
From English to PFO: A Formal Semantic Parser
J o r d a n  Z la tev*  

S to c k h o lm

A b str a c t
Pagin and Westerstihl (1993) present a formalism called PFO (Predicate logic with 
Flexibly binding Operators) which is said to be well-suited for formalizing the semantics 
of natural languages. Among other things, PFO permits a compositional formalization of 
”donkey sentences” of the type I f a farmer owns a donkey he beats it.
In this paper we present a formal procedure and its computer implementation (written in 
PROLOG) that translates from a limited fragment of English to PFO, i.e. a form al 
semantic parser. The translation is done in two steps: first a DCG grammar delivers a 
parse tree for the sentence; then a number of translation rules that operate on (sub)trees 
apply to the analysed sentence in all possible orders which may give rise to different 
"interpretations". For example the sentence Every man does not love a woman receives 6 
different formalizations corresponding to the 6 possible orders of applying the universal 
quantification rule, the existence quantification rule and the negation rule.
Other ambiguities which the parser accounts for are those between anaphoric and deictic 
interpretations of pronouns: for the sentence in the first paragraph the parser will provide 
a formalization in which the variable for he is co-indexed with that for farm er (the 
"anaphoric" interpretation) and a formalization with a new variable (the "deictic" one).

1. In tro d u c tio n
PFO, which stands for Predicate logic with Flexibly binding Operators, 
is a logical formalism developed by Peter Pagin and Dag Westerstahl (cf. 
Pagin & WesterstMil 1993, hence P & W). Its novelty consists in the fact 
that it permits a compositional formalization of certain problematic 
natural language constructions not by extending the semantics of first- 
order predicate logic (PL) as in e.g. Discourse Representation Theory 
(DRT, Kamp 1981), but by changing its syntax.
Section 2 reviews the motivation for developing PFO, presents it in 
brief, compares it to PL and shows how the first, but not the second 
allows for a compositional formalization of ”donkey sentences”. This 
section is closely based on P & W, sections 1-4.

^The research reported in this paper was done while participating in the project Logic 
with Flexibly-Biriding Operators at the Department of Philosophy, Stockholm University 
during the 92-93 academic year. The rule system presented in section 3 was established 
after numerous discussions with Peter Pagin and Dag Westerstahl.
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However, Pagin and Westerstahl do not present a formal procedure for 
translating from sentences in a natural language such as English into 
PFO. It has been the task of the work reported in this paper to describe 
such a procedure for a limited fragment of English (comparable to the 
fragment presented in the classical ”PTQ” paper of Richard Montague 
(1974) though without intensional contexts). Section  3 will thus present 
a formalization of the translation from English to PFO for a number of 
basic linguistic constructions.
Since it is to be entirely formal, this procedure should be equally well 
performable by a computer program and the programming language 
PROLOG makes it quite straightforward to express the translation rules 
as computer code. Implementing the translation procedure as a computer 
program was a convenient way to check for the consistency of the rules, 
their ordering, interaction etc. Its purpose has been one of a ”debugging 
device”. It is both the translation procedure from section 3 and its 
implementation, which we briefly present in section  4, that we refer to 
as a ”formal semantic parser”.!
Finally, s e c t io n  5 will briefly point out some engineering and 
theoretical conclusions that derive from the project of implementing a 
translation procedure English-to-PFO.

