
Inherently Reversible Grammars,
Logic Programming
and Computability

Marc Dymetman
CCRIT, Communications Canada

1575 boulevard Chomedey
Laval (QuEbec) HTV 2X2, Canada

dymetman@ccrit.doc.ca

A B S T R A C T

This paper a t tempts to clarify two distinct notions
of "reversibility": (i) Uniformity of implementa-
tion of parsing and generation, and (it) reversibil-
ity as an inherent (or intrinsic) property of gram-
mars. On the one hand, we explain why gram-
mars specified as definite programs (or the vari-
ous related "unification grammars") lead to uni-
formity of implementation. On the other hand, we
define different intrinsic reversibility properties for
such g rammars - - the most important being finite
reversibility, which says that both parsing and gen-
eration are finitely enumerable (see t e x t) - - and give
examples and counter-examples of grammars which
possess or do not possess these intrinsic properties.
We also show that , under a certain "moderation"
condition on linguistic description, finite enumer-
ability of parsing is equivalent to finite enumerabil-
ity of generation.

1 I n t r o d u c t i o n

From the linguist's point of view, a grammar is a
formal device which defines a recursively enumer-
able set of well-formed linguistic structures, each
having, among other aspects, a phonological con-
tent (or, when dealing with writ ten text, a string
content) and a semantic content. Such a device is
completely neutral as regards its uses for parsing
(recovering semantic content from string content)
or generation (recovering string content from se-
mantic content).

From the computat ional linguist's point of view,
on the other hand, the problem is how to imple-
ment such a grammar both as a parsing program
and as a generation program, in such a way that
these programs exactly reflect the content of the
grammar. This we will call the reversibility prob-
lem.

Let us assume, for specificity, tha t the grammar
has been presented as a definite program (a Prolog
program)J Then the reversibility problem has a
simple solution: use a complete interpreter for defi-
nite programs--for instance a top-down interpreter
having a breadth-first search procedure2--and di-
rectly use the grammar as the program both for
parsing and for generation. In the parsing mode,
for any given string x, the program will enumerate
all semantics Yl,Y2, . . . assigned to it by the gram-
mar, and similarly, in the generation mode, for any
given semantics y, the program will enumerate all
semantics xl , x 2 , . . , assigned to it by the grammar.
This is a striking property of definite programs:
they are reversible in the sense that they naturally
lead to uniformity of implementation of the parsing
and generation modes (see §4).

So the reversibility problem is solved, and we can
spend the next few years skimming through Fodor's
(not Jerry 's) guides in travel bookstores?

Not quite. First, the s tandard depth-first inter-
preter for definite programs is an incomplete one,
and this problem must be circumvented in some
way. Second, and more crucially, even when us-
ing a complete interpreter, parsing (and similarly
generation) does not in general terminate: the pro-
gram may well enumerate Yl,Y2, . . . ad infinitum.
This is even true if, in fact, there are only a finite
number of solutions Yl ,Y2, . . . , Yk, or even, in the
extreme case, no solution at all: the program may
not be "aware" that it has at some point already
exhausted all the solutions that it will eventually

1We could have made s o m e o t h e r choice, for instance
s o m e unification grammar formalism. The advantage of us-
ing definite programs in t h e p r e s e n t discussion is that they
embody the whole unification paradigm in its purest form,
that unification of terms is conceptually simpler (and less
p r o n e to misunderstandings) than unification of DAGs, and
that the denotational and operational semantics of definite
programs have been thoroughly studied.

2See e.g. [7, p. 59] and section §2.1.3. See also [19] in this
volume for a related approach.

20

find, and go on eternally looking for new solutions.

The source of this problem can be more or less
severe: I t may simply be due to the grarnmar 's
implementat ion as,a certain program, or it may be
intrinsic to the grammar .

