropy, and squared er- 
ror. 

2. L o w e r  B o u n d .  Let F T  be the most 
frequently-occurring (correct) tag for a word in 
the test set. The lower bound for that  word is 
the percentage of the test set assigned tag FT. 

C o m m e n t s :  The classification performance 
of a probabilistie model should not be worse than 
that  of the simplest model, the model for indepen- 
dence: 

V tag, f l , f2 , . . . , fn  P(tag, f l , f 2 , . . . , f n )=  
P(tag) x P(ffl) x P(f2)  × . . . x  P(fn) (6) 

Because the probability of seeing each value of the 
classification variable (i.e., each tag) is indepen- 
dent of the context, this model assigns every ob- 
ject the most frequently occurring tag: 

argflr la~ 

tag = taa e(taal/1, Y2, Y3, ..., Y,) = 
ar  f f m a ~  

tag P(tag) (T) 

Therefore, the proportion of the test set belonging 
to the most frequently occurring tag establishes 
the lower bound on model performance. For ex- 
ample, if60% of the instances of the target word in 
the test set have the same sense, say sense 1, then 
the lower bound for model performance is 60%. 

3. Reca l l .  Given a completed model in 
which the parameters have been estimated from 
the training data: 

Recall is the percentage of the test set that  is 
assigned some tag (correct or not) by a classifier 
using that  model to tag the test set. 

C o m m e n t s :  An ambiguous word in the test 
set is not assigned a tag when the parameter esti- 
mates characterizing its context are zero. Because 
M.L. parameter estimates are used, all combina- 
tions of variable values that  are not observed in 
the training data  are not expected to occur (have 
zero probability). 

The percentage of the test set that  is assigned 
a tag corresponds to the percentage of the combi- 
nations of variable values observed in the test set 
that  were also observed in the training data. 

4. P r e c i s i o n .  Given a completed model in 
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which the parameters have been estimated from 
the training data: 

Of the portion of the test set that  is assigned 
some tag by a classifier using that  model to tag the 
test set, precision is the percentage that  is tagged 
correctly. 

C o m m e n t s :  Equivalently, this measure is: 

1 - (recall - overal lModelPerformance)  (8) 

We will use the term misclassification error 
for 1 - p r e c i s i o n ,  which is the gap between recall 
and overall model performance. 

5. A p p r o p r i a t e n e s s  o f  t h e  P a r a m e t r l e  
F o r m  fo r  t h e  T e s t  Set  (or, the M e a s u r e  o f  
Fo rm) .  This measure is computed to be identi- 
cal to the overall model performance, except that  
the parameters are estimated from the t e s t  data, 
rather than the training data. Tha t  is, given a 
completed model in which the parameters have 
been estimated from the t e s t  data: 

The appropriateness of the parametric form 
for the test set is the percentage of the test set 
tagged correctly by a classifier using that  model 
to tag the test set. 

C o m m e n t s :  Because the model is trained 
and tested on the same data, the parameter es- 
timates are optimal for that  data. Thus, variation 
of this performance measure is due only to differ- 
ences in the parametric form of the model. 

6. A p p r o p r i a t e n e s s  o f  t h e  F e a t u r e  Se t  
fo r  t h e  Te s t  Se t  (or, the M e a s u r e  o f  F e a t u r e -  
Set) .  This is equal to the measure of form of the 
maximally-complex model (i.e., the model that  in- 
dudes all possible interdependencies). 

C o m m e n t s :  Recall that  the measure of form 
involves a model that  is both trained and tested 
on the test set. When the model is maximally 
complex and the parameters are estimated from 
the same data  that  is being tagged, the model 
describes the exact joint distribution apparent in 
that  data. Suppose that ,  for each combination of 
the values of the non-classification variables that  
occurs in the test set, the tag is the same for all 
occurrences (and is the correct one). Then, the 
features are perfect for the test set: each combi- 
nation of non-classification variables that  occurs in 
the test data  uniquely determines the correct tag. 
In this case, the performance of the full model is 
necessarily 100%. 

If the performance is not 100%, since the 
model describes the exact joint  distribution, the 
degraded performance can only be due to the lack 
of complete discriminatory power of the features--  
i.e., there are combinations of feature values with 
which more than one tag occurs. The incorrect an- 
swers are the less frequent tags in contexts where 
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there are multiple tags (see equation 4). 

