
PARSING USING LINEARLY ORDERED PHONOLOGICAL RULES

Michael Maxwell

Summer Institute of Linguistics

7809 Radin Road

Waxhaw, NC 28173 USA

Intemet: Mike.Maxwell@sil.org

Abstract

A generate and test algorithm is
described which parses a surface form into one or
more lexical entries using linearly ordered
phonological rules. This algorithm avoids the
exponential expansion of search space which a
naive parsing algorithm would face by encoding
into the form being parsed the ambiguities which
arise during parsing. The algorithm has been
implemented and tested on real language data,
and its speed compares favorably with that of a
KIMMO-type parser.

I. INTRODUCTION

A generate and test algorithm is
described which uses linearly ordered
phonological rules to parse a surface form into
one or more underlying (lexicai) forms.* Each
step of the derivation may be rendered visible
during both generation and test phases. The
algorithm avoids an exponential expansion of
search space during the generation phase by
encoding the ambiguities which arise into the
form being parsed. At the end of the generation
phase, lexical lookup matches the ambiguous
form against lexical entries. Because not a l l
combinations of ambiguities in the parsed form
are compatible, a test phase is used to filter

* 1 have benefited from comments on previous
versions of this paper by Alan Busernan, and
several anonymous referees. Errors remain my
o w n .

forms found at lexical lookup. In this phase, the
phonological rules are applied in forward order,
and the derivations of any final forms which do
not match the original input word are thrown out.

The algorithm has been implemented and
tested on real language data; its speed is
comparable to that of a KIMMO-type parser.

2. THE PROBLEM

Since the publication of The 5bund
Pattern o f English (Chomsky and Halle 1968),
most generative linguists have held that the
phonological rules of natural languages are
linearly ordered (Bromberger and Halle 1989).
That is, when deriving a surface, form from an
underlying (lexical) form, the input of the N+lth
rule is the output of the Nth rule.

While it is straightforward to derive a
surface form from an underlying form with
linearly ordered rules, complications arise in
searching for the Icxical form(s) from which a
given surface form may he dcrivcd. One
difficulty is that phonological rules are oRen
neutralizing, so the result of "unapplying" such a
rule during parsing is ambiguous. Consider the
following simple rule:

[-continuant] --> [-voiced]

/ __ [-voiced]

Unapplieation of this devoicing rule to a
noncontinuant voiceless segment presents a
dilemma: should the underlying segmcnt be
reconstructed as having been [+voiced], or was
the segment originally [-voiced] (with the rule

59

having applied vacuously)7 This dilemma arises
under most theories with linearly ordered rules,
whether segmental or autosegmentai.

A second difficulty for parsing is that if
rules apply in linear order, later rules can
obscure the effects of earlier rules. In the
example given, a later rule might alter the
cnvironment in which the devoicing rule had
applied, e.g. by voicing a scgment which served
as the environment for the first rule.

This sccond problem arises in any
theoretical framework which allows opaque rule
orderings, that is, rule orders in which a later rule
can opacify (obscure) the effects of earlier rules.
Theories which disallow opaque rule orders (such
as Natural Generative Phonology, see Hooper
(1975)) have not enjoyed lasting popularity
among linguists.

The implication of these two problems is
that parsing would appear to require a
bifurcation of the search space for each feature
value assigned in the output of a phonological
rule. For instance, consider the above devoicing
rule, followed by a voicing rule which opacities
the first rule. Suppose we have a surface
sequence of a voiceless noncontinuant segment
followed by a voiced segment. In parsing this
sequence, it would seem that we must explore
several paths. I f the surface voiced segment were
also underlyingly voiced (vacuous application of
the voicing rule), then there is no fimher choice;
the surface voiceless noncontinuant could not
have been devoiced by the devoicing rule. But if
the surface voiced segment were underlyingly
voiceless (nonvacuous application of the voicing
rule), then the first rule might have applied, either
vacuously or nonvacuously. Given that
languages may have tens of phonological rules,
and that each rule may alter multiple features, the
search space becomes enormous.

Anderson (1988:5) summarizes the
problem as follows:

...if thc phonology of the language
involvcs a non trivial amount of
neutralization.., it is nceessary to
calculate all of the possible

combinations of alternatives allowed by
various rules, which may be
individually large when neutralizations
are involved and whose product grows
exponentially as the amount of
significant rule interaction (ordering)
increases.

