
Tagging Experiments Using Neural Networks
M a r t in  E in e b o r g  a n d  B jo r n  G a m b a c R l  

S to c k h o lm

A b str a c t
The paper outlines a method for automatic part-of-speech tagging using artificial neural 
networks. Several experiments have been carried out where the performance of different 
network architectures have been compared to each other on two tasks: classification by 
overall part-of-speech (noun, adjective or verb) and by a set of 13 possible output 
categories. The best classification rates were 93.6% for the simple and 96.4% for the 
complex task. These results are rather promising and the paper compares them to the 
performance reported by other methods; a comparison that shows the neural network 
completely compatible with pure statistical approaches.

1. In tro d u c tio n
Rayner et al (1988) experimented with using a formal grammar along 
with example-sentences to deduce a lexicon. Unfortunately, the 
exponential explosion that followed from ambiguities in the grammar 
caused the system to be very slow. The project described in this paper 
builds on the assumption that one way to attack this problem would be to 
let a neural network suggest restrictions on the possible word-classes of 
the unknown word derived from its word-ending and context.
Another motivation for our project is that within the language area 
connectionist models have so far proved discouragingly unsuccessful 
compared to other methods. Even though they have been tried out for 
several applications, such as semantic clustering, preposition choice, etc., 
the only language area where artificial neural networks have been 
successfully applied on a larger scale has been speech; however, all 
currently leading speech recognition systems (the ones in the US DARPA 
race) have discarded neural nets for Hidden Markov Models, a statistical 
method. The current state of affairs should however hardly be taken to be 
the permanent truth. The need for different machine learning methods 
within the language area should be evident; in this paper we will single 
out the topic of part-of-speech tagging for special attention, but the last
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words for other areas such as disambiguation, document matching, 
information retrieval, grammar and transfer-rule induction, etc., have 
certainly not been said.
The experiments we have carried out have used different back- 
propagation network architectures in order to assign part-of-speech tags 
to unknown words. A brief background to artificial neural networks and 
the back-propagation algorithm is given in the rest of this section. Section 
2  then goes on to describe the different network architectures used in our 
experiments. The networks were trained on both morphological and 
(local) context information extracted from a tagged text corpus and then 
evaluated on previously unseen data from the same corpus. The results of 
the different experiments are given in Section 3. Section 4 compares these 
results to other possible methods of solving the problem, i.e., pure 
statistical and rule-based approaches; finally Section 5 sums up the 
previous discussions and points to possible future extensions.

A rtiH c ia l N e u r a l N e tw o rk s
Several researchers around 1940 suggested that a more brain-like 
machine should be created. A first step in this direction was taken when 
McCulloch and Pitts (1943) proposed a model of a neuron, which, just 
like the biological neuron, takes several inputs and produces one output. 
The changes in synapses are simulated by weight variables. Modification 
of the weights is handled by a learning rule. A weight has two features: 
the sign of the weight determines if the incoming impulse is excitatory or 
inhibitory and the absolute value of the weight determines to what degree 
notice should be taken to the incoming impulse. When the incoming 
values are above a certain level (the threshold) the neuron fires according 
to a firing rule. In the McCulloch & Pitts model the firing rule can be 
expressed by the following simple mathematical formula:

the neuron fires iff Zk xk Wk > 0
where xk is the value received from neuron k

wk is the weight associated with input from neuron k 
0  is the threshold

This model uses only a two-valued output indicating firing, or not. It is 
still the basis of many neural networks, but has been improved upon 
several times, in particular when Widrow and Hoff came up with a 
learning rule called the Widrow-Hoff rule or the delta rule (Widrow 
1962).
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It can be expressed as:
wk(t+l) = wk(t) + a  5k(t)xk(t)

where a  is a constant (gain term) typically 0 .01  < a  < 10 
wk(t) is the value of weight k at time t 
5k(t) is the error of neuron k at time t 
xk(t) is the incoming value from neuron k at time t.

It was shown by Rosenblatt (1962) that the delta rule causes the weights 
to converge. He also developed the perceptron, a neuron able to classify 
binary or continuous valued input into one of two classes; however, a 
serious blow against neural science came when Minsky and Paper! (1969) 
showed that a perceptron neural network consisting of only one layer is 
unable to handle nonlinear functions; to do so a hidden layer has to be 
included in the net. A hidden neuron receives input from other neurons 
and transmits output to other neurons. A hidden layer consists only of 
hidden neurons. In 1986 Rumelhart, Hinton, and Williams came up with a 
network that could handle hidden layers. The method is called 
backpropagation and will be further described below.
Another model was created by Kohonen (1984/88). It differs from the 
previous in that it organizes the input data by itself without the correct 
output pattern being presented, i.e., it uses unsupervised learning. A 
Kohonen net consists of a number of neurons organized in a two- 
dimensional plane called a map. The input pattern is given to all neurons 
at the same time. The neuron for which the Euclidean distance between 
the input-vector and the weight-vector is a minimum is selected as being 
the response of the given pattern.

