
Tagging Experiments Using Neural Networks
M a r t in E in e b o r g a n d B jo r n G a m b a c R l

S to c k h o lm

A b str a c t
The paper outlines a method for automatic part-of-speech tagging using artificial neural
networks. Several experiments have been carried out where the performance of different
network architectures have been compared to each other on two tasks: classification by
overall part-of-speech (noun, adjective or verb) and by a set of 13 possible output
categories. The best classification rates were 93.6% for the simple and 96.4% for the
complex task. These results are rather promising and the paper compares them to the
performance reported by other methods; a comparison that shows the neural network
completely compatible with pure statistical approaches.

1. In tro d u c tio n
Rayner et al (1988) experimented with using a formal grammar along
with example-sentences to deduce a lexicon. Unfortunately, the
exponential explosion that followed from ambiguities in the grammar
caused the system to be very slow. The project described in this paper
builds on the assumption that one way to attack this problem would be to
let a neural network suggest restrictions on the possible word-classes of
the unknown word derived from its word-ending and context.
Another motivation for our project is that within the language area
connectionist models have so far proved discouragingly unsuccessful
compared to other methods. Even though they have been tried out for
several applications, such as semantic clustering, preposition choice, etc.,
the only language area where artificial neural networks have been
successfully applied on a larger scale has been speech; however, all
currently leading speech recognition systems (the ones in the US DARPA
race) have discarded neural nets for Hidden Markov Models, a statistical
method. The current state of affairs should however hardly be taken to be
the permanent truth. The need for different machine learning methods
within the language area should be evident; in this paper we will single
out the topic of part-of-speech tagging for special attention, but the last

'The work reported here was funded by the Swedish Institute of Computer Science (Asea Brown Boveri,
Telefon AB LM Ericsson, Försvarets Materielverk, IBM Svenska AB, NLTEK, and Telia AB). We would
like to thank Lars Asker (Stockholm University), Ivan Bretan (IBM), Douglass Cutting (Xerox Parc),
Jussi Karlgren (SICS), Pat Langley (Siemens), and Christer Samuelsson (SICS) for helpful discussions
and suggestions.

71

Proceedings of NODALIDA 1993, pages 71-81

words for other areas such as disambiguation, document matching,
information retrieval, grammar and transfer-rule induction, etc., have
certainly not been said.
The experiments we have carried out have used different back-
propagation network architectures in order to assign part-of-speech tags
to unknown words. A brief background to artificial neural networks and
the back-propagation algorithm is given in the rest of this section. Section
2 then goes on to describe the different network architectures used in our
experiments. The networks were trained on both morphological and
(local) context information extracted from a tagged text corpus and then
evaluated on previously unseen data from the same corpus. The results of
the different experiments are given in Section 3. Section 4 compares these
results to other possible methods of solving the problem, i.e., pure
statistical and rule-based approaches; finally Section 5 sums up the
previous discussions and points to possible future extensions.

A rtiH c ia l N e u r a l N e tw o rk s
Several researchers around 1940 suggested that a more brain-like
machine should be created. A first step in this direction was taken when
McCulloch and Pitts (1943) proposed a model of a neuron, which, just
like the biological neuron, takes several inputs and produces one output.
The changes in synapses are simulated by weight variables. Modification
of the weights is handled by a learning rule. A weight has two features:
the sign of the weight determines if the incoming impulse is excitatory or
inhibitory and the absolute value of the weight determines to what degree
notice should be taken to the incoming impulse. When the incoming
values are above a certain level (the threshold) the neuron fires according
to a firing rule. In the McCulloch & Pitts model the firing rule can be
expressed by the following simple mathematical formula:

the neuron fires iff Zk xk Wk > 0
where xk is the value received from neuron k

wk is the weight associated with input from neuron k
0 is the threshold

This model uses only a two-valued output indicating firing, or not. It is
still the basis of many neural networks, but has been improved upon
several times, in particular when Widrow and Hoff came up with a
learning rule called the Widrow-Hoff rule or the delta rule (Widrow
1962).

72

It can be expressed as:
wk(t+l) = wk(t) + a 5k(t)xk(t)

where a is a constant (gain term) typically 0 .01 < a < 10
wk(t) is the value of weight k at time t
5k(t) is the error of neuron k at time t
xk(t) is the incoming value from neuron k at time t.