The combinatorial possibilities
involved in undoing the phonology thus
get out of hand rather quickly. Since
the depth of ordering in a linguistically
motivated description can easily
approach 15-20, with many of the rules
involved being many-ways ambiguous
when regarded from the "wrong end,"
the approach of simply undoing the
effects of the rules was soon seen to be
quite impractical.

But in fact this expansion of search space can be
avoided by the use of a generate-and-test
algorithm, in which the ambiguity resulting from
the unapplication of each rule is encoded into the
form when the rule is unapplied. The resulting
algorithm turns out to be tractable for the sorts of
rules and rule ordering which arise in natural
languages.

3. THE GENERATE-AND-TEST
ALGORITHM

This section presents an algorithm for
parsing with linearly ordered rules. The
algorithm is efficient for the sorts of rule sets that
have been proposed by generative phonoiogists
for natural languages.

The algorithm is presented in general
terms, abstracting away from implementational
details where possible. Where a certain degree of
concreteness is unavoidable--as in the definitions
of the application or unapplieation of a single
rule--alternative forms of the algorithm are
mentioned.

3.1 DEFINITIONS AND INITIAL
ASSUMPTIONS

An instantiated (phonetic:).feature is a
feature-name plus an atomic feature value; an
uninstantiated feature is merely the feature-name.

6O

A segment-specification consists of a
character representation of some segment (one or
more characters, e.g. "k" or "oh"), plus a set of
features, not all of which need be instantiated.
An alphabet consists of a set of segment-
specifications. A given language may employ
more than one alphabet, distinguishing such as an
input (surface) alphabet and a lexieal
(underlying) alphabet.

A (phonetic) word consists of a list of
one or more segments, w h e r e each segment
consists of a set Of features. Input words (words
to be parsed) and lexieal words are usually
represented instead in a character-based notation;
the translation between this and a segment-based
representation is defined below.

A phonological rule consists of an input
(left-hand) side, an output (right-hand) side, a left;
environment, and a right environment. The input
and output side each consist of a set of one or
more instantiated features. (The extension to
lists of sets, representing an input or output of
more than a single segment, is straightforward.
Rules in which the input or the output is empty,
i.e. epenthesis or deletion rules, are discussed
later.) The environments of a rule consist of a
sequence of zero or more sets of instantiated
features or optional sequences, together with a
Boolean specification of whether the environment
must begin (leR environment) or end (right
environment) at a word boundary. An optional
sequence consists of a sequence of oneor more
sets of features, together with a minimum (MIN)
and maximum (MAX) number of times the
optional sequence may appear.

Finally, the analysis target of a rule is
defined (for a rule with input and output of length
one) as a set of features, which set consists of the
features of the output, together with any non-
contradictory features of the input. (In most
rules, the features of the input and output are
disjoint, so that the target consists of the union of
the input and output features. Occasionally a
rule will speei~ one value of a feature in the
input, and a contrary value in the output. In that
case, the analysis target takes the value of the
feature in the output.)

A rule is said to be ~'elJ-'opaquing if it
could be applied nonvacuously to a segment of
its environments, l Such a rule must receive
special treatment during analysis, because its
application may have altered the word so that the
output no longer meets the structural description
of the rule.

The list of rules of a language is linearly
ordered, and given in synthesis order. That is,
the input of the first rule is a word from the
lexicon, the input, of: the second• ruleisthe. ~ . . output. • ..:. ' .. • . ':"i ..
of the first rule; ete.~ and the output of the last ..
rule isa surface form.. '

3.2 TRANSLATION BETWEEN
ALPHABETIC AND SEGMENTAL
REPRESENTATIONS

A word in a phonetically based
orthography (not, say, English orthography) may
be translated into a segmental representation by
the following algorithm:

61

IT he precise formulation of "self-opaquing" for
the purposes of the algorithm is somewhat more
restrictive. Self-opaquing rules cause difficulty
for parsing because such a rule may apply
(nonvacuously) to some segment, while in the
output the rule seems not to .have applied.to that
segment because the environment for that
segment has itself been altered by the rule so that
it no longer meets the structural description: a
self-counterbleeding rule. This can only happen
if a segment of the environment meets the
structural description of the rule, and the
structural change of the rule assigns a value
contrary to the value required in the environment.
That is, a segment of the rule's environment is
unifiable with the structural description of the
rule but not with the structural change.