2 . A  b r ie f  p r e s e n t a t io n  o f  th e  P F O  fo r m a lis m
Through PFO, P & W challenge ”... the view that certain natural 
language constructions with anaphoric pronouns cannot be 
compositionally formalized  in predicate logic, at least not in any 
reasonable way”. [p.l89, my italics]
The principle of compositionality stating that ”the meaning of a complex 
expression is a function of the meaning of its parts” is both vague and 
controversial and something more will be said about it in section 5. But 
the notion of a ”compositional formalization” is quite straightforward: if 
X is a constituent of Y in NL (natural language) and X is formalized as 
XpL and Y as Yfl in FL (formal language), then Xfl is to be a 
constituent of Yfl in FL-
The ”natural language constructions” that do not seem to fulfil this 
requirement include the so-called ”donkey sentences”, brought to the 
attention of the linguistic community first by Geach (1962). Consider (1),
! Strictly speaking, as sections 3 and 4 make clear, both the formalization procedure and 
the implementation consist of a syntactic parser, which delivers a phrase structure tree, 
and a translator that in a number of consecutive steps transforms the parse tree into a PFO 
formula. By ”formal semantic parser” we mean both parts.
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which is not a donkey sentence, and its compositional formalization in 
PL, (Ip l ).
(1) If Bill owns a car he is rich 
(Ip l) 3y(car(y) a  owns(b,y)) rich(b)
But (2), which is a donkey sentence, constitutes a problem. (2*), which is 
derived by analogy to (Ipl) is not a sentence (a well-formed formula) in 
PL: y in drives(b,y) is not bound. (2?), which is derived by extending the 
scope of 3, does not have the right meaning. The ”right” formalization is, 
of course, ( 2 p l )  but it is not compositional: it does not have as constituent 
3y(car(y) a  owns(b,y)) , which is the formalization of Bill owns a car .
(2) If Bill owns a car he drives it
(2 *) 3y(car(y) a  owns(b,y)) —> drives(b,y)
(2 ?) 3y((car(y) a  owns(b,y)) —> drives(b,y))
(2p l ) Vy((car(y) a  owns(b,y)) drives(b,y))
PFO differs from PL in the following three respects:
(a) The variable-binding operators of PFO are binary rather than unary. 
[X,Y] expresses universal quantification and (X,Y) expresses existential 
quantification. Furthermore PFO fuses variable-binding and sentential 
operators, so that [X,Y] also expresses material implication between Y 
and Y and (X,Y) expresses conjunction. (3) and (4) would therefore 
formalize the following way in PFO and PL respectively.
(3) A man sleeps
(3p l) 3x(man(x) a  sleeps(x))
(3pFo) (man x, x sleeps)
(4) Every man sleeps 
(4pl) Vx(man(x) —> sleeps(x))
(4pFo) [man x, x sleeps]
The PFO formalizations are both simpler and, in a sense, closer to 
natural language in providing a ”subject” and ”predicate” part, and not 
having to complement with conjunction and implication operators that 
have no correlate in the sentences.
(b) Variable-binding is unselective (PFO), rather than selective (PL) 
which means that all variables common to two immediate subformulas get 
bound, without any need for explicit indication. So e.g. [Px, (Qy, Rxy)] 
corresponds to Vx(Px —> 3y(Qy a  Rxy)).

319



(c) Finally, quantification priority is from the outside in, rather than 
from the inside out, so that e.g. [Px, (Qx, Rxy)]—notice the slight 
difference from (b) above—will correspond to Vx(Px —> (Qx a  Rxy)).
There is much more to be said about PFO: P & W present a formal 
specification of its syntax and semantics, show how to perform natural 
deduction with it and compare it with ”dynamic” logics such as DRT. 
Here I will end this brief presentation by returning to the donkey 
sentence (2) and show how in PFO it gets formalized analogously to (1), 
i.e. compositionally.
First both (1) and (2) get translated into an intermediary stage, which is 
the result of formalizing the if-{then) construction.
(IpFo ) [b owns a car, he is rich]
(2pFo ) [b owns a car, he drives it]
Then the first subformula in both is transformed according to the 
formalization rule for indefinite phrases in object position (cf. 3.2) and 
the pronoun he is substituted with the same constant as that for Bill.
(IpFO") [(car y, b owns y), b is rich]
(2 pFO") [(car y, b owns y ), b drives it]
And finally a pronoun interpretation rule applies to (2pfo") producing 
(2 pFo ") [(car y, b owns y ), b drives y]
The last contains as constituents the PFO formalizations of the 
constituents of (2), and indeed looks very similar to (IpFO") while getting 
a different kind of interpretation due to the different way of doing 
variable-binding in PFO. Now to the main subject of this paper: the exact 
rules and derivational procedure for e.g. arriving from (2 ) to (2 ppo "). 
i.e. from English to PFO.