It was shown by Rosenblatt (1962) that the delta rule causes the weights
to converge. He also developed the perceptron, a neuron able to classify
binary or continuous valued input into one of two classes; however, a
serious blow against neural science came when Minsky and Paper! (1969)
showed that a perceptron neural network consisting of only one layer is
unable to handle nonlinear functions; to do so a hidden layer has to be
included in the net. A hidden neuron receives input from other neurons
and transmits output to other neurons. A hidden layer consists only of
hidden neurons. In 1986 Rumelhart, Hinton, and Williams came up with a
network that could handle hidden layers. The method is called
backpropagation and will be further described below.
Another model was created by Kohonen (1984/88). It differs from the
previous in that it organizes the input data by itself without the correct
output pattern being presented, i.e., it uses unsupervised learning. A
Kohonen net consists of a number of neurons organized in a two-
dimensional plane called a map. The input pattern is given to all neurons
at the same time. The neuron for which the Euclidean distance between
the input-vector and the weight-vector is a minimum is selected as being
the response of the given pattern.

T h e B a ck p ro p a g a tio n A lg o r ith m
Backpropagation uses a two-phase learning cycle. During the first phase,
the input pattern is propagated through the network. Some sort of
distance, usually the Euclidean distance, is calculated between the actual
output and the desired output of the net. This distance is the error of the
net. The second phase starts with the error being propagated backwards
through the net, adjusting the weights along its way. Then the next
pattern can be processed. This cycle, called an epoch, continues until the
net satisfactory has learnt all patterns, the weights are then frozen and
need not be altered. The neurons used differ from those of McCulloch
and Pitts in that real values are used as weights, thresholds, and outputs.
The output of the neuron is given by:

73

Om = 1 / (1 + exp{ai})
where ai = Zj (wij*xij) + Gj is the activation of the i:th neuron,
and wij is the j:th weight of neuron i

Xij is the j;th input to neuron i
9i is the threshold of neuron i.

There are two weight adjustment rules:
for output neurons the error: 5pj = (Gpj - Opj) Opj (1 - Opj)
for hidden neurons the error: 6pj = (Zk SpjWkj) Opj (1 - Opj)

2. T est S e t-u p s
A large number of backpropagation network architectures were tested.
This section will describe how the net-input was encoded and the actual
architectures of the different networks used in the experiments.

E n c o d in g o f N etw o rk In p u t
In the text below we will need to use several character sets, e.g.,
Alphabet 1 and Alphabet2 respectively defining the Swedish and ASCII
alphabets, sets for Swedish vowels and consonants, and some
morphologically and phonologically motivated subsets of these. When
defining the mappings of the network inputs, we will also need to discuss
a particular type of vectors, namely binary vectors of different length
with only one 1. These will be referred to as Binn where n is the number
of digits in the vector. Strings of characters, lexemes, will be subindexed
according to what alphabet the included characters belong to.
To represent the encoding of letters, we will introduce five functions
which informally can be said to map the character sets above onto the
binary vectors Binn and perform the following tasks: fi simply divides
A lphabet 1 into vowels and consonants; f2 further subdivides the
consonants by phonetic category, that is into plosives, fricatives, laterals,
trills, and nasals; fs is like f2 , but the vowels A and E are singled out
from the others, since they behave rather in a special way when inflection
is performed; while f4 and fs encode the entire Swedish and ASCII
alphabets, respectively.
For the encoding of grammatical categories we will introduce five other
functions mapping from the lexemes to the binary vectors, thus: hi splits
Lexeme 1 into nine categories: nouns, adjectives, verbs, pronouns.

74

determiners, adverbs, prepositions, conjunctions, and infinitival markers;
h2 adds two more categories, one for auxiliaries and one for sentence
delimiters; I13 is like hi, but with special categories for auxiliaries,
idiomatic expressions, and present and past participles. It also splits the
conjunctions into subordinating and coordinating ones; h4 further
subdivides the adjectives by comparative form (i.e., positive,
comparative, and superlative) and the adverbs by type (normal,
comparative, superlative, and comparison); finally, hs does for Lexeme2
what hi does for Lexeme 1, but with extra categories for names, numbers,
characters, and sentence delimiters.

