
Robust Parsing with Charts and Relaxation
P e te r I n g e ls

L in k ö p in g

A b str a c t
This paper is a summary of my master's thesis* "Error Detection and Error Correction
with Chart Parsing and Relaxation in Natural Language Processing" (Ingels 1992). Two methods are presented: The first is a chart-based parsing algorithm inspired by C. Mellish
that generates error classifications and, when possible, error corrections to ill-formed
input. The algorithm classifies missing words, spurious words, misspellings and
substituted words. The second approach presupposes a unification-based grammar
formalism. The idea is to extend the PATR formalism so that it can represent alternatives
to feature-values. The alternatives can then be used to "carefully" relax constraints
imposed by the grammar. Thus the alternatives can be used to abduce corrections in the
face of unification failures. The paper also contains a discussion of a proposed project on
robustness.

In tr o d u c tio n
NLU-systems that are to be employed in real-world applications need to
be able to handle input that violates the expectations of the grammar
encoded in them. The occurrences of ungrammatical, or ill-formed, input
in such systems is so frequent that it can not be ignored or treated
simplistically (e.g. Sorry, couldn't parse that).
An informal study of 20 dialogues taken from our own corpus of NLI-
dialogues collected with wizard of Oz techniques showed that some 18%
of the user utterances contained at least one error. The errors were
classified as misspellings, segmentation errors and syntactic errors. It
should be noted that the results of the investigation depicted below was
collected by a cooperative human, and it is more than reasonable to
assume that the number of errors would be higher if an actual system
would be used.

66 of the 369 utterances were erroneous (18%)
misspelling segm. error synt. error >1 error/utt.

25 16 21 4

^The thesis work was carried out at IRST (Instituto per la Ricerca Scientifica e
Tecnologica), Trento, Italy. Oliviero Stock acted as my supervisor. Fabio Pianesi
contributed significantly concerning relaxation (see below). I wish to thank them both.

123

Proceedings of NODALIDA 1993, pages 123-132

The fourth column shows the number of user utterances that contained
more than one error.
A system that can handle these and other types of errors is called robust.
Robustness can be achieved in different ways, but it requires minimally
that the system is able to localize and classify the deviance. There are
many different plausible error typologies, the one below is influenced by
(Veronis 1991). See also (Stede 1992).

Lexical level

Syntactic level

Semantic level

Performance
letter substitution

letter insertion
letter deletion

letter transposition
word substitution

word insertion
word deletion

word transposition

Competence
wrong inflection

segmentation error
grapheme substitution

wrong agreement
homophone

punctuation error
rule violation

presupposition violation
reasoning error

dialogue law violation
conceptual error

Competence errors result from the failure to abide by, or lack of
knowledge of, linguistic rules. Performance errors are technical errors
made despite knowledge of the rules. The concepts of competence errors
and performance errors can of course also be enlarged to encompass
errors related to domain knowledge as well as linguistic knowledge.
The appropriate action taken by the robust system in face of ill-formed
input is not solely dependent on the error classification. The application
in which the system is used is also relevant. Applications range from
language tutoring systems over grammar and style-checkers to machine
translation and dialogue systems. Spoken communication is also a highly
relevant area. So what is to be judged as an appropriate action in an error
situation varies. •

• The system can enter into a clarification dialogue with the user
• The system can present the user with an error diagnosis
• The system can present the user with a correction hypothesis
• The system can use the best correction hypothesis without

bothering the user
• The system can save a partial interpretation of the user utterance
• There might not have been an error (bad coverage)

124

Two approaches will be presented in the following two sections. First a
chart-based technique that can detect constituent errors such as misspelled
words (segmentation errors excluded), missing constituents, spurious
constituents and substituted words, then a relaxation scheme for detection
of constraint violation errors is presented. The relaxation technique has
only been partially implemented. The last section is devoted to a dis
cussion on extensions and further research.

C o n stitu en t E rrors
The techniques presented in this section rest on Mellish's paper "Some
Chart-Based Techniques for Parsing Ill-Formed Input" (Mellish 1989). In
his paper Mellish describes a variant of the chart parsing algorithm. His
goal is to explore how far detection and classification of errors based
purely on syntactic knowledge can lead. Thus he employs a CF-PSG
(context-free phrase structure grammar) and the set of standard rules of
chart parsing (combination and prediction of edges) is supplemented with
a set of error hypothesis rules. These rules can detect and classify missing
constituents, spurious constituents and substituted words. Actually he
makes misspelling a special case of substituted word!
Mellish's algorithm invites to extensions and alterations and some
improvements have also been made to the original algorithm. The
improvements basically concerns the error hypothesis rules and some
motivations will be accounted for in connection with the introduction of
these rules. (There is no room here to present both versions and all
considerations taken.)
The generalised chart parsing algorithm basically consists of two phases.
First a standard bottom-up parser is supplied with the input. If the
bottom-up parser fails the input is in some way ill-formed and recovery
is attempted. Then a modified top-down parser is run on the input and the
inactive edges left from the bottom-up phase. These inactive edges
correspond to the complete constituents found in the bottom-up phase.
One of the major differences between the modified top-down parser and
the standard top-down parser is that the fundamental rule in the modified
parser can incorporate constituents from either direction. In this way the
fundamental rule can "narrow down" on an error-point. This scheme
calls for a different way to represent an edge's needs and it also affects
the top-down rule.
A schematic overview of the basic scheme is given below. The erroneous
input in this example is 'll ragazzo vede laa bella ragazza' ('The boy
watches thee pretty girl').