Consider the gap between recall and overall 
model performance, i.e., misclassification error. 
This gap is the percentage of the objects tagged 
that  were tagged incorrectly. The incorrectness is 
due to some combination of (1) the features being 
imperfect, (2) the form being inadequate, and (3) 
the parameter  estimates being inappropriate. In 
the remainder of this paper, we will analyze the 
contribution of each of these three factors, using 
the performance measures defined above. 

Resu l t s  

In Figures 1 through 12 we use the measures de- 
scribed above to analyze the performance of a se- 
ries of models for each of the 12 words listed in 
the section on experimental setup. For each word, 
we formulate a range of models of varying com- 
plexity. The model of maximal complexity is the 
model in which all variables are considered to be 
interdependent (equation 1). The model of min- 
imal complexity that  is formulated is the model 
in which all non-classification variables are con- 
sidered to be conditionally independent given the 
value of the classification variable (equation 2). 

For each word to be disambiguated there is 
a figure depicting the various measures of model 
performance as a function of model complexity, 
where model complexity ranges from the maximal 
to the minimal model. 

Our purpose is to study the effect that  each of 
the three facets of model formulation has on model 
performance. By evaluating each facet indepen- 
dently we can gauge the impact that  each has on 
the overall performance of a classifier. This is im- 
portant  for many reasons, but  here our primary 
concern is understanding the limitations of model 
performance. 

Using the measures described previously, we 
are able to demonstrate four main points regard- 
ing model formulation. Note that  all measures 
used in establishing these claims are applied with 
respect to some specific test set and therefore the 
results are dependent on the characteristics of the 
particular test set being used. 

T h e  f e a t u r e  s e t  f i x e s  t h e  u p p e r  b o u n d  
o f  m o d e l  p e r f o r m a n c e .  

As discussed in item 6, if the feature set is ideal 
for the test set, then each context will uniquely 
correspond to a single tag. In other words, the fea- 
ture set is an infallible indicator of the correct tag. 
When this is not the case (i.e., there are contexts 
in which two or more tags occur), then all but  the 
most frequently occurring tag (for that  context) 
will be misclassified, and there is nothing that  can 



be changed with regards to the parametric form 
or the parameter estimates to remedy this situa- 
tion. Therefore the feature set establishes the up- 
per bound of model performance. This is demon- 
strated in Figures 1 through 12. It is interesting 
to note that  for four of the words ("bill", "chief", 
"include", and "concern") the feature set was op- 
timal for the test set (i.e., the measure of feature- 
set was 100%). Even in the worst case, the error 
introduced by the lack of discriminatory power of 
the feature set did not exceed 8%. Note that  when 
the feature set is not optimal, the resulting error 
affects the precision of the model. This can be ob- 
served by comparing the gap between recall and 
overall model performance (the misclassification 
error, equivalent to 1 - p r e c i s i o n )  for models with 
relatively large feature-related error (such as the 
models for "public") to that  of models in which the 
features are optimal, such as those for "bill" and 
"include". When the feature set is optimal, it con- 
tributes nothing to misclassification error. When 
this is the case, misclassification error is strictly a 
function of the appropriateness of the parametric 
form and the parameter estimates. We consider 
measures of these contributions next. 

A s  t h e  c o m p l e x i t y  o f  t h e  m o d e l  is 
r e d u c e d ,  i m p o r t a n t  i n f o r m a t i o n  is l o s t  
f r o m  t h e  p a r a m e t r i c  f o r m .  

The measure of the appropriateness of the para- 
metric form (the measure of form) is included in 
the performance measures plotted in Figures 1 
through 12. When the model is maximally com- 
plex, this measure indicates the quality of the fea- 
ture set, as discussed above. As soon as the com- 
plexity of the model is reduced, the model form 
is no longer an exact expression of the distribu- 
tion apparent in the test set; assumptions of con- 
ditional independence have been introduced into 
the model. The process used to reduce model 
complexity assures that  each time an assumption 
of conditional independence is made (i.e., an in- 
terdependency between two variables is removed), 
it is, at least in a local sense, the most appro- 
priate one to have selected based on an analysis 
of the training data. In Figures 1 through 12 we 
see that,  up to a point, judicious selection of the 
conditional independence assumptions allows us to 
reduce model complexity without impacting our 
ability to characterize the distribution of tags in 
the test set (i.e., starting from the right, the para- 
metric form remains flat for some time as com- 
plexity is decreased). But, in all cases, as the pro- 
cess of reducing model complexity continues, the 
model loses its ability to properly characterize this 
distribution. This failure to properly characterize 
the test set occurs when the interdependencies re- 
moved from the model are important  in describing 

the conditional distribution of the tags given the 
values of the non-classification variables (equation 
4). The exact point at which this occurs varies 
in Figures 1 through 12, but the fact that  it does 
occur is apparent in the drop-off of the measure of 
form as well as in the increase in misclassification 
error that  accompanies that  drop. In all figures, as 
the measure of form drops, the gap between recall 
and overall model performance increases, indicat- 
ing the contribution that  the inappropriateness of 
model form makes to misclassification error. 