N etw o rk A r c h ite c tu r es
All backpropagation networks were three layer architectures consisting
of an input layer, a hidden layer, and an output layer. Information was
given in localized form. In order to examine the feasibility of the
approach, the sizes of the networks were initially kept at moderate levels
to increase only gradually. Two information sources were used: the
internal structure of the lexeme and N-grams. An N-gram refers to the
grammatical categories of N-1 neighbouring words, so we will use 1-
gram to refer to the word itself, a 2 -gram (here) denotes the word itself
and the word to the left, a 3-gram denotes a 2-gram and the word to the
right, and so on. When combining the two information sources the
vectors were simply appended. The resulting vector was then fed to the
network.
All networks in this paper were trained and tested using the Teleman
corpus (Teleman 1974). This text consists of almost 80000 tagged
Swedish words gathered from a wide range of different genres. The
training could be very time consuming, but fortunately for the most part
the networks converged rapidly. Typically, only a few epochs were
needed until a satisfactory performance was reached. The small number
of epochs needed is very likely a result of the text used for training. Since
it contains many duplicates, most input patterns were seen and trained
several times during one epoch. The training continued as long as seemed
reasonable or as long as the performance did not decrease when evaluated
on previously unseen material.

75

Table 1: Summary of the network setups for the experiments
Net Gram

(N)
Category-
function 6 5

Letter-functions
4 3 2 1

Training
epochs examples

<10,5,3> 3 hi _ _ _ - _ _ 2000 5000
<26,5,3> 3 hi - - fl (1 f l fl 2000 5000
<42,20,3> 3 hi - - <2 >2 >2 f2 2000 5000
<44,20,3> 3 hi - u <2 >2 >2 I2 2000 5000
<52,20,3> 3 hi - u <3 >3 <3 <3 2000 5000
<73,20,3> 3 hi - 6 <3 <3 I3 f4 2000 5000
<136,20,3> 3 hi - fi k k k f4 2000 5000
<165,20,3> 3 hi u f4 k k k (4 2000 5000
<165,20,3> 3 hi h »4 k k k (4 2000 7500
<165,20,3> 3 hi ii »4 k k k k 1000 10000
<165,40,3> 3 hi (1 (4 k k k k 100 7500
<169,20,3> 3 h2 M (4 k k k k 100 10000
<204,40,3> 3 h3 '4 (4 k k k k 50 20000
<212,40,3> 3 h4 >4 (4 k k k k 100 20000
<282,80,13> 3 h5 - - fs *5 15 Is 50 30000
<295,80,13> 4 h5 - - k »5 fs fs 50 30000
<423,00,13> 4 hs l5 l5 fs «5 Is fs 150 30000

Table 1 describes each network in some detail. The number of neurons of
a specific network is indicated by a triple <I,H,0> where I is the number
of neurons in the input layer, H the same for the hidden layer, and O for
the output layer. The other columns of the table define mapping
functions, indicate the number of training epochs, etc. Thus the first net,
for example, is called <18,5,3>, since it had 26 neurons in total. It used
3-grams only, so its single source of information was that of the context.
The grammatical category mapping used, h i, was very simple
distinguishing only between nouns, adjectives, verbs, pronouns,
determiners, adverbs, prepositions, conjunctions, and the infinitival
marker. Note that no information at all was extracted from the unknown
word. As shown in the table, it was trained for 2000 epochs on a text
consisting of 5000 examples.
The other nets combined the two information sources available by also
inspecting the letters of the unknown word. In order not to make the
networks unnecessarily large the mapping between the actual letter and its
representation was kept as simple as possible. At first letters mapped onto
one of only three classes: vowels, consonants, or 0 , the latter indicating
the lack of any input character in a specific position. This letter-
classification was refined first by subdividing the consonants (plosives,
fricatives, laterals, trills, and nasals) and later on by separating the letters
A and E from the other vowels. Some nets (like <165,40,3>) were
included in order to examine if the result would improve with a larger
hidden layer, while other nets (as <169,20,3>) mapped the 3-grams
differently, for example with the h2 function which separates the
auxiliary verbs from the domain ones and also recognizes sentence
delimiters, enabling the tagger to categorize the first and last words of a
sentence.

76

0)&

Figure 1: Peak performance of the nets on the simple task

3. R esu lts
The networks were tested using an unseen part of the Teleman corpus.
The corpus consists of several different types of text. Thus the results
should be as general as possible. Figure 1 shows the performance of the
nets on the first classification task, part-of-speech categorization. The
network with the worst result was not surprisingly the <18,5,3> one,
which only used 3-grams. It reached a classification rate of about 73%
which is not so bad considering that it extracts no information at all from
the word that is to be categorized. When information was added about the
internal structure of the unknown word the networks performed better.
The more detailed this information was the better did the network
perform. The amount of examples used for training was also a parameter
that varied. Generally, the more examples that were available to the
network the better it performed. The networks with the best results were
nets <204,40,3> and <212,40,3>. They both reached a classification rate
of 93.6%.