3 . F o r m a l iz in g  th e  t r a n s la t io n  fr o m  E n g lis h  to  P F O
It turned out convenient to divide the formalization of the translation 
procedure English-to-PFO into two stages: (a) a syntactic analysis of the 
English sentence and (b) a translation of the parse tree produced by (a) 
into a PFO formula. The main advantage of this modular design is that 
the translation rules of stage (b) can be ”structure-dependent” :̂ i.e. their 
application can depend on non-terminal as well as on terminal symbols.

ICf. Chomsky (1975) for an argument for the necessity of "structure-dependent" rules.
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3 .1  S y n ta c t ic  a n a ly s is
The grammar used for parsing the English sentences is a context-free 
phrase structure grammar with the small generalization allowed by 
adding the morphosyntactic/eatwreii CASE (with values nom and acc ) 
for pro-nouns and FIN(iteness) (with values f i n ,  i n f )  for verbs. 
These serve as constraints on the phrase structure rules, disallowing 
sentences such as:
*Him loves Mary. *John loves he.
*Pedro own a donkey. *Pedro does not owns a horse.
A third feature, GEN(der) (with values fem , m asc, n e u t r )  is 
marked in the lexicon for nouns and pronouns. It does not play a role in 
the syntactic analysis, but it does in the translation rules that deal with 
pronoun interpretation (cf. next subsection).
The only peculiarity of the grammar worth mentioning is the use of two 
noun phrase subcategories with corresponding symbols in the grammar 
NPs and NPq. The latter includes noun phrases that have eve?y or no as 
determiners (such as every man or no woman that sleeps) while the first 
includes pronouns, proper names and noun phrases with determiners a 
and the. The reason for this is semantic: NPq:s involve rules of universal 
quantification for their formalization and the translation rules described 
in the next section require this distinction in order to avoid producing 
incorrect formalizations for sentences that involve disjunction. The 
following rules from the grammar see to it that if at least o n e  of the 
noun phrases in a disjunction is an NPq, the whole disjoint noun phrase is 
an NPq.
NPs -> NPs or NPs
NPq -> NPs or NPq I NPq or NPs I NPq or NPq 
The grammar in its entirety is given in Appendix A.

3 .2  T r a n s la t io n  r u le s
Once an English sentence is analysed with the help of the grammar, it is 
available to the translation rules. This is how the first rule used in the 
translation procedure looks like:
(R l)  « e v e ry  <CN>cn>npq <VP>vp>s =>