If the rule applies left-to-right iteratively, only the
right environment is relevant, as only that
environment can be altered after it has been used.
Likewise, if the rule applies right-to-leR
iteratively, only the left enviromnent is relevant.
If the rule applies simultaneously, both
environments are relevant. " ~ . . .: iiii

Beginning at the left end of the word, replace
the longest substring which corresponds to the
character representation of some segment-
specification in the appropriate alphabet, with
its set of features.

Continue left to right, replacing substrings of
the word with their features until the right end
of the word is reached. If the process fails at
any point (because no substring corresponds
to a segment-specification), fail.

This translation algorithm is
deterministic, and would give wrong results for a
word like "mishap" (assuming "sh", "s" and "h"
to be defined as segment-specifications). The
algorithm could easily be made nondeterministic,
with the proviso that each translation of an input
word would be subjected to the remainder of the
parsing algorithm. However, how multiple
translations of lexical words would be treated is
not so clear.

The translation between alphabetic and
segmental representations could instead be done
by a finite state transducer, with equivalent
results.

3.3 UNAPPLICATION OF PHONOLOGICAL
RULES

During the analysis phase of the
algorithm, each rule is unapplied by
uninstantiating in each segment which matches
the rule in the correct environment, those features
which the right-hand (output) side of the rule
sets. For instance, if a rule assigns the value
[-voiced] in its output, during parsing the value
of the feature "voiced" in the segments affected
by the rule becomes uninstantiated.

More specifically, given an input
(surface) .word in its segmental representation
and a list of phonological rules, the rules may be
unapplied to the word as follows.

(1) Reverse the list of rules to give a list in
analysis order.

(2) Unapply the first rule of the list to the
input word, using the algorithm below.

(3) Unapply each succeeding rule to the
output of the previous rule.

The algorithm for the unapplication of a
single rule in left-to-fight iterative fashion (see
Kenstowicz and Kissebeah 1979) is as follows;
note that during analysis, a left-to-right iterative
rule is applied right-to-left.

For each segment S beginning at the right end
of the word:

If S is unifiable with the analysis target of the
rule, and the left-hand environment of the rule
matches against the word ending with the
segment to the left of S, and the right-hand
environment of the rule matches against the
part of the word beginning with the segment
to the right of S, then uuinstantiate the
features of S whose feature-names are
contained in the output of the rule.

An environment sequence matches a subsequence
of segments during analysis if:

For each member of the environment which is
a set of features, that set unifies with the
corresponding segment of the word; else (if
the member is an optional sequence), the
optional sequence matches against the
corresponding sequence of segments between
MIN and MAX number of times If the
environment must mater at the margin of a
word, then when the enviromnent sequence is
used up, the last segment matched must be the
first segment of the word for the left
environment, or the last segment for the right
environment.

After a rule has been unapplied to a
word, if the rule is self-opaquing and the
unapplication was nonvacuous, the rule is
unapplied again until its unapplication is
v a c u o u s .

The unapplication of a rule which
applies right-to-left iteratively is the obvious
transformation of the above algorithm.

The important point in the unapplication
of a single rule to a form is the use of unification,
so that a segment in the word matches a feature
set in the rule even if the value of one or more
relevant features in the segment has been
uninstantiated by the unapplication of a previous

62

rule. Matching against an uninstantiated feature
thus represents an assumption, that the
underlying value of that feature was correct.
This assumption can only be validated during the
synthesis phases when a lexical entry from the
lexicon will have become available.

The unapplication of a rule which
applies simultaneously to its input may be
performed by either left-to-right o r right-to-left
iterative unapplication, although the un-
application may need to be repeated if the rule is
self-opaquing. To see why the self-opaquing test
might be necessary, consider the following
hypothetical rule:

[--sonorant] --> [+continuant]

/ __ [-continuant]

When applied simultaneously to the form apkpa,
the result is afxpa. If the rule were unapplied to
afxpa left-to-right iteratively, after the first pass
we would have af[x klpa, where the sequence Ix
k] is intended to represent a voiceless velar
obstruent with an uninstantiated value for the
fcature [continuantl (hence ambiguous bctween
the fricative x and the stop k). Only after a
second pass would we get a[.fPllx k]pa. (In this
example the rule could have been unapplied
right-to-left iteratively in a single pass, but a
single right-to-left iterative application would
have given the wrong result with the mirror
image of the given rule.)