77

423x60x13. Ik
423x60x13, 10k

262x60x13
295x80x13

Network
Epoch

Performance

FIGURE 2: Performance of the nets on the complex task

The best result for a network which could classify more than nouns,
adjectives, and verbs was 96.4% as shown in Figure 2. This was achieved
by the <423,80,13> network, when trained using 30000 examples and
tested (like all the other nets) on 1000 unseen examples. To evaluate the
consistency of these figures, this net was also tested on an uncommonly
large set of 10000 unseen examples. As could be expected when
comparing the sizes of the training versus the test sets, this gave a slight
decrease in performance, with a top result of 95.80%, as shown by the
graph called “<423,80,13>, 10k”.
Table 2 shows an example of network outputs. The clause “(.) i södra
Asien (har)” [“(.) in Southern Asia (have)”] was fed to the <295,80,13>
net together with the tags (following the “>“ sign). As can be seen from
the name “Asien”, it had a difficult time separating names from ordinary
nouns.

78

Table 2: Example of network output
Categories: noun adjective verb preposition adverb determiner
pronoun character conjunction number name sent. del. inf. mark
Output (right): 0.000000 0.000000 0.000000 0.999984 0.000000 0.000001
0.000014 0.001059 0.000121 0.000000 0.000009 0.000042 0.000000
Right answer. 0.000000 0.000000 0.000000 1.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Pattern: .>IP l>PR S6DRA>P0SU
Output (right): 0.000000 0.939394 0.000104 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000138 0.000002 0.000000
Right answer 0.000000 1.000000 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Pattern: l>PR SODRA>POSU ASIEN>PN
Output (wrong): 0.999468 0.000000 0.000000 0.000000 0.000000 0.3250230.000000 0.000031 0.000001 0.000000 0.000000 0.000000 0.000000
Right answer 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000
Pattern: SODRA>POSU ASIEN>PN HAR>HVPS

4. D isc u ss io n
In this section we will try to compare the results of the previous section
with those that have been obtained using statistical and rule-based
methods. First, however, we note that Veronis & Ide (1990) used an
approach akin to a neural network in extracting lexical information from
a machine readable dictionary. Their results were rather discouraging, in
that they managed to identify the correct sense of a word (that already
occurred in the dictionary) in only 71.74% of the cases. Nakamura et al
(1990) investigated word category prediction using a neural network
architecture called NETgram, a four layer architecture based on
backpropagation. The grammatical categories of the preceding words
were used to predict the category of the next word. They reported a
word recognition rate of about 6 8 %.
Recently a rule-based approach has achieved some extraordinary results
(Voutilainen et al 1992). They report a classification rate of 99.7%. The
downfalls of their method (and all rule-based ones) are that it is very
time consuming to develop the rules and the system produced is highly
language dependent. The main objection to their method is however that
it also demands a very large lexicon (again making the approach highly
language specific). The lexicon they used covered about 95% of all
lexemes appearing in the texts, making the comparison of performance
figures somewhat unfair.

79

Samuelsson (1994) suggests a method based purely on statistical evidence.
With a success rate of 95.38%, it does not do as well as the method
Voutilainen et al use, but on the other hand no external lexicon is needed
and no language specifics are assumed. The best result was reported using
a 4-gram, inspection of 6 letters, and syllable information. The test
setting closely resembles that of the <423,80,13> net above, which
reached a classification rate of 96.4%. For the same task the Xerox Parc
system “Tagger” (Cutting et al 1992) based on a Hidden Markov Model
(HMM) method also was able to classify 95% of the words correctly
(Cutting 1994). Even though this comparison thus shows the neural net
approach ahead by a margin, it indicates that the methods are virtually
equivalent for the task at hand.