[<<CN>cn <x>np>s. <<x>np <VP>vp>sl

1 As in unification-based grammars (cf. Shieber 1986).
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All rules have this common form: The left-hand side of the translation 
symbol, =>, is a structural description. The right-hand side is a PFO 
formula. The brackets ”<” and ”>” mark phrase structure (in order to 
avoid confusion with the PFO operators), with an index on the right 
specifying the syntactic category. Symbols in capital letters stand for 
phrase-structure variables, i.e. any part of the phrase-structure tree that 
has the category specified by its index. (As can be seen, the variable 
symbols and their indices coincide, so to simplify the notation we will 
abbreviate <W>w as W in the following). The structural description part 
always contains reference to some ”logical word” such every, if, or etc. 
or to a pronoun, while the PFO formula has PFO-variables of syntactic 
category NP; the significance of this will be seen in a moment. (The 
marking of a PFO-variable with <...>np will also be omitted for 
abbreviation.)
Notice also that the structural description requires that the input to a 
translation rule be of syntactic category S, which is also the category of 
the two subformulas on the right-hand side. Rules can operate on the 
subformulas produced by other rules. They can apply in all possible 
orders and when we have reached a PFO formula on which no other rule 
can apply, we have a PFO formalization of the initial English sentence.
One (negative) consequence of the fact that rules apply on whole 
sentences is that rules that refer to a noun phrase in their structural 
description need to come in pairs: one for when this noun phrase is 
”subject” as in (Rl) and one when it is ”object”, such as (R2).
(R2) <NP <Vtr <every CN>npq>vp>s => [<CN x>s, <NP <Vtr x>vp>s]
These are the rules of universal quantification. The rules of existence 
quantification, (R3) and (R4), introduce one more complication: U and W 
are anonymous phrase-structure variables, they can be instantiated by any 
part of the phrase-structure that otherwise fulfils the structural 
description.
(R3) « U  <a CN>nps W>np VP>s => (<CN x>s, « U  x W>np VP>s) 
(R4) <NP <U <a CN>nps W>vp>s => (<CN x>s, <NP <U x W>vp>s)
The purpose of these variables is to allow the existential quantifier of an 
(indefmitly) embedded indefinite noun phrase to have a wider scope than 
a linearly preceding universal quantifier. If (Rl) applies to (5) first (after 
the sentence is syntactically analysed) it will produce the PFO formula
(5pFO')-
(5) Every man who owns a donkey sleeps
(5pFo ) [« m an  who <owns <a donkey>nps>vp>cn x>s, <x <sleeps>vp>s]
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Now (R5), which provides a conjunctive interpretation of relative clauses 
can apply to the left subformula to produce (5pfo")-
(R5) « N  Comp VP>cn x>s => (<N x>s, <x VP>s)
(5pFO") [(<man x>s, <x <owns <a donkey>nps>vp>s)< <x <sleeps>vp>s]
Finally (R4) can apply, with U instantiated as owns and W as nil, to the 
italicized subformula — remember that x is of category NP! — to yield 
(5pFo ") which is equivalent to (5pl).
(5pFo ") [(<man x>s, (<donkey y>s, <x <owns y>vp>s)), <x <sleeps>vp>s] 
(5pl) VxBy((man(x) a  donkey(y) a  owns(x,y)) —> sleeps(x))
However, (5) has another interpretation, which would correspond to the 
PL sentence obtained by exchanging the places of quantifiers. The 
corresponding PFO formalization can be obtained by starting with (R3) 
with U = every man who owns and then (Rl) and (R5):
R3: (<donkey x>s, «every  man who owns x >npq <sleeps>vp>s)
Rl: (<donkey x>s, [«m an who owns x >cn y>s . <y <sleeps>vp>s])
R5: (<donkey x>s, [(<man y>s, <y owns x > s), <y <sleeps>vp>s])
Similarly, by applying (Rl) + (R4) + (RIO) ((RIO) is one of the two rules 
for negation) in the six possible orders, six different formalizations of 
e.g. Every man does not love a woman will be derived, corresponding to 
the six different possible orderings of the quantifiers V, 3 and the 
negation operator —i in PL.
(RIO) <NP <Aux not W>vp>s => [<NP <Aux W>vp>s, -L]
The list of rules for the fragment includes rules for definite noun phrases 
and disjunctions, which are somewhat more complex, but introduce 
nothing essentially new. The rules for translating pronouns to variables, 
e.g. the rule needed to transform (2p f o " )  to (2pfo  ") above, however, 
differ more. Their task is to produce a formalization which corresponds 
to an anaphoric interpretation (a variable which is co-indexed with the 
variable of a possible antecedent) whenever it is syntactically and 
semantically possible and/or a deictic interpretation (a new variable). (6) 
and (7) demonstrate cases when syntactic respectively semantic 
constraints do not permit an anaphoric interpretation of the final 
pronoun.
(6) If Pedro owns a donkey, he beats her
(7) If Pedro owns every donkey, he beats it
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The first constraint is enforced through the GEN feature, mentioned in 
section 3.1. The subject pronoun rule is (R17).
(R17) <<Pron:G£'A^>nps> VP>s => <x VP>s