If it is not intrinsic to the grammar , one may
a t t empt some kind of p rogram transformation on
the g r a m m a r - - f o r qnstance a local t ransformation
as goal reordering in clause bodies [4, 16], or a
global t ransformation as left-recursion elimination
[5, 3] 3 - - i n order 'to get a parsing program which
displays a finite behavior. 4 I f such a t ransforma-
tion is possible in principle, we say that , intrinsi-
cally, the g rammar has a finitely enumerable pars-
ing problem. 5 One.example of a class of g rammars
which respect this crucial condition is provided by
offline-parsable DCGs, once compiled as definite
programs (see [9]). 6

We have limited the former discussion to the case
of parsing. The case of generation is t reated in a
parallel fashion, and one can similarly define the
conditions in which a g r am m ar is said to have an in-
trinsically finitely enumerable generation problem.
When a g rammar is such tha t it has a finitely enu-
merable parsing problem and a finitely enumerable
generation problem, we call the g rammar inherently
finitely reversible.

When this is the; case, it is by definition possible
to find a program Pp for parsing and a (not nec-
essarily identical) program Pa for generation such
that , for any string z, Pp enumerates all associated
semantics y and terminates, and, for any seman-
tics y, Pg enumerates all associated strings z and
terminates.

Inherent finite reversibility is the concept which,
in my opinion, permit us to capture formally the
intuitive notion tha t a certain g rammar is, or is
not, "reversible".

3Or more generally, any t r ans fo rmat ion exploi t ing the-
orerns provable of the: g rammar . Ano the r ins tance of this
technique is provided by the addi t ion of conservative guides
in [5], which "s t reng then" the g r a m m a r on the basis of prop-
ert ies inferable f rom " ' i ts form.

4 Anothe r popula r approach is to use a specia l -purpose
in terpre ter , exploiting[proper t ies of the g r a m m a r known a
priori. [18] and [14] use this approach in the case of gener-
a t ion (see below). :

5The descr ip t ion is simplified; see §3 for the exact
definition.

°See also [17] for a discussion of oifttine-parsability in the
context of generat ion.

2 D e f i n i t e p r o g r a m s a n d

c o m p u t a t i o n

2.1 Denotat ional and operational se-
mantics of a definite program;
complete and incomplete inter-
preters

A definite p rogram P is a finite set of clauses of the
form (non-unit clauses):

p(T1, . . . , T,)

px(Tlx , . . . ,Tin,) '" "pro(Tin1,... ,Tmn.)

or of the form (unit clauses):

p(Tx, . . . , Tn)

where the the P,Pi are predicate symbols and the
Ti, T/j are terms over a certain Herbrand universe
of ground terms H .

We will suppose that , among the predicates p
defined by P , one, r , is privileged and plays the
role of the "main predicate" in the program. We
will assume tha t r is of ari ty one. 7

2 . 1 . 1 D e n o t a t i o n a l s e m a n t i c s

The denotational, or declarative, semantics of pro-
g ram P can be defined as the least fixed point of a
certain opera tor on Herbrand interpretat ions which
we will not describe here (see [7]). Informally, the
denotat ions of the predicate symbols p are defined
as n-ary relations p(zx, . . . , Xn) over H, built as the
limit of a bo t tom-up process which s tar ts from the
unit clauses and uses the non-unit clauses to add
new instances to each relation.

In particular, this process defines the unary rela-
tion r(x) on H, which we shall call the denotational
semantics of the main predicate r relative to pro-
gram P.

Let T be a te rm over H; We define the special-
ization of r(X) on T as the relation rT(x) on H
defined by:

def
rT(~) =-- r(~) ^ x E Z

where ff is the relation of subsumption. In case the
te rm T is a variable X , we say tha t X is the trivial
specialization, and we note tha t the relation r x (z)
is identical to the relation r (z) .

7This a s sumpt ion pe rmi t s to simplify tile exposi t ion, bu t
is no t o therwise necessary.

2 1

2.1.2 O p e r a t i o n a l s e m a n t i c s

While the denotat ional semantics of P is an in-
trinsic proper ty of P, its operat ional semantics is
defined relative to some interpreter.