As an alternative to the above algorithm,
the unapplication of a single rule could be
performed by a Finite State Transducer (FST)
(Johnson 1972, cf. also Kaplan and Kay, in
press). It will be more convenient to compare the
FST method with the above algorithm when we
considcr the application of a rule (as opposed to
its unapplication).

3.4 LEXICAL LOOKUP

A word, some of whose segments may be
partially instantiated, matches against a word in
the lexicon if the features of each of its segments
are unifiable with the corresponding segment of
the iexical word. Lexical lookup consists of
finding all such matches.

The unapplication of the phonological
roles and the process of lexical lookup constitute
the analysis phase of the algorithm.

3.5 APPLICATION OF PHONOLOGICAL
RULES

As a result of the unapplication of rules
to forms some of whose features may have been
uninstantiated by earlier rules, some
overgeneration may result, because a form taken
from the lexicon may not have the value which
was a s sumed during analysis: This
overgeneration is filtered out by applying the
rules in a synthesis phase. Thedeg ree of
overgeneration is small, for reasons discussed in
Maxwell (1991). The algorithm for applying
rules during synthesis is straightforward:

Given a lexical word and the list of rules, the
first rule is applied to the lexicai word, the
second rule is applied to the output of the
first, etc.

The application of a single rule in lefbto-right
iterative fashion is as follows:

For each segment S beginning at the left end
of the word:

If S contains all the features of the left-hand
side of the rule, and the left and right
environments match parts of the word
immediately to the left and right of S, then set
the value of each feature in S whose name
appears in the output of the rule tO the value
in that output.

An environment sequence matches during
synthesis if:

For each member of the environment which is
a set of features, the corresponding segment
of the word contains those same features; else
(if the member is an optional sequence), the
optional sequence matches against the
corresponding segments of the word between
MIN and MAX number of times. The
condition on matching a word boundary is the
same as during unapplication.

Right-to-left iterative application is again
the obvious transformation of this algorithm.
Simultaneous application may be modeled by . . ' Z : ..

63

first collecting the set of all segments which
satisfy the structural description of the rule, and
then applying the output of the rule to each
segment in that set.

There is no need to check for possible
reapplieation of a rule during synthesis, as there
was during analysis. This is because if the
application of a rule creates new environments to
which it might apply, those environments do not
serve as fiarther input for the rule apart from
iteration or cyclic application. Directional
iterative application is handled directly by the
above algorithm, while nondirectional iterative
application has generally been rejected by
phonologists (cf. Johnson 1972: 35ff., and for a
slightly different form of nondirectional iterative
application, Kcnstowicz and Kisseberth, 1979:
325). Cyclic application is not treated under the
above algorithm, but would constitute only a
restricted form of reapplication in which the
application of a set of phonological rules would
be sandwiched between each pair of cyclic
morphological rules (as argued originally by
Pesetsky 1979). If two or more cyclic
morphological rules applied in a given word, the
cyclic phonological rules would also apply at
least twice. But each such application would be
separated by the application of other rules, both
phonological and morphological.

! will refer to this algorithm for applying
a single rule as the Target-First Application
Algorithm, or TFAA; it is analogous to the
algorithm given earlier for unapplication of a
rule.

As an alternative to the TFAA, each rule
could instead be applied by an FST.

A disadvantage of application of a rule
by the TFAA, compared with its application by
FST, is that when checking the left-hand
environment (assuming the rule applies leg-to-
right iteratively), the TFAA must retest segments
it has already considered as possible target
segments. In other words, the TFAA backs up
through the form when checking the lett-hand
environment. Under those same circumstances,
the FST nccd do no backing tip when checking
the left environment, as the applicability of the

left environment is already determined when the
FST arrives at a potential target. The distance
the TFAA backs up can be considerable, in
particular when the left environment (or the right
environment, for a right-to-let~ iterative rule) has
optional sequences (so that backtracking must be
employed in case of failure to match the
environment on the initial check), or when the
word being parsed has "optional" segments.
(Optional segments arise in analysis during the
unapplication of deletion rules, as discussed
later.)