IFF <<N:G£'N>cn ^>s 
<y VP>s

The ”IFF <structure>” statement serves as a constraint on whether the 
variable x can be used: it is possible only if the specified structure exists 
as a subformula somewhere in the current PFO formula (i.e. the one that 
the structural description is a part of as well). In the case of (R17) this 
means that the current PFO formula should have a noun with the same 
value for the GEN feature and the same PFO-variable x. This condition 
will not be fulfilled for (6 ) so the only part of the rule applicable will be 
the part that introduces y, a new variable.
The semantic constraint necessary is somewhat more complex. The 
anaphoric PFO formalization of (7) is (7pfo) which will indeed be 
produced by the translation rules.
(7pFo) *[[donkey x, p owns y ], p beats x]
This formalization can be disallowed through a constraint such as the one 
discussed by Pagin & Westerstahl stating in effect that a variable that is 
quantified within [X,Y] is not to be used outside [X,Y]. This, however, 
has been more difficult to express procedurally than one can imagine. It 
is not as simple as to say that PFO-variables introduced by universal 
quantification rules such as (Rl), (R2) and (RIO) are not ”reusable”. 
Example ( 8 )  has an anaphoric interpretation, ( 8 p f o  ). despite of that.
(8 ) Every man loves a woman that pleases him 
(8pFo ) ([man x, ((woman y, y pleases x), x loves y]
But neither can a pronoun always co-refer with a noun that is within the 
same sentence; a different order of applying the translation rules (e.g. 
(R4) + (R5) + (Rl)) will produce ( 8 p f o " )  in which him cannot be 
anaphoric.
(8pFO") ((woman y, y pleases him), [man x, x loves y])
What seems to be necessary is a mechanism that ”remembers” when an 
universal quantification has been introduced in a PFO-formula and allows 
co-referece with the universally quantified variable only among 
subformulas of that formula.
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4. C o m p u te r  im p le m e n ta tio n
As mentioned in the introduction, the purpose of the computer 
implementation in PROLOG has been mainly one of a debugging device, 
and therefore the implementation is quite crude. Here we will only 
present the basics of the notation and ”trace” the derivation of the 
classical donkey sentence If a man owns a donkey then he beats it.
The syntactic analysis is performed by a standard Definite Clause 
Grammar (DCG) (cf. Pereira and Warren 1980) which straightforwardly 
uses the rules in Appendix A and PROLOG’S built in top-down 
interpreter with unification to produce a syntactic tree (with nouns and 
pronouns marked for their GEN feature), in the form of a PROLOG list.
( s , i f , [ s , [ n p s , [ ( d e t s , a ] , [ c n , ( n , f a r m e r , m a s c ] ] ] ] ,

(v p , [ v t r , o w n s ] , [ n p s , [ [ d e t s , a ] , [ c n , [ n , d o n k e y , n e u t r ] ] ] ] ] ] ,  
t h e n ,
[ s , ( n p s , [ p r o n , h e , m a s c ] ] , [ v p , [ v t r , b e a t s ] , [ n p s , [ p r o n , i t , n e u t r ] ] ] ] ]

The implementation of the translation rules to apply on this structure also 
consists of an input list and output list, which specify the structural 
description and PFO formula respectively. The following is e.g. the 
implementation of (Rl).
r l {S D , P F O _ f o r m u l a )

SD = [ s , [ n p q , [ [ d e t q ,  e v e r y ] , C N ] ] ,  V P ] ,
P F O _ f o r m u l a  = [ a l l ,  [ s , C N , [ n p , X ] ] ,  [ s , [ n p , X ] , V P ] ] .

The only difference from (Rl) is that non-terminal symbols are specified 
in the first position of their respective (sub)list and that PROLOG’S 
square brackets which specify the boundaries of a list are used both to 
mark phrase structure and, together with the ”modifiers” a l l  and e x is t ,  
PFO operators. When a translation rule such as as (R3) and (R4) has 
”anonymous phrase structure variables” this is dealt with in the following 
way. A four-place predicate, mem, looks recursively for a certain 
constituent within a tree, then, having found it, substitutes it with a 
formalization and returns the new tree;
mem(<Constituent>, <Tree>, <Form alization> , <New_tree>)

With its help the following is a faithful implementation of (R4).
r 4 ( I n , O u t )  : -

I n  = [ s . N P l ,  [ v p | R e s t ] ] ,
m e m ( [ n p s , [ [ d e t s , a ] , C N ] ] , R e s t , [ n p ,  X ] , N e w R e s t ) ,
O u t  = [ e x i s t ,  [ s , C N , [ n p , X ] ] ,  [ s , N P l , [ v p | N e w R e s t ] ] ] .