For our purposes, we will informally define an
interpreter as a computat ional mechanism:

i n tpr (P, r (T))

which is input a definite p rogram P, as well as a
query ? r (T) - - w h e r e r is P ' s main predicate and
T a t e rm over H - - a n d which outputs a f ini te or
infinite "list of answers":

T 1 , T 2 , . . . , T k

The Tk's are terms over H , ground or not, whose
ground instances provide the "solutions" to query
? r (T) . I f the list of answers is infinite, the inter-
preter will not stop; I f it is finite the interpreter
may or may not stop: if it does, we will say tha t
the interpreter t e rmina tes on query ? r (T) .

Consider now the relation r~ on H defined by:

r~(x) def
_= x E T 1 V z ~ T 2 V . . . V x E T k V . . .

We say tha t r~r is the operational semant ics of the
main predicate r of P , for specialization T , relative
to interpreter in tpr .

Keeping the same notat ions as above, consider
now the denotat ional semantics r (x) of r relative
to P, and consider its specialization rT(x).

In terpreter i n tp r is said to be sound iff one has,
for any P, r , T:

w e H r (x) rr(x);

and to be complete iff:

Vx • H r r (x) ~ r~(x) .

Soundness is a minimal requirement for an in-
terpreter , and we will always assume it, but com-
pleteness is a requirement which is not always met
in practice.

2 .1.3 C o m p l e t e a n d i n c o m p l e t e i n t e r -
p r e t e r s

The "s tandard" interpreter for definite programs
uses a top-down, depth-first search algorithm. It
is sound bu t not complete. I ts non-completeness is
due to the fact tha t it is depth-first: if its search-
tree contains infinite branches, the interpreter will
be "caught" in the first one and will never explore

the b r anches - -maybe leading to success - - to the
right of this branch in the search-tree [7, pp. 59-60].

By contrast, a top-down, breadth-first inter-
preter, i.e. one which explores nondeterminist ic
choices (between the different clauses compet ing for
resolution of the same atomic goal) in parallel s is
complete [7, pp. 59].

The nffive bo t tom-up interpreter , which in
essence directly calculates the denotat ional seman-
tics of P , and filters a posteriori the semantics r (x)
through the constraint tha t the solutions unify with
T, is also a complete algorithm.

2.2 C o m p u t a t i o n a l b e h a v i o r of a
de f in i t e p r o g r a m re la t ive to an
interpreter

We now consider a program P, having r as main
predicate, the denotat ion of r relative to P being
the relation r (x) on H. We also consider a special-
ization T, i.e. a t e rm on H .

We will compare the denotat ional content of P
to its computat ional behavior, and describe three
possibilities: (i) P enumera tes r on T , (it) P dis-
covers r on T , and (iii) P f ini te ly enumera tes r on
T. The interpreter is supposed to be fixed before-
hand.

We say that:

• P enumera tes r on specialization T i f f :

Vx e H r ~ (x) ~ rT(x) ,

in other words, iff its list of answers:

T1,T~,...Tk,...

exactly "covers" the denotat ional semantics
r T .9

• P discovers r on specialization T i f f :

1. P enumerates r on T;

2. If r T is the uniformly false relation on H,
then P terminates on T. l°

• P f ini tely enumera tes r on specialization Ti f f :

1. P enumerates r on T;

s Or, alternatively, uses a .fair search rule, i.e. one which
"shares its attention" among all paths in the search-tree.

9This will always he the case if the interpreter is sound
and complete , as seen in §2.1.2.

10 Therefore, when rT is tmifornaly false, the list of answers
is empty, and the program is "aware" of this fact (i.e. it
terminates) .

22

I

2. P terminates on T J 1

We simply say tha t P enumerates (discovers,
finitely enumerates) r iff P enumerates (discovers,
finitely enumerates) r on the trivial specialization
X.

We have the obvious entailments:

P finitely enumerates r on T ~ P discovers (1)
r on T ~ P enumerates r on T.

I t is often the case that one is interested in the
computat ional properties of a given definite pro-
g ram relative to a certain class of specializations.
For instance, when using a g r am m ar - -g i ven as a
definite p rog ram- - fo r parsing, one will consider all
queries where some' of the variables are ground (the
string to parse) and others (the semantic form) are
not, and one will want to consider the computa-
tional propert ies Of the program relative to this
class of specializations. When using the definite
program for generation, one will be interested in
another class of specializations, and will want to
consider the computat ional properties of the pro-
g ram relative to that class of specializations.