Both the FST and the TFAA may test the
same segments multiple times when the right-
hand environment is nonempty (assuming Ictt-to-
right iterative application). For the FST, this will
only happen if it made an incorrect choice. An
example would be the rule:

[-continuant] --> [-voiced]

/ __ [-voicedl

when applied to the form ba. After the FST tests
the target, it could attempt to apply the rule by
assigning the feature [-voiced] to the b (changing
it to p). This would be incorrect, however, as the
FST discovers when it processes the [+voicedl
segment a; it must therefore back up, restore the
[+voicedl value to the b, and move right to
process the a again.

The TFAA, applying the same rule to the
same form, would first notice the potential target
b. Before altering the value of the feature
[voiced], however, it would check the right

environment: the segment a. Noticing that it does
not satisfy the requirement that the right
environment be [-voicedl, it refrains from
altering the feature [voicedl on the b. it then
goes on to check whether the a constitutes a
potential target.

However, the real question is not the
worst case behavior, but the average case
behavior; how many comparisons must be done
for the average word with the average rule?
Unfortunately, this is not a straightforward
question. Examples are readily constructed in
which the FST would do more COluparisous thn.n
the TFAA. Given that m solnc cases tile TFAA

66

must back up through segments it has already
considered while the FST need not, while in other'
cases the FST does more comparisons than the
TFAA, I leave the question of average ease
behavior open. Note that similar considerations
pertain to the behavior of the algorithm given
earlier for the unapplieation of rules.

A potential advantage of the TFAA over
an FST implementation concerns the debugging
of a single rule. When scanning a word for
possible rule applications, people often search
first for segments matching the input side of the
rule, then cheek whether the left and fight
environments of potential targets also match.
This is essentially the method employed in the
TFAA. If a rule is at all complicated, trying to.
apply it as an FST instead becomes quite difficult
for humans. By the same token, determining why
a parser did or did not apply a rule to a certain
segment of a form should be much easier if the
parser presents: a trace of its application in the
same form that the human would do it. This is of
course only an advantage of the TFAA if the user
is actually tracing a given rule. Indeed the parser
need not use the same algorithm to apply a rule
when debugging is turned on as it uses when
debugging is not turned on (although it is
certainly easier on the writer of the parser if it
does).

3.6 COMPARISON WITH INPUT FORM

Returning to the overall algorithm,
specifically the test phase: the derivation of a
word to which all the rules have been applied is
correct if the derived word matches the original
input word, that is, if each .segment of the two
words correspond. A segment corresponds if
each of its features is identical.

During the test phase of the algorithm, a
derived word may fail to match against the

original (input)' word under two circumstances:
either one or more pairs of rules are opaquely
ordered (see Maxwell 1991), or one or more rules
are dcpendent on nonphonetic information, such
as the location of a morpheme boundary or
nonphonetic features. The resulting (potential)
overgeneration is the reason for the test phase of
the generate-and-test algorithm.

This completes the discussion of the
generate-and-test algo~rithm for feature-changing
rules. The next two sections discuss some
refinements.

3.7 EPENTHESIS AND DELETION RULES

During analysis, a segment which has
been inserted by an epenthesis rule 2 must be un-
epenthesized, while segments which may have
been deleted must be re-inserted. To avoid
bifiarcation of the search for each such segment,
segments may be assigned an additional feature
called "optional." All segments in the input word
are marked [-optional I. When an epenthesis rule
is unapplied (using an algorithm similar to that
given above for feature-changing rules), the
segments which might be epenthetic are marked
as [+optional]. Similarly, a deletion rule may be
unapplied by inserting a new segment with the set
of features specified on the input side of the rule,
and marking that segment as [+optional].

The unapplication of deletion rules must
be ~ahe r constrained to prevent infinite looping.
To take a concrete example, consider the
following consonant cluster simplification rule:

C --> 0 / C C

If this rule is un-applied to a surface
form with a two consonant cluster, the result will
be an intermediate form having a three consonant
cluster. But the rule is Self-opaquing, in the
sense that it can dclete consonants which form
part Of the environment. Hence during analysis,
it-should be allowed to re-unapply to its own
output. But ifthe rule is allowed to un-apply to
the intermediate form produced by its first
unapplieation, namely a three consonant cluster,
it can un-apply in two places to yield a five-
consonant cluster; to which the rule can again be
unapplied, ad infinitum.

2 Pretheoretically, an .epenthesis rule is a
phonological rule which inserts a segment into a
word. An example might be the insertion of p
into warm-~th to give [warmO].