Let us now trace the gradual transformation of the analysed sentence into 
a PFO formalization. First the If-(then) rule (R16) applies to produce:
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[ s ,  [ n p s ,  [  [ d e t s ,  a ]  , [ c n ,  [ n ,  f a r m e r ,  m a s c ]  ]  ]  ]  ,
[ v p ,  [ v t r , o w n s ] , [ n p s , [ [ d e t s , a ] , n , [ n , d o n k e y ,  n e u t r j ] ] ] ] ] ,

[ s , [ n p s , [ p r o n , h e , m a s c ] ] , [ v p , [ v t r , b e a t s ] ,
[ n p s , [ p r o n , i t , n e u t r ] ] ] ] ]

Then the existence quantification rule for subject-NP’s (R3) applies to the 
first subformula of the above:
[ a l l ,

[ e x i s t , [ s , [ c n ,  [ n ,  f a n n e r ,  m a s c ]  ] , [ n p ,  x l ]  ] ,
[ s ,  [ n p , x l ]  , [ v p ,  [ v t r ,  o w n s ] , [ n p s ,  [  [ d e t s , a ] ,

[ c n , [ n , d o n k e y , n e u t r ] ] ] ] ] ] ] ,
[ s , [ n p s , [ p r o n , h e , m a s c ] ] , [ v p , [ v t r , b e a t s ] , [ n p s , [ p r o n , i t , n e u t r ] ] ] ] ]

Then the existence quantification rule for object-NP’s (R4) applies to the 
second subformula of the first subformula of the above to produce:
[ a l l ,

[ e x i s t , [ s , [ c n ,  [ n , f a r m e r , m a s c ] ] ,  [ n p , x l ] ]  ,
[ e x i s t , [ s , [ c n , [ n , d o n k e y , n e u t r ] ] , [ n p , x 3 ] ] ,

[ s , [ n p , x l ] , [ v p , [ v t r , o w n s ] , [ n p , x 3 ] ] ] ] ] ,
[ s ,  [ n p s ,  [ p r o n ,  h e ,  m a s c ]  ]  , [ v p ,  [ v t r ,  b e a t s ]  , [ n p s ,  [ p r o n ,  i t ,  n e u t r ]  ] ]  ] \

The subject pronoun interpretation rule (R17) applies to the italicized 
subformula, finds a possible anaphor, [cn, [n, farmer,masc] ] , with the 
right GEN feature and substitutes [nps, [pron, he, masc] ] with the 
corresponding variable.
[ a l l ,

[ e x i s t , [ s , [ c n , [ n , f a r m e r , m a s c ] ] , [ n p , x l ] ] ,
[ e x i s t , [ s , [ c n , [ n , d o n k e y , n e u t r ] ] , [ n p , x 3 ] ] ,

[ s , [ n p , x l ] , [ v p , [ v t r , o w n s ] , [ n p , x 3 ] ] ] ] ] ,
[ s ,  [ n p , x l ] , [ v p ,  [ v t r ,  b e a t s ] , [ n p s ,  [ p r o n ,  i t , n e u t r ]  ]  ]  ] ]

Finally we come to the last pronoun, which according to an object 
pronoun rule (R18) can be substituted with an ”old” variable, [np,x3 ] , 
to yield an anaphoric interpretation, or with a ”new” variable, [np,x5 ] , 
to yield a deictic interpretation.
Apart from some cosmetic details added here for perspicuity, this 
derivation illustrates the performance of the parser (which also yields a 
large number of equivalent formalizations).