Let S = {T} be a set of (not necessarily ground)
terms on H, inde£ed by a finite or infinite set I .
We call S a class of specializations. We say that:

• P enumerates r on S iff, for all T E S, P
enumerates r on T;

• P discovers r On S iff, for all T E S, P discov-
ers r on T;

• P finitely enumerates r on S iff, for all T E S,
P finitely enumerates r on T.

The mutual entailments between these proper-
ties are similar to the ones given in (1).

2 . 3 I n t r i n s i c : c o m p u t a t i o n a l p r o p e r -
t i e s o f a defini te p rog ram

Let S be a class of specializations, and let r (z)
be an arbi t rary unary relation on H . We suppose
here tha t programs are evaluated with respect to
a sound and compiete interpreter, which has been
fixed once and for/all, and we say that:

• r is enumerable on S iff there exists a definite
program P which enumerates r on S.

• r is discoverab!e on S iff there exists a definite
program P which discovers r on S.

llXn part icular , the relat ion r T is, loosely speaking,
"finitely representable as a union of t e rms T1, T 2 , . . . Tk" and
t h e p r o g r a m is "aware", at a certain point , tha t it has e x -
h a u s t e d the possible answers.

• r is finitely enumerable on Sq iff there exists a
definite p rogram P which finitely enumerates
t o n S.

These three notions, taken together, const i tute a
"computability hierarchy" where enumerabil i ty is
the weakest condition, discoverability is an inter-
mediary condition, and finite enumerabil i ty is the
strongest condition. These computabi l i ty condi-
tions can be described more intuitively in the fol-
lowing way: 12

• r is enumerable on S if there exists a program
P such that , for any T E S, P is able, given
infinite time, to find terms T1, T2, • • • such that:

Vz e H r (z) ^ z E T

z E T l V z E T 2 V - . .

• r is discoverable on S if there exists a program
P which is fur thermore able to decide in finite
time, for any T E S, if there actually exists an
z such that:

r(x) ^ z E T

• r is finitely enumerable on S if there exists a
program P which is fur thermore able to find in
finite time, for any T E S, terms T i , T 2 , ' . . ,Tk
such that:

VxE H r(z) A x E T
x E T~ V x E T2 . . . v x E Tk

Let {X} be the set having for only element the
trivial specialization X; {X} is called the trivial
class of specializations. We will simply say tha t r
is ennmerable (resp. discoverable, finitely enumer-
able) iff r is enumerable (resp. discoverable, finitely
enumerable) on the trivial class {X}.

Let ~ = H be the set of all ground terms of H .
is called the class of ground specializations. The fol-
lowing proper t ies - -which we will not prove h e r e - -
establish links between the notions tha t we have
just defined and the classica} notions of recursively
enumerable relations and recursive relations:

r is a recursively enumerable relation on H
iff r is enumerable on the trivial class of
specializations { X } ; i f thiS is the case, then (2)
for any class of specializations S, r is enu-
merable on S .

12Note tha t these definitions critically depend on the rel-
ative scopes of quantifiers 3 P VT E S . . . : it is essenti~d
tha t p rog ram P be the same for all specializations T in S .

23

r is a recursive relation on H iff r is discov-
erable on the class of ground specializations
G iff r is finitely enumerable on the class of
ground specializations G.

(3)

3 G r a m m a r s a n d t h e i r c o m -

p u t a t i o n a l u s e s

Let X # Y denote, in infix notation, the term
(X , Y) . In the context of this paper, we take
a grammar to be a definite program G having as
its main predicate the unary predicate r, and we
will assume that the clauses defining r are of the
form:

r(X#Y) . . .