65

The best solution to this problem would
be to use reasoning to determine the maximum
number of contiguous consonants which could
appear in the input to the rule. But this is by no
means simple. It would be straightforward to
determine the maximum number of consonants
which could appear in underlying forms (based
on the maximum number of consonants which
appear in lexical entries and in affixes, assuming
a morphological component), and in fact the
lexicon itself is often used for this purpose in
KIMMO-based systems. However, with linearly
ordered rules the number of adjacent consonants
could in principle be increased by the application
of certain rules preceding the deletion rule,
including rules epenthesizing consonants, rules
deleting vowels, and rules changing vowels into
consonants. Whether such rules in fact exist, or
whether they exist but would be blocked by other
principles from creating inputs to such a
consonant cluster simplification rule is an area of
research in phonology.

In the absence of a principled way of
determining the maximum number of consonants
that could appear in a cluster (or analogous limits
on other deletion rules), an ad hoe limit may be
placed on the application of deletion rules. One
such limit is to unapply a deletion rule
simultaneously, and only once (or only N times).

To take a concrete example, consider the
input abbabba, where a is a vowel and b is a
consonant. A single simultaneous unapplication
of the above consonant cluster simplification rule
would give abCbabCba, while two un-
applications would give abCCCbabCCCa, where
the first and third Cs in each cluster result from
the second unapplication. Limiting the un-
application of deletion rules in this way is ad hoe,
but probably sufficient for practical purposes.

The presence of l+optional] segments
arising from the unapplication of epcnthesis and
deletion rules slightly complicates the algorithm
given earlier for rule unappl!cation, in that such
segments may optionally be passed over when
checking rule environments.

During synthesis, epenthesis rules are
straightforwardly applied by inserting a segment

with the features of the output of the rule, while
deletion rules are applied by simply deleting the
relevant segments.

3.8 NONPHONETIC FEATURES,
BOUNDARY MARKERS, ALPHA
FEATURES ETC.

Nonphonetic (diacritic) features and
obligatory boundary markers in rules may simply
be ignored during analysis, leading to some
overgeneration, In (manually) checking a number
of such rules against large dictionaries,
overgeneration appears to be surprisingly small,
in fact virtually nil.

Alpha variable features (commonly used
in assimilation rules) may be modeled by the use
of variables which become instantiated to the
value of features in the appropriate segments, so
that checking for a match during analysis is a
matter of unification. During synthesis, a
variable in the output of a rule results in the
features of the corresponding segment of the
word being set to the value to which the variable
becomes instantiated in some other part of the
rule.

4. AN IMPLEMENTATION OF THE
ALGORITHM

The generate-and-test algorithm has been
implemented, as a parser which uses
phonological rules of classical generative
phonology, resembling those of Chomsky and
Halle (1968) and much related work. (A sample
rule is shown in the appendix.) ! call the parser
"Hermit Crab." There is provision for feature-
changing rules (including alpha variable rules),
epenthesis rules, and deletion rules. Disjunctive
rule ordering may be modeled, as well as
simultaneous or directional iterative application.
The environments of rules may incorporate
optional sequences (such as (CV)~).

PC-KIMMO, ml implementation of two-
level phonology (Antworth 1990) was used to
provide a comparison between parsing with
linearly ordered generative phonological rules,
and with two-level rules. Both PC-KIMMO and
Hermit Crab run under MS-DOS.

PC-KIMMO comes with example
analyses of the phonologies of several languages,
including Hebrew, Turkish, Japanese, and
Finnish, each analysis containing from 16 to 27
two-level rules. The PC-KIMMO analyses were
converted into analyses using linearly ordered
generative rules, which were equivalent in the
sense that they derived the surface forms from
the same underlying forms. In most cases the
linearly ordered roles were simpler than the two-
level rules, in part because rule ordering rendered
redundant some of the constraints necessitated by
the two-level formalism. The number of rules for
each language was reduced to between 7 and 11,
as some two-level rules (such as default rules)
are unneeded in a generative analysis, while
others collapse into disjunctively ordered rule
sets. For instance, PC-KIMMO has six rules for
vowel harmony in Turkish: two for backness
harmony in low vowels (one to make a low vowel
I+back] in the appropriate environment, and one
to make it i-baekl in the opposite environment),
and four rules for backncss and rounding
harmony in nonlow vowels. These collapse into
two generative rules: one for baekness harmony,
which affects all vowels, and uses an alpha
variable for the two possible values of the feature
back; and one rule for rounding harmony, which
affects nonlow vowels, again using an alpha
variable for the two possible values of the feature
round.