125

HL------- (f)-H A Q A ZZ O -0 — VEDE 0 ------LAA-----0 — BELLA— 0 -B A Q A Z Z A -0

Fgure 1; The chart after the bottom-up phase.

In figure 1, the chart is depicted as it looks when the second phase is
ready to start. The superfluous active edges have been "cleaned away" and
only the inactive edges that resulted from the bottom-up phase remain.
The modified top-down parser would now behave something like:
Hypothesis:
By top-down rule:
By fundamental rule with
NP found bottom-up:
By top-down rule:
By fundamental rule with
V found bottom-up:
By top-down rule:
By fundamental rule with
A and N found bottom-up:

need [S] l->7
need [NP VP] l->7
need [VP] 3->7
need [V NP] 3->7
need [NP] 4->7
need [DET A N] 4->7
need [DET] 4->5

This example gives a hint as to what the algorithm does. However, there
are further complications. For example, there might be several errors in
an input string and hence there must be a way to express multiple needs.
If the input string in the example above instead was, 'll ragazzo vede laa
bella ragazza' ('The boy watches thee pretty giirl'), a need like the one
below would be useful.
need [DET] 4->5 and [N] 6->7
Furthermore, there are "anchored" and "unanchored" needs. If a couple
of consecutive constituents were sought for , say [NP VP] l->7, and there
is neither a complete NP nor a complete VP, this means that there is no
way to tell where the two constituents meet. This is expressed with
unanchored needs: need [NP] l->*.
The indicates a vertex in the chart that is not yet determined.
Considering all this the general form for an edge will be as follows:
<C S->E needs cli si->ei, cl2 S2->C2, ..., cln Sn->Cn>

126

Where C is a category, the cli are lists of categories (which will be shown
inside square brackets), S and the si are positions in the chart and E and
the ei are positions in the chart or the special symbol An edge of this
type in the chart means that the parser is trying to find a constituent of
category C, spanning from S to E. In order to do so it must then satisfy
all the needs listed (cli si->ei).
With this notation the two basic rules, the fundamental rule and the top-
down rule, will have the following characteristics:
Top-down rule:
<C S->E needs [ci,c2,...,Cn] si->ei, cl2 S2->62 , ..., dm Sm->em>
ci->RHS (in the grammar)
<ci si->e needs RHS si->e>
Where, if C2 ,...,Cn is non-empty or ei = * then e = * else e = ei
Precondition: ei = * or C2 ,...,Cn is non-empty or there is no edge of
category ci from si to ei
Fundamental rule:
<C S->E needs [ci,...,Ci-i,Ci,Ci+i,...,Cn] si->ei, cl2 S2->C2, ■■■>
<ci Si->Ei needs []>
<C S->E needs [ci,...,ci-i] si->Si, [ci+i,...,Cn] Ei->ei, cl2 S2->62, ...>
Precondition: si < Si and (ei = * or Ei < ei)
These rules are sufficient to "narrow down" one error like in the example
with 'll ragazzo vede laa bella ragazza'. But since the interest is in the
general case, where there can be an arbitrary number of errors in an
input string, the parser is expected to by-pass the error-point in some way
and to continue to search for possible additional errors. In this way all of
an edge's needs will eventually get resolved. This is accomplished by the
error hypothesis rules.
Garbage rule:
<C S->E needs [] si->ei, cl2 S2->C2 , ..., dm Sm->em>
<C S->E needs cl2 S2->C2 , ..., dm Sm->em>
Precondition: si^^ei
The garbage rule says that if all constituents of a particular need have
been found, and a portion of that need's span is still not covered, this
means that this uncovered portion of the chart contains words (or non
words) that should not be included in the parse. The C-constituent spans
spurious words/non-words of the input string. That portion of the chart is