As the  c o m p l e x i t y  o f  the  m o d e l  is 
r e d u c e d ,  t h e  q u a l i t y  o f  t h e  p a r a m e t e r  
es t imates  i m p r o v e s .  

The final factor contributing to misclassification 
error is the quality of the parameter estimates. 
The gap between the measure of form and the 
overall model performance is the error that  re- 
sults from using parameter estimates made from 
the training data  as opposed to using parameters 
that exactly describe the characteristics of the test 
set (recall that  the only difference between these 
measures is whether the parameters are estimated 
from the test set or from the training data). In 
all figures, this gap shrinks dramatically as the 
complexity of the model is reduced. The decrease 
in this gap indicates that  the quality of the pa- 
rameter estimates made from the training data 
improves as model complexity is reduced. Simi- 
larly, this improvement is reflected in recall, which 
also increases as the complexity of the model is re- 
duced. 

T h e  q u a l i t y  o f  t h e  n o n - z e r o  p a r a m e t e r  
e s t i m a t e s  c a n  b e  i s o l a t e d .  

In the previous subsection, we considered the qual- 
ity of the parameter estimates by considering the 
overall model performance. The negative effect of 
the parameter estimates on this measure includes 
both losses due to lack of recall and losses due 
to incorrect tagging. We can isolate the losses 
due to incorrect tagging in certain cases, namely 
when the measure of form is 100%. When the 
measure of form is 100%, there is no error due 
to the parametric form or to the feature set (see 
the discussion of the measure of feature-set above). 
Thus, the lack of precision (i.e., the misclassifica- 
tion error) is due only to the inappropriateness 
of the parameter estimates for the test set. For 
four of the words--"bil l" ,  "chief", "concern", and 
"include"-- the measure of form for the most com- 
plex models is 100%. For these models, the pre- 
cision is very good, ranging from roughly 95% for 
"bill" to 100% for "include." What  lack of pre- 
cision there is (for models with measure of form 
of 100%) is due to inappropriateness of non-zero 
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parameter estimates. 

D i s c u s s i o n  

Before concluding, it is important to discuss the 
interdependencies that exist among the three de- 
terminants of model performance. The ideal 
model is, of course, one in which all three are op- 
timal. But is it possible to design a model that is 
optimal in all three using a fixed amount of train- 
ing data? Not surprisingly, the answer for most 
interesting problems is no. An optimal set of fea- 
tures is one that serves to fully distinguish among 
the tags being assigned. An optimal set (if one 
exists) or even a reasonably good set is likely to 
be large for any interesting problem. Defining a 
good model of the joint distribution of a large set 
of variables using a fixed amount of training data 
is a process of finding the level of model complex- 
ity that provides the right balance between quality 
of form and quality of parameter estimates (where 
only the most important interdependencies are in- 
cluded at each complexity level). 

The need for this balance is demonstrated in 
Figures 1 through 12 and can be explained as fol- 
lows. Reducing the complexity of a model entails 
reducing the number of interdependencies speci- 
fied in the form of that model and this, in turn, 
results in a reduction in the number of model pa- 
rameters. While reducing the number of model 
parameters increases the quality of the parameter 
estimates, reducing the number of interdependen- 
cies specified in the model results in a loss of infor- 
mation. This loss negatively affects the character- 
ization of the joint distribution by the parametric 
form. Thus, the best overall model performance is 
obtained when the appropriate balance is reached. 

C o n c l u s i o n s  

This paper described measures for evaluating the 
three determinants of how well a probabilistic clas- 
sifter performs on a given test set. These determi- 
nants are the appropriateness, for the test set, of 
the results of (1) features selection, (2) formulation 
of the parametric form of the model, and (3) pa- 
rameter estimation. These are part of any model 
formulation procedure, even if not broken out as 
separate steps, so the tradeoffs explored in this 
paper are relevant to a wide variety of methods. 
The measures were demonstrated in a large exper- 
iment, in which they were used to analyze the re- 
suits of roughly 300 classifiers that perform word- 
sense disambiguation. These evaluations suggest 
that the three determinants of model performance 
are not independent and that the best overall 
model performance is obtained when they are ap- 
propriately balanced. 
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