[all,

5 . P F O  a n d  n a tu r a l  la n g u a g e  p r o c e s s in g
The project of formalizing and implementing the translation procedure 
English-to-PFO has lended some support to the claim that PFO is well- 
suited for formalizing natural language semantics. The rules required for 
carrying out the formalization procedure are quite simple, yet efficient. 
The ”toy implementation” showed that the translation rules do not involve 
unpredictable interactions. There is no need for any restrictions on the
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order of application independent of the structural description, unlike in 
”classical” transformation grammar. So from the perspective of (applied) 
natural language processing PFO may prove to be an attractive formalism 
because (a) due to its compositional nature it minimizes ambiguity, e.g. 
there is no need for different treatments of a car in (1) and (2 ) and (b) 
does this without extensively extending first-order predicate logic, i.e. in 
a relatively constrained formalism.
However, the particular kind of compositionality that characterizes PFO, 
compositionality on the sentence level, also showed a few drawbacks. The 
necessity of having ”subject”-”object” pairs of rules was cumbersome in 
itself, but the possible positions of a noun phrase in a sentence is far 
greater than that. The formalism must therefore be extended to below- 
sentence compositionality before it can be truly useful for linguistic 
description. On the other side, the compositional treatment of ”donkey 
anaphora” in a formalism with ”a single, uniform notion of semantic 
content” (P & W, p. 120) seemed to make it harder to specify the 
semantic constraint on binding. P & W do make a clear specification, but 
they do it declaratively, while the lack of any intermediate structures such 
as the DRS’s of DRT make it necessary for the formalization procedure 
itself to embody this constraint. As pointed out at the end of 3.2. what 
seems to be called for is a ”short term memory” that keeps track of which 
rule has applied where in the PFO-formula. But this seems to go against 
the ”single, uniform notion of semantic content”.
Finally, it should be reminded once again that ”semantic 
compositionality” is not an unproblematic notion. In one sense—that 
simple expressions combine to produce complex expressions—it seems to 
be all-encompassing and thus vacuous. In the other, formal, sense defined 
in section 2 as a relation between a natural and a formal language it may 
be too strong a constraint. Modification (e.g. fake gun), polysemy, 
intensional contexts and many other natural language phenomena seem 
not to be easily coerced into it. If PFO can be extended to deal with some 
of these other phenomena this would present an even greater challenge.
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A p p en d ix  A
The context-free grammar with morphosyntactic features for syntactically parsing the 
fragment of English sentences. Features are marked within square brackets, with & 
signifying conjunction, =/ ”is different from” and I disjunction.
S ->  S or S 
S ->  i f  S then S 
S ->  NPIHEAD = pron & CASE 
S ->  NPIHEAD =/ pron] VP

nom] VP

NP ->  NPs NPq

NPs ->  Dets, CN | 
NPq ->  Detq CN 
NPs ->  NPs or NPs 
NPq ->  NPs or NPq

PN Pron

NPq or NPs | NPq or NPq

CN ->  N I N Comp VP 

VP ->  V i t r
VP ->  Aux Neg V i t r [F IN  = in f ]
VP ->  V tr  NPIHEAD = pron & CASE = acc]
VP ->  Vtr NP[HEAD =/= pron]
VP ->  Aux Neg V t r [F IN  = in f ]  NP[HEAD = pron & CASE = acc] 
VP ->  Aux Neg V t r [F IN  = in f ]  NP[HEAD =/= pron]
VP ->  Cop Adj 
VP ->  Cop Neg Adj

PN ->  b i l l  I pedro  
N ->  farmer[GEN = masc] donkey[GEN = neutr] | woman[GEN = fern]

V i t r  ->  s le e p s [F IN  = f in ]  | s le e p [F IN  = in f ]
V tr ->  owns[FIN = f in ]  | lo v e s [FIN = f in ]  | b e a t s [FIN = f in ]  
Vtr  ->  own[FIN = in f ]  | l o v e [FIN = in f ]  | b e a t [FIN = in f ]

Dets ->  a I the 
Detq ->  every | no

Pron ->  it[GEN = neutr]
Pron ->  he[GEN = masc & CASE = nom] 
Pron ->  her[GEN = fem & CASE = acc]

she[GEN = fern & CASE = nom] 
him[GEN = masc & CASE = acc]

Aux ->  does 
Neg ->  not 
Comp ->  who I that  
Cop ->  is
Adj ->  t i r e d  | r ic h
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