T h e B a ck p ro p a g a tio n  A lg o r ith m
Backpropagation uses a two-phase learning cycle. During the first phase, 
the input pattern is propagated through the network. Some sort of 
distance, usually the Euclidean distance, is calculated between the actual 
output and the desired output of the net. This distance is the error of the 
net. The second phase starts with the error being propagated backwards 
through the net, adjusting the weights along its way. Then the next 
pattern can be processed. This cycle, called an epoch, continues until the 
net satisfactory has learnt all patterns, the weights are then frozen and 
need not be altered. The neurons used differ from those of McCulloch 
and Pitts in that real values are used as weights, thresholds, and outputs. 
The output of the neuron is given by:
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Om = 1 / (1 + exp{ai})
where ai = Zj (wij*xij) + Gj is the activation of the i:th neuron, 
and wij is the j:th weight of neuron i 

Xij is the j;th input to neuron i 
9i is the threshold of neuron i.

There are two weight adjustment rules:
for output neurons the error: 5pj = (Gpj - Opj) Opj (1 - Opj) 
for hidden neurons the error: 6pj = (Zk SpjWkj) Opj (1 - Opj)

2. T est S e t-u p s
A large number of backpropagation network architectures were tested. 
This section will describe how the net-input was encoded and the actual 
architectures of the different networks used in the experiments.

E n c o d in g  o f  N etw o rk  In p u t
In the text below we will need to use several character sets, e.g., 
Alphabet 1 and Alphabet2 respectively defining the Swedish and ASCII 
alphabets, sets for Swedish vowels and consonants, and some 
morphologically and phonologically motivated subsets of these. When 
defining the mappings of the network inputs, we will also need to discuss 
a particular type of vectors, namely binary vectors of different length 
with only one 1. These will be referred to as Binn where n is the number 
of digits in the vector. Strings of characters, lexemes, will be subindexed 
according to what alphabet the included characters belong to.
To represent the encoding of letters, we will introduce five functions 
which informally can be said to map the character sets above onto the 
binary vectors Binn and perform the following tasks: fi simply divides 
A lphabet 1 into vowels and consonants; f2 further subdivides the 
consonants by phonetic category, that is into plosives, fricatives, laterals, 
trills, and nasals; fs is like f2 , but the vowels A and E are singled out 
from the others, since they behave rather in a special way when inflection 
is performed; while f4 and fs encode the entire Swedish and ASCII 
alphabets, respectively.
For the encoding of grammatical categories we will introduce five other 
functions mapping from the lexemes to the binary vectors, thus: hi splits 
Lexeme 1 into nine categories: nouns, adjectives, verbs, pronouns.
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determiners, adverbs, prepositions, conjunctions, and infinitival markers; 
h2 adds two more categories, one for auxiliaries and one for sentence 
delimiters; I13 is like hi, but with special categories for auxiliaries, 
idiomatic expressions, and present and past participles. It also splits the 
conjunctions into subordinating and coordinating ones; h4 further 
subdivides the adjectives by comparative form (i.e., positive, 
comparative, and superlative) and the adverbs by type (normal, 
comparative, superlative, and comparison); finally, hs does for Lexeme2 
what hi does for Lexeme 1, but with extra categories for names, numbers, 
characters, and sentence delimiters.

N etw o rk  A r c h ite c tu r es
All backpropagation networks were three layer architectures consisting 
of an input layer, a hidden layer, and an output layer. Information was 
given in localized form. In order to examine the feasibility of the 
approach, the sizes of the networks were initially kept at moderate levels 
to increase only gradually. Two information sources were used: the 
internal structure of the lexeme and N-grams. An N-gram refers to the 
grammatical categories of N-1 neighbouring words, so we will use 1- 
gram to refer to the word itself, a 2 -gram (here) denotes the word itself 
and the word to the left, a 3-gram denotes a 2-gram and the word to the 
right, and so on. When combining the two information sources the 
vectors were simply appended. The resulting vector was then fed to the 
network.
All networks in this paper were trained and tested using the Teleman 
corpus (Teleman 1974). This text consists of almost 80000 tagged 
Swedish words gathered from a wide range of different genres. The 
training could be very time consuming, but fortunately for the most part 
the networks converged rapidly. Typically, only a few epochs were 
needed until a satisfactory performance was reached. The small number 
of epochs needed is very likely a result of the text used for training. Since 
it contains many duplicates, most input patterns were seen and trained 
several times during one epoch. The training continued as long as seemed 
reasonable or as long as the performance did not decrease when evaluated 
on previously unseen material.
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Table  1: Summary of the network setups for the experiments
Net Gram