127

consequently disregarded and instead attention is focused on the next
need. The garbage rule has not been altered from Mellish's version.
Missing word rule:
<C S->E needs [ci,C2.... Cn] si->ei, cl2 S2->e2, ..., dm Sm->em>
<C S->E needs [c2,...,Cn] si->ei, cl2 S2->e2 , ..., elm Sm->em>
Precondition: ci is of lexical category and (si = ei or (ei = * and (the
word at si is not of category ci or si = the end of the chart)))
This rule hypothesizes missing word-errors. The rule differs from the
corresponding rule in Mellish's algorithm in several respects. He allows
for the ci,C2 ,...,Cn to be non-terminals and if si = ei he can hypothesize
the whole chunk ci,C 2 ,...,Cn to be missing. This means that very blunt
error classifications are produced, such as e.g. "missing [NP PP]".
Furthermore the last clause of the precondition (ei = * and (the word at
SI is not of category ci or si = the end of the chart))) is not present in his
version. This means that unanchored needs can not have missing
constituents, which is an obvious weakness.
Unknown string rule:
<C S->E needs [ci,C2 ,...,Cn] si->ei, ch S2->e2 , ..., dm Sm->em>
<C S->E needs [c2,...,Cn] si-l-l->ei, cl2 S2->C2 , ..., dm Sm->em>
Precondition: ci is of lexical category and (si^^ei or ei = *) and si <
the end of the chart and the string at si is unknown
Substituted word rule:
<C S->E needs [ci,C2,...,Cn] si->ei, cl2 S2->C2, ..., dm Sm->em>
<C S->E needs [c2 ,...,Cn] si-l-l->ei, cl2 S2->C2 , ..., dm Sm->em>
Precondition: ci is of lexical category and (si^^d or ei = *) and si <
the end of the chart and the word at si is not of category ci
The two last error hypothesis rules have only one counterpart in Mellish's
version, namely the unknown word rule. With "unknown" words Mellish
means both actual words that do not meet the present expectations and
non-words (which obviously do not meet any expectations). With the
present rules this distinction is respected. Thus the unknown string rule
hypothesizes misspellings and the substituted word rule apply when the
input contain a legitimate but misplaced word. However, note that
transpositions require that the substituted word rule be applied twice, and
so the relationship between the two transposed words is lost.

128

These extra rules will dramatically increase the parsing search space. In
fact the search is exhaustive and obviously the hypothesizing of errors
must be controlled in some way. This is done by means of heuristics. For
each newly created edge a number of heuristics parameters will be
calculated. These scores or penalties will determine an edge's priority
compared to other newly created edges. The natural way to realise this
procedure is to use the agenda. The agenda will thus be sorted according
to the heuristics penalties with the most promising edge in the top position
of the agenda. Functions described by Mellish include penalty so far
(PSF, edges produced by the error hypothesis rules are penalized), mode
of formation (MDE, the formation of unanchored edges are penalized)
and several others. See Mellish (1989).

C o n stra in t V io la tio n E rro rs
This approach relies on the adoption of a feature-based - or unification-
based grammar (DBG). The system, that has partially been implemented,
makes use of a simple grammar encoded in the PATR-II formalism
(Schieber 1986). In this paper the approach is merely sketched. For a full
account see (Ingels 1992).
A technique for dealing with constraint violation errors is that of
relaxation. This method is addressed in (Douglas & Dale 1992). In the
paper D&D approach the problem by stating that some constraints are
necessary and others are relaxable. If a unification fails some of the
relaxable constraints can be relaxed. If the unification now succeeds a
diagnosis of what was wrong with the input can be made. What is meant
by relaxing a relaxable constraint in D&D's approach is simply not to
incorporate any instantiation of the failed constraint in the resulting FS.
In other words, dispose of the failed constraint altogether.
So with a sentence like Do this cars have a good safety rating? the
resulting feature structure would not have a number feature with
D&D&'s approach. A different approach would be to rely on the notion
of the conflicting feature values as alternatives, or candidate values. In the
example above, parsing this cars, the set of candidate values to the
unification failure would be singular and plural. In this case other parts
of the sentence can provide evidence for a plausible solution to the
conflict. The idea is thus to capture the information implied by the
unification failure.
The lexicon can also be used to record alternatives. E.g. the ill-formed
Italian noun-phrase la ragazzo (the boy/girl) can be corrected as il
ragazzo (the boy) or as la ragazza (the girl), while la libro (the book)
only has one plausible correction since there exists no feminine

129

counterpart to the noun libro. (It should be noted here that alternatives
are restricted to atomic values for reasons of complexity.)
The way to implement this scheme would be to explicitly represent the
alternatives within the feature structure. So e.g. the Italian definite article
la would have as value for gender ({f},{f m}), saying that the actual
value for the feature gender is feminine although relaxable. The
relaxability property is conveyed by the non-empty second component
which also explicitly enumerates the possible alternatives to be used in
case of unification failure. Non-relaxability is indicated by having the
empty set (0) as the second component (no alternatives). The Italian noun
libro could be relaxable having ({m},{m}) as value for gender. The
unification (set intersection by pairs) of la and libro would then produce
as value for gender (0,{m)), indicating a unification failure (0) and the
singleton alternative masculine (m), here functioning as a correction
hypothesis.
The natural way to incorporate this scheme with Mellish's algorithm
would be to consider only unification proper in the first phase. I.e. do not
consider alternatives, look only for well-formed sentences, in the bottom-
up phase. Then allow for relaxation in the second, error hypothesizing
phase.