X will be called the "p-parameter" , Y the "g-
parameter". Generally, the p-parameter will rep-
resent a character string, and the g-parameter a
semantic form. 13

3 . 1 S i x c o m p u t a t i o n a l p r o b l e m s

A grammar can be used either to enumerate well-
formed structures or to check whether certain fully
instantiated values of the parameters can be ac-
cepted. We distinguish six computational prob-
lems (grouped into four types) which can be solved
with a grammar: p-enumeration, p-acceptation,
g-enumeration, g-acceptation, bi-enumeration, bi-
acceptation. These problems are defined, together
with comments on their computational proper-
ties, using the terminology of §2.3. This per-
mits us to characterize the different positions a
given grammar can occupy on the "computabili ty
hierarchy" ---enumerability/discover ability/finite
enumerabil i ty--relat ively to each of these prob-
lems.

3.1.1 p - e n u m e r a t l o n a n d p - a c c e p t a t l o n

The p-enumeration problem or parsing problem is
the problem of enumerating, for any fixed ground
term x, all ground terms y such that r(x#y) . The
p-acceptation problem or decision problem for pars-
ing is the problem of checking, for any fixed ground
term z, whether there exists a ground term y such
that r (z # y) is true.

The same specialization class is associated with
both these problems, namely the class ~C'P =
{ z#Y}~eH consisting in all the terms ~ # Y where

13We thus take r to be a unary relat ion which "encodes"
a binary relation. This is unessential, bu t permits us to use
the concepts of the previous section, developed for unary re-
lations, wi thout having to generalize them to n-ary relations.

is any ground term, and Y is a certain variable
(whose name is indifferent).

Let's consider in turn, with respect to G~P, the
different positions the g rammar - -o r equivalently,
its denotational semantics r - - c a n occupy on the
computational hierarchy, from strongest to weak-
est:

F i n i t e e n u m e r a b i l i t y When r is finitely enu-
merable on G7 ~, it is in theory possible to find
a program P such that , for any given (ground)
value x of the p-parameter (the string), the pro-
gram enumerates all the solutions to the parsing
problem and terminates. These solutions are given
implicitly as a finite list of answers TY1, . . . , TYk:
the TYi's are terms whose ground instances y are
the looked-for values of the g-parameter (the se-
mantics associated with string z by the grammar) .
We also say that , with the grammar at hand, p-
enumeration is finitely enumerable, or simply, that
parsing is finitely enumerable. This is an inher-
ent property of the grammar, and, ill practice, this
property does not necessarily entail that finding a
program P to exploit will be obvious. 14 For in-
stance, offiine-parsable grammars [9] can be shown
to possess a finitely enumerable parsing problem,
but algorithms which are able to make use of this
property are by no means trivial [9, 13, 3]. 15

D i s c o v e r a b i l i t y If r is not finitely enumerable
on GP, it may still be discoverable on G79. By
definition, this means that it is possible to find a
program P such that , for any given (ground) value
z of the p-parameter, if there is no value y of the
g-parameter corresponding to z, then the program
will "recognize" this fact in finite time and termi-
nate with an empty list of answers; if, on the other
hand, there are solutions y corresponding to x, then
the program will enumerate them, but maybe not
terminate. If this property holds, we also say that
with the grammar at hand, p-enumeration is dis-
coverable, or, simply, parsing is discoverable. One
can easily prove (although we will not do it here)
tha t this property is equivalent to the decidability
(in the classical sense) of the p-acceptation prob-
lem. In other words:

14See footnote 177.
15These papers do not use the concept (or, a for t ior i , the

terminology) "finite enumerabil l ty of parsing", which, to my
knowledge, appears here for the first t ime (see however [6],
for the related not ion of "Universal Parsing Problem").

24

!

p-enumeration is discoverable if and only
if p-acceptation is decidable. 16

E n u m e r a b i l l t y By the definition of a gram-
mar as being a recursively enumerable mechanism,
and by property (2), r is enumerable on any spe-
cialization class, and in particular on G'P.

3.1.2 g - e n u m e r a t i o n a n d g - a c c e p t a t i o n

The g-enumeration 'problem or generation problem
is the problem of enu~ merating, for any fixed ground
term y, all ground terms x such that r(x#y). The
g-acceptation problem or decision problem for gen-
eration is the problem of checking, for any fixed
ground term y, whether there exists a ground term
x such that r(x#y)its true.

The specialization class is associated with both
these problems is the class G~ = {X#Y}ueH con-
sisting in all the terms X # y where y is any ground
term, and X is a certain variable (whose name is
indifferent).