Because the focus here is on
phonological parsing, rather than morphological
parsing, the morphological rules given in PC-
KIMMO's sample analyses were ignored, and
fully affixed forms were used for underlying
forms, e.g.:

<lex_entry shape "oda+sH"

... gloss "room+POSS">

In a sample of several hundred words,
PC-KIMMO was about three times faster than
the parser using linearly ordered rules. This
difference is not large, and indeed may be
attributed in part to the different programming
languages used (PC-KIMMO is written in C,
while the parser implementing the generate-and-
test algorithm is written in Prolog and C). The

ratio of 3:1 is approximately constant among the
four grammars, and independent of word length,
indicating that the results should scale.

5. CONCLUSION

The algorithm as described and
implemented models segmental phonology. An
extension to multiple strata of rules, as in lexical
phonology, is trivial, and has also been
implemented. Allowing cyclic application of
rules is also simple, although it has not been
implemented yet (because most phonologists
since Pesetsky 1979 have interpreted cycli c
phonology as the interleaving of phonological
rules and morphological rules, and morphological
rules have not yet been implemented).

The algorithm could be extended to
autosegmentai models of phonology by
reinterpreting e.g. feature spreading rules as
feature assignment rules with alpha variables
during the analysis phase, and reverting to the
standard interpretation of autosegmental rules
during synthesis. For instance, an autosegrnental
rule spreading the place of articulation features
of an obstruent onto a preceding nasal consonant
can be modeled during analysis by the following
rule:

. _, r-continuent-

F+cons] [~high 1,]c~ high
poacK / k+nas J /rcoron J--/pba k

- L?,corona 1

The modeling of autosegmental
phonology has not been implemented, although
the use of alpha variables has.

In summary, and contrary to many
earlier claims, it need not be eomputationally
expensive to parse surface forms into their
underlying forms using linearly ordered rules.
Furthermore, unlike rule compilers (Kaplan and
Kaye in press), the use of a rule interpreter
simplifies grammar debugging, as the input and
output of each rule can be studied (a sample trace
is shown in the appendix).

67

6. REFERENCES

Antworth, Evan L. (1990). PC-KIMMO: A Two-
level Processor jbr Morphological Analyxis.
Occasional Publications in Computing,
number 16. Summer Institute of Linguistics,
Dallas, Tex.

Bromberger, Sylvain, and Halle, Morris. (1989).
"Why Phonology Is Different." Linguistic
lnquiry 20:51-70.

Chomsky, Noarn, and Halle, Morris. (1968).
The Sound Pattern of English. MIT Press,
Cambridge, Mass.

Hooper, Joan. (1976). An Introduction to
Natural Generaave Phonology. Academic
Press, N.Y.

Johnson, C. Douglas. (1972). Formal Aspects of
Phonological Description. Mouton, The
Hague.

Kaplan, Ronald M. and Kaye, Martin. (in press).
"Regular Models of Phonological Rule

Systems." To appear in Computational
Linguistics.

Kenstowicz, Michael, and Kisscbcrth, Charles.
(1979). Generative Phonology: Description
and lheory. Academic Press. N.Y.

Maxwell, Michael. (199 I). "Phonological
Analysis and Opaque Rule Orders." Pp. 110-
l l6 in Proceedings of the Second
International Workshop on Parsing
Technologies. Special Interest Group on
Parsing of the Association for Computational
Linguistics, Pittsburgh, Pa.

Pesetsky, David. 1979. "Russian Morphology
and Lexical Theory." Unpublished
manuscript, MIT. Cited by Spencer 1991:
109.

Spencer, Andrew. 199 I. Morphological Theory.
Basil BlackweU, Canlbridge, Mass.

7. APPENDIX: A SAMPLE PARSING RUN

This appendix presents excerpts of the input to and output from the phonological parser. Some
information in the original has been omitted here for simplicity. The language being parsed is Japanese.
The data and rules were adapted from one of the sample data sets provided with PC-KIMMO (see
Antworth 1990). The rule notation is an internal format, not necessarily intended for the end user.
Structures are enclosed in "< >". Added comments are shown in italics.