5. C o n c lu sio n s an d F u tu re W ork
We have described a series of experiments where different three-layered
back-propagation network architectures were used for the task of
recognizing unknown words for a natural language system. Two main
tasks were performed: in the first the nets were to classify words by
overall part-of-speech (noun, adjective or verb) only, while the second
task involved a larger set of 13 possible output categories. The best
results for the simple task were obtained by networks consisting of 204-
212 input neurons and 40 hidden-layer neurons, reaching a classification
rate of 93.6%. The best result for the more complex task was 96.4%,
which was achieved by a net with 423 input neurons and 80 hidden-layer
neurons. The results are overall rather promising and they are
completely compatible with those achieved by purely statistical methods;
however, they are still inferior to those reported by a rule-based
approach, albeit on a somewhat different task.
A possible way to improve on the results could be to combine several
networks, for example have we done some initial experiments using a
self-organizing map of the Kohonen type. The idea was to use this map to
transform the letters of the unknown word to the two dimensional map
and then feed the coordinates of this map to a backpropagation network
together with the grammatical categories of the surrounding words;
however, this approach has not been very successful - yet. Early results
indicate that this combination does not perform better than the
backpropagation network which only used 3-gram. The map failed to
capture the structure of the words. This approach is still being
investigated though.

80

R e fe r e n c e s
Cutting, D. 1994. Porting a Stochastic Part-of-Speech Tagger to Swedish. In Eklund

(ed), Nodalida'93 - Proceedings o f '9:e Nordiska Datalingvistikdagarna', Stockholm 3-5 June 1993. Stockholm.
Cutting, D., J. Kupiec, J. Pedersen and P. Shibun. 1992. A Practical Part-of-Speech

Tagger pp 133-140, Proceedings o f the 3’’’̂ Conference on Applied Natural Language Processing, Trento, Italy.
Eklund, Robert. 1994. (ed) Nodalida'93 - Proceedings o f '9:e Nordiska Datalingvistik-

dagama’, Stockholm 3-5 June 1993. Stockholm.
Ide, N.M. and J. Veronis. 1990. Very Large Neural Networks Word Sense

Disambiguation, pp 366-368, Proceedings o f the 9'^ European Conference on
Artificial Intelligence, Stockholm, Sweden (also as pp 389-394, Proc. 13‘ ̂
International Conference on Computational Linguistics, Helsinki, Finland, Vol. 2).

Kohonen, T. 1984/1988. Self-Organization and Associative Memory. Springer-Verlag, Heidelberg, Germany.
McCulloch, W. S. and W. H. Pitts. 1943. A Logical Calculus o f the Ideas Imminent in

Nervous Activity, pp 115-133,BULLETIN OF MATHEMATICALBIOPHYSICS, Vol. 5.

Minsky, M. and S. Papert. 1969. Perceptrons: an Introduction to Computational
Geometry. MIT Press, Massachusetts.

Nakamura, M., K. Maruyama, T. Kawabata and K. Shikano. 1990. Neural Network
Approach to Word Category Prediction for English Texts, pp 213-218, Proceedings
of the 13‘̂ International Conference on Computational Linguistics, Helsinki, Finland,
Volume 3.

Rayner, M., Å. Hugosson and G. Hagert. 1988. Using a Logic Grammar to Learn a
Lexicon, pp 524-529, Proceedings o f the 12'^ International Conference on
Computational Linguistics, Budapest, Hungary. Also available as SICS Research
Report - R8800I, Stockholm, Sweden.

Rosenblatt, F. 1962. Principles o f Neurodynamics: Perceptrons and the Theory o f Brain
Mechanism. Spartan Books, New York.

Rumelhart, D.E., G.E. Hinton and R.J. Williams. 1986. Learning internal
representations by error propagation. PARALLEL DISTRIBUTED PROCESSING, Vols. 1
and 2, The MIT Press, Cambridge, Massachusetts.

Samuelsson, C. 1994. Morphological Tagging Based Entirely on Bayesian Inference. In
Eklund (ed): Nodalida'93 - Proceedings o f '9:e Nordiska Datalingvistikdagarna',
Stockholm 3-5 June 1993. Stockholm.

Teleman, U. 1974. Manual för grammatisk beskrivning av talad och skriven svenska (in
Swedish). Studentlitteratur, Lund, Sweden.

Widrow, B. 1962. Generalization and information storage in networks o f AD ALINE
neurons. SELF-ORGANIZING SYSTEMS, Spartan Books, New York.

Voutilainen, A., J. Heikkila and A. Anttila. 1992. Constraint Grammar o f English.
Publication #21, Department of General Linguistics, University of Helsinki, Helsinki,
Finland.

81