(N)
Category-
function 6 5

Letter-functions 
4 3 2 1

Training
epochs examples

<10,5,3> 3 hi _ _ _ - _ _ 2000 5000
<26,5,3> 3 hi - - fl (1 f l fl 2000 5000
<42,20,3> 3 hi - - <2 >2 >2 f2 2000 5000
<44,20,3> 3 hi - u <2 >2 >2 I2 2000 5000
<52,20,3> 3 hi - u <3 >3 <3 <3 2000 5000
<73,20,3> 3 hi - 6 <3 <3 I3 f4 2000 5000
<136,20,3> 3 hi - fi k k k f4 2000 5000
<165,20,3> 3 hi u f4 k k k (4 2000 5000
<165,20,3> 3 hi h »4 k k k (4 2000 7500
<165,20,3> 3 hi ii »4 k k k k 1000 10000
<165,40,3> 3 hi (1 (4 k k k k 100 7500
<169,20,3> 3 h2 M (4 k k k k 100 10000
<204,40,3> 3 h3 '4 (4 k k k k 50 20000
<212,40,3> 3 h4 >4 (4 k k k k 100 20000
<282,80,13> 3 h5 - - fs *5 15 Is 50 30000
<295,80,13> 4 h5 - - k »5 fs fs 50 30000
<423,00,13> 4 hs l5 l5 fs «5 Is fs 150 30000

Table 1 describes each network in some detail. The number of neurons of 
a specific network is indicated by a triple <I,H,0> where I is the number 
of neurons in the input layer, H the same for the hidden layer, and O for 
the output layer. The other columns of the table define mapping 
functions, indicate the number of training epochs, etc. Thus the first net, 
for example, is called <18,5,3>, since it had 26 neurons in total. It used 
3-grams only, so its single source of information was that of the context. 
The grammatical category mapping used, h i, was very simple 
distinguishing only between nouns, adjectives, verbs, pronouns, 
determiners, adverbs, prepositions, conjunctions, and the infinitival 
marker. Note that no information at all was extracted from the unknown 
word. As shown in the table, it was trained for 2000 epochs on a text 
consisting of 5000 examples.
The other nets combined the two information sources available by also 
inspecting the letters of the unknown word. In order not to make the 
networks unnecessarily large the mapping between the actual letter and its 
representation was kept as simple as possible. At first letters mapped onto 
one of only three classes: vowels, consonants, or 0 , the latter indicating 
the lack of any input character in a specific position. This letter- 
classification was refined first by subdividing the consonants (plosives, 
fricatives, laterals, trills, and nasals) and later on by separating the letters 
A and E from the other vowels. Some nets (like <165,40,3>) were 
included in order to examine if the result would improve with a larger 
hidden layer, while other nets (as <169,20,3>) mapped the 3-grams 
differently, for example with the h2 function which separates the 
auxiliary verbs from the domain ones and also recognizes sentence 
delimiters, enabling the tagger to categorize the first and last words of a 
sentence.
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Figure 1: Peak performance of the nets on the simple task

3. R esu lts
The networks were tested using an unseen part of the Teleman corpus. 
The corpus consists of several different types of text. Thus the results 
should be as general as possible. Figure 1 shows the performance of the 
nets on the first classification task, part-of-speech categorization. The 
network with the worst result was not surprisingly the <18,5,3> one, 
which only used 3-grams. It reached a classification rate of about 73% 
which is not so bad considering that it extracts no information at all from 
the word that is to be categorized. When information was added about the 
internal structure of the unknown word the networks performed better. 
The more detailed this information was the better did the network 
perform. The amount of examples used for training was also a parameter 
that varied. Generally, the more examples that were available to the 
network the better it performed. The networks with the best results were 
nets <204,40,3> and <212,40,3>. They both reached a classification rate 
of 93.6%.
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423x60x13. Ik 
423x60x13, 10k 