We first load the rules. The rule shown here ([+voc -round] --> 0 / [+voc] + __) deletes a non-round
vowel immediately after another vowel, but note the obligatory morpheme boundary ("+ "):

(load morpher_rule
<prule rname vowel_deletion

p_lhs <p_lhs pseq ((+ voc -round))>
p_rhs <p_rhs pseq 0 >
left environ <ptemp pseq ((+ voc) "+")>>)

... remaining rules are not shown here.

Turn tracing on ('7').fiw lexical lookup:
(trace lexicaLIookup T)

Also turn tracing on for the vowel deletion rule, both during analysis (the first '1"9 and synthesis (the
second 'T g :

(trace_morpher rule ('1" T vowel deletion))
Finally. parse the Japanese word "neta ":
(morph_and_lookup_word "neta")

68

the parser ~' trace outputJbllows, l,~rst the trace repeats the input."
<trace shape "neta"

continuations (
The "continuation" list is a list o f paths Jollowed by the parser from the current position. 7he parser
proceeds by unapplying the rules, the trace shows the unapplication o f the traced rule,
"vowel deletion". The form which is input to this rule is the sequence o f segments resulting from the
unapplication o f shallower rules, and corresponds to the regular expression "n([r y])et([r yJ)a", where
"Jr y]" signifies a segment ambiguous between "r" and "y" which the parser has undeleted; the

parentheses indicate that it is optional (since perhaps the parser shouldn't have undeleted iO.
Unapplication o f the traced deletion rule results in the insertion o f more optional segments in two places,
whose features Correspond to the Set o f vowels/i e a/:

<rule unapp mame voweldeletion
input <lex_entry shape "n([r y])et([r y])a"... >
output <lex_entry shape =n([r y])e([i e a])t([r y])a([i e a])"... >
cont inuat ions (

('ontimting. the parser unapplies various other rules (not shown here, since they arch 't being traced):
qfh'r all the rules have been unapplied, it does lexical lookup."

<lex lookup virtual
- - m > <lex entry shape =n([r yl)e([i e a])t([r Yl)a([i e al) ...

7he above "virtual" (i. e. created during analysi.~9 lexical entry corresponds to a "real" one fi)und in the
lexicon.

continuations (
<succ lookup real <lex entry shape =ne+ta" gloss =(sleep)+PAST"... >

continuations (
7he parser continues 39om this lexical lookup by applying the rules to the form in the ~Tnthesis phase;
again, only one application is shown, the traced one. The rule does not apply, since its structural
description is not met; hence the output form is the same as the input form:

<rule_app rname vowel_deletion
input <lex_entry shape =ne+ta" gloss =(sleep)+PAST" ...>
output <lex_entry shape "ne+ta" gloss "(sleep)+PAST"...>
cont inuat ions (

A f ie f applying the remaining rules, a surJbce form results whose phonetic shape is identical to the input
fi)rm:

<lex_entry shape =neta" gloss "(sleep)+PAST"...>)>)>
Now we return to continuations from lexical lookup. There is a second "real" lexical entry in the user's
lexicon which corresponds to the "virtual" lexical entry the parser created:

<succ_lookup real
<lex entry shape =ne+itai" gloss =(sleep)+VOL"...>

cont inuat ions (
Again, the continuation from the lexical item consists of the application of the rules," only the traced
rule ~" application is shown. 7he deletion rule applies to the first pair o f adjacent vowels, turning/ei/into
/eL but does not apply to the second pair o f vowels/aft, although during analysis it was unapplied in
both places. 7he reason is that the rule requires a morpheme boundary to appear between the vowels,
and there is only a morpheme boundary between the first pair o f vowels. (During analysis, the position o f
morpheme boundaries is unknown, hence they are impossible to check for.) This analysis will be filtered

69

out; it is an example o f overgeneration due to a rule whose application is governed by morpheme
boundaries:

<rule_app marne voweldeletion
input <lax entry shape "ne+itai" gloss "(sleep)+VOk"...>
output <lex entry shape "ne+tai" gloss "(sleep)+VOL"...>

The continuation list from this rule application is empty, because the output does not match the input
word:

continuations ()
>)>)>)~)>

This completes the trace. Last comes the parser ~ output, the single analysis o f the word, depicted as a
lexical entry at the surface level This wouM have been output even i f tracing had not been turned on:

(wordanalysis
<lex_entry shape "hera" gloss "(sleep)+PAST"... >)

'fr~