A P r o je c t on R o b u stn ess
A central aspect of the thesis work, presented briefly in the two preceding
sections, is that assumptions of error occurrences are made explicitly. In
the case of Mellish's algorithm errors are recorded in the chart edges
since the error diagnosis is due to the expectations of a particular edge.
Also assumptions regarding alternative interpretations of feature
structures are explicitly represented. We believe this to be a practicable
path to follow in the project too.
To keep track of alternative assumptions/interpretations a reasoned chart
parser will be used. For a good survey of reasoned chart parsers see
(Wirén 1992). A reasoned chart parser is a chart parser where
dependencies between edges are explicitly recorded. With this framework
the likelihood of alternative interpretations can be judged with reference
to the assumptions on which they rest. In his dissertation Wirén suggests
the reasoned chart parser to be integrated with an ATMS-based problem
solver to support also such assumptions that can not be represented as
chart edges. This setting will be used in the project as a general formal
framework for studying diagnosis and interpretation of ill-formed input.
Alongside with this we will gain knowledge of the error types occurring
and their relative frequency. Another thing that should be empirically

130

investigated is the question regarding what action is appropriate in
different error situations. This includes preventive actions.
The empirically collected information will then, together with the formal
framework, serve as a basis for an implementation of a robust and
reasonably fast interpreter, eventually to be integrated in the BILDATA-
system. The BILDATA-system is the (written) dialogue system in our
current project 'Dynamic Natural Language Understanding' (Jonsson
1993) .
Some of the questions relating to the implementation resulted from the
thesis work.
Although my version of Mellish's algorithm makes the error
classification more fine-grained than Mellish himself does, the error
classification is inadequate. Transpositions and segmentation errors e.g.
can not be dealt with in a straight forward manner. The reason being that
an error hypothesis is kept local in an edge. That is not a problem as long
as errors are discovered incrementally, one at a time, but when several
constituents or input fragments are affected by a single error, there is a
problem. This also raises the question whether there are any profitable
alternatives to the two stage process suggested by Mellish. Maybe one
should look out for 'lower level errors' (segmentation errors,
misspellings,...) already in the first phase or in a third intermediate
phase?
When should the system give up trying to parse the ill-formed input?
Presently the system can parse everything (, you can put your elbow on
the keyboard and the system will eventually come up with a diagnosis of
what went wrong). The subtle question reads: how distorted can an
utterance be and yet be understandable? What are the criteria for stating
that the input is simply rubbish?
Another problem is the systems inability to discriminate between
competing correction hypotheses. One reason for this is obviously that the
system uses only syntactic information in the diagnosis process. Should
semantic constraints be an integral part of the grammar and used as a
filter in the parsing process?

131

R e fe r e n c e s
Ingels, Peter. 1992. Error detection and error correction with chart parsing and relaxation

in natural language processing. Master's Thesis, Department of Computer and
Information Science, Linköping University, LiTH-IDA-Ex-9269.

Jönsson, Arne. 1993. Dialogue Management for Natural Language Interfaces — An
Empirical Approach. Linköping Studies in Science and Technology, Dissertation No.
312.

Douglas, Shona and Robert Dale. 1992. Towards Robust PATR. In Proceedings o f the
15th International Conference on Computational Linguistics (COLING-92), Vol. II:
468^74.

Mellish, C. S. 1989. Some Chart-Based Techniques for Parsing Ill-Formed Input. In
Proceedings o f the 27th Annual Meeting o f the Association for Computational
Linguistics, pp. 102-109.

Schieber, Stuart M. 1986. An Introduction to Unification-based Approaches to
Grammar. P. University of Chicago Press, Chicago, Illinois, USA.

Stede, Manfred. 1992. The Search for Robustness in Natural Language Understanding.
ARTinciAL INTELLIGENCE REVIEW, Vol. 6 No. 4: 383-414.

Véronis, Jean. 1991. Error in Natural Language Dialogue Between Man and Machine.
INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, Vol. 35, No. 2.

Wirén, Mats. 1992. Studies in Incremental Natural-Language Analysis. Department of
Computer Science, Linköping University. Linköping Studies in Science and
Technology, Dissertation No. 292.

132