262x60x13 
295x80x13

Network
Epoch

Performance

FIGURE 2: Performance of the nets on the complex task

The best result for a network which could classify more than nouns, 
adjectives, and verbs was 96.4% as shown in Figure 2. This was achieved 
by the <423,80,13> network, when trained using 30000 examples and 
tested (like all the other nets) on 1000 unseen examples. To evaluate the 
consistency of these figures, this net was also tested on an uncommonly 
large set of 10000 unseen examples. As could be expected when 
comparing the sizes of the training versus the test sets, this gave a slight 
decrease in performance, with a top result of 95.80%, as shown by the 
graph called “<423,80,13>, 10k”.
Table 2 shows an example of network outputs. The clause “(.) i södra 
Asien (har)” [“(.) in Southern Asia (have)”] was fed to the <295,80,13> 
net together with the tags (following the “>“ sign). As can be seen from 
the name “Asien”, it had a difficult time separating names from ordinary 
nouns.
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Table 2: Example of network output
Categories: noun adjective verb preposition adverb determiner
pronoun character conjunction number name sent. del. inf. mark
Output (right): 0.000000 0.000000 0.000000 0.999984 0.000000 0.000001
0.000014 0.001059 0.000121 0.000000 0.000009 0.000042 0.000000
Right answer. 0.000000 0.000000 0.000000 1.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Pattern: .>IP l>PR S6DRA>P0SU
Output (right): 0.000000 0.939394 0.000104 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000138 0.000002 0.000000
Right answer 0.000000 1.000000 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Pattern: l>PR SODRA>POSU ASIEN>PN
Output (wrong): 0.999468 0.000000 0.000000 0.000000 0.000000 0.3250230.000000 0.000031 0.000001 0.000000 0.000000 0.000000 0.000000
Right answer 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000
Pattern: SODRA>POSU ASIEN>PN HAR>HVPS

4. D isc u ss io n
In this section we will try to compare the results of the previous section 
with those that have been obtained using statistical and rule-based 
methods. First, however, we note that Veronis & Ide (1990) used an 
approach akin to a neural network in extracting lexical information from 
a machine readable dictionary. Their results were rather discouraging, in 
that they managed to identify the correct sense of a word (that already 
occurred in the dictionary) in only 71.74% of the cases. Nakamura et al 
(1990) investigated word category prediction using a neural network 
architecture called NETgram, a four layer architecture based on 
backpropagation. The grammatical categories of the preceding words 
were used to predict the category of the next word. They reported a 
word recognition rate of about 6 8 %.
Recently a rule-based approach has achieved some extraordinary results 
(Voutilainen et al 1992). They report a classification rate of 99.7%. The 
downfalls of their method (and all rule-based ones) are that it is very 
time consuming to develop the rules and the system produced is highly 
language dependent. The main objection to their method is however that 
it also demands a very large lexicon (again making the approach highly 
language specific). The lexicon they used covered about 95% of all 
lexemes appearing in the texts, making the comparison of performance 
figures somewhat unfair.
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Samuelsson (1994) suggests a method based purely on statistical evidence. 
With a success rate of 95.38%, it does not do as well as the method 
Voutilainen et al use, but on the other hand no external lexicon is needed 
and no language specifics are assumed. The best result was reported using 
a 4-gram, inspection of 6  letters, and syllable information. The test 
setting closely resembles that of the <423,80,13> net above, which 
reached a classification rate of 96.4%. For the same task the Xerox Parc 
system “Tagger” (Cutting et al 1992) based on a Hidden Markov Model 
(HMM) method also was able to classify 95% of the words correctly 
(Cutting 1994). Even though this comparison thus shows the neural net 
approach ahead by a margin, it indicates that the methods are virtually 
equivalent for the task at hand.

5. C o n c lu sio n s an d  F u tu re  W ork
We have described a series of experiments where different three-layered 
back-propagation network architectures were used for the task of 
recognizing unknown words for a natural language system. Two main 
tasks were performed: in the first the nets were to classify words by 
overall part-of-speech (noun, adjective or verb) only, while the second 
task involved a larger set of 13 possible output categories. The best 
results for the simple task were obtained by networks consisting of 204- 
212 input neurons and 40 hidden-layer neurons, reaching a classification 
rate of 93.6%. The best result for the more complex task was 96.4%, 
which was achieved by a net with 423 input neurons and 80 hidden-layer 
neurons. The results are overall rather promising and they are 
completely compatible with those achieved by purely statistical methods; 
however, they are still inferior to those reported by a rule-based 
approach, albeit on a somewhat different task.
A possible way to improve on the results could be to combine several 
networks, for example have we done some initial experiments using a 
self-organizing map of the Kohonen type. The idea was to use this map to 
transform the letters of the unknown word to the two dimensional map 
and then feed the coordinates of this map to a backpropagation network 
together with the grammatical categories of the surrounding words; 
however, this approach has not been very successful - yet. Early results 
indicate that this combination does not perform better than the 
backpropagation network which only used 3-gram. The map failed to 
capture the structure of the words. This approach is still being 
investigated though.
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