The situation is e.xactly symmetrical to the case
of p-enumeration and p-acceptation, and we can
define, in the same way, the notions: "generation
is finitely enumerabie" and "generation is discover-
able" (which is equivalent to "g-acceptation is de-
cidable').

3.1.3 b i - e n u m e r a t i o n

The hi-enumeration,problem is the problem of enu-
merating all ground i terms x, y such that r (x # y) .

The specialization class associated with this
problem is the class' 7rRZP = { X # Y } which con-
tains the single term X # Y .

For non-degenerate grammars, it is not the case
that r is finitely enumerable on T R I P , for this
would entail in particular that any string recog-
nized by the grarnrnar is subsumed under one of
the terms in a fixed finite set of terms T 1 , . . . , Tk.
This is a slightly weaker property than saying that
there are finitely many strings recognized by the
grammar, but is stil! a very unlikely property for a
grammar.

On the other hand, by definition, r is enumerable
on TRZP. It can be shown easily that it is also
discoverable o n 'TRT- 'P . 17

16An i m m e d i a t e cons,~luenee of th is p rope r ty (l inking the
p - e n u m e r a t i o n problem, wi th t he p -accep ta t i on p rob lem) is
the fact t h a t a g r a m m m r which is f ini tely e n u m e r a b l e for
pa r s ing ha s a dec idable p - accep t a t i on p rob lem. T h e con-
verse is clearly false (see §6 for a coun te r - example) .

l r Th i s is b e c a u s e : (i) In case the g r a m m a r gener-
a tes nothing, there is a t r ivial p r o g r a m which, on query

3.1.4 b i - a c c e p t a t i o n

The bi-aceeptation problem is the problem of check-
ing, for any fixed ground terms x and y, whether
r (z#y) is t rue.

The specialization class associated with this
problem is the set ~ = {x#Y}~,v~n of ground spe-
cializations.

It can be shown that r is finitely enumerable on
G iff it is discoverable on ~ iff the relation r on H
is recursive in the classical sense. When this is the
case, one says that bi-acceptation is decidable.

Again, by property (2), r is enumerable on any
specialization class, and in particular on G.

REMARK. Suppose that parsing is finitely enu-
merable, that is, r is finitely enumerable on ~P .
This obviously implies tha t r is also finitely enu-
merable on ~. Therefore, one has:

parsing is finitely enumerable ::~ bi-
acceptation is decidable;

and, by the same reasoning:

generation is finitely enumerable =V bi-
acceptation is decidable.

On the other hand, the weaker property that
p-acceptation is decidable (or similarly, tha t g-
acceptation is decidable) does not seem to entail
that bi-acceptation is decidable.

4 Definite programs, unifor-
mity of i m p l e m e n t a t i o n ,
and reversibility

It is sometimes stated that various grammatical
formalisms, based on a variant or another of uni-
fication, are "reversible". It should more properly
be said that they are "well-adapted" to reversible
grammar implementations. The paradigmatic case
of a grammar given as a definite program G makes
this especially clear.

We know, from the discussion of §3.1.1 and
§3.1.2, that we always have: (i) r is enumerable

?r(X#Y) , p roduces a n e m p t y l is t of answers a n d te rmi-
n a t e s a n d (it) if th is is no t t he case, t h e n the g r a m m a r
i tself m a y serve as an e n u m e r a t i n g p r o g r a m (p e r h a p s a
n o n - t e r m i n a t i n g one) . Note t h a t th i s does not enta i l t h a t
by looking a t t he g r a m m a r , one is ac tua l ly a b l e - - e v e n in
pr inciple-- - to decide which of t hese two s i t u a t i o n s ac tua l ly
holds! T h i s is a n e x t r e m e i n s t a n c e of the r e m a r k m a d e above
(in t he d i scuss ion of f ini te e n u m e r a b i l i t y of pa r s ing) t h a t t he
existence in pr inc ip le of a p r o g r a m m e e t i n g ce r t a in cr i te r ia
does no t imp ly t h a t it is obvious , o r i ndeed possible , to f ind
such a p r o g r a m .

25

on 6 P and (ii) r is enumerable on 66 ; we therefore
know that there exist programs Pp and Pg which
enumerate r respectively on ~ P and ~G. But in
fact we have more: if we use a sound and complete
interpreter, we can simply take Pp = Pg = G. This
follows from the fact that , by definition, relatively
to such an interpreter, G enumerates rT, for any
specialization T (see §2.1.1):

* G enumerates r on GP;

• G enumerates r on GG.

To be more concrete, suppose that we use a com-
plete top-down interpreter; Its behavior will be
along the following lines:

1. On query ? r (X # Y) , the interpreter returns
the (generally infinite) list of answers

T ~ , T 2 , . . . , T k , . . .

where each ~ is a term of the form Ai~Bi;
The (generally infinite) "union" of these terms
"exactly covers" the query;

2. On a query of the form ? r (z # Y) , where x is
a ground term, the interpreter returns the list
of answers

TtU(x#Y) , T 2 U (x # Y) , . . . , Tk U (z # Y) , . . .

where I._1 is the operator of term unification,
and where, with some abuse of notation, only
the terms TitA(x#Y) for which unification is
possible actually appear in the list;

3. On a query of the form ?r(X~y) , where y is
a ground term, the interpreter returns the list
of a n s w e r s

T, u (X # y) , T~u(X # y) , . . . , TkU(X # y)

(with the same abuse of notation as above).

This is a rather striking property of definite
programs: different "input modes" can be imple-
mented using one and the same interpreter and
one and the same program. (This property strongly
contrasts with other programming paradigms, for
instance functional or imperative ones. Programs
of these types typically map an input x to an out-
put y, and, while it is indeed true that , for a given
y, the set of ~i which can serve as its input is recur-
sively enumerable, the interpreter that could imple-
ment the (nondeterministic) mapping y ~ x would
have to be widely different from the "normal" in-
terpreter for the language at hand.)

However, "reversibility" in this sense only means
uniformity of implementation for different modes
of use of a grammar. Intrinsic finite reversibility
which is defined in the next section, gives a much
stronger criterion of grammar reversibility.

5 I n h e r e n t l y r e v e r s i b l e g r a m -
m a r s

We say that a grammar G is (inherently) finitely
reversible iff, in the terminology of §3.1.1 and
§3.1.2, G is such that:

1. parsing is finitely enumerable;

2. generation is finitely enumerable.

In other words, G is finitely reversible iff there
exists a program Pp for parsing and a (not necessar-
ily identical) program P9 for generation such that ,
relative to some sound and complete interpreter: is

1. On a query of the form ? r (x # Y) , where x is
any ground term, Pp returns a finite list of
answers

x#T1, x#T2,..., z#Tk

and stops.

2. On a query of the form ? r (X # y) , where y is
any ground term, Pg returns a finite list of
answers

TI # y , T ~ # y , . . . , T / # y

and stops.

In order to guarantee that a grammar is finitely
reversible, some strong assumptions must be made
on its form. An example of such assumptions is pro-
vided by the class of Lezical Grammars described
in [5]. 19

Lexical grammars are presented as definite pro-
grams. They all share the same core of rules,
which describe basic compositionality assumptions
(string compositionality, syntactic compositional-
ity, semantic compositionality), but may have dif-
ferent lexicons, which contain all the more specific
linguistic knowledge.

lSIn fact, one can also take here an incomplete interpreter
such as the standard Prolog interpreter stintpr. Obviously,
if programs Pp and Pg exist for a sound and complete in-
terpreter intpr, one can also find such programs P~ and P~
relative to stintpr, by simulating intpr inside stintpr.

19See also [10] for a related approach.

26

parsing
finitely

enumerable

b i - a c c e p t a t i o n J i /~ ? ?
decidable ~ ~ :

generation
finitely

enumerable

s~ %
".9 s >./
#? %%

s "alK

r

parsing discoverable

p-acceptation decidable

generation discoverable

g-acceptation decidable

Figure 1: Computational problems associated with a grammar.

The hypotheses made on string compositionality
in Lexical Grammars are simply that sister con-
stituents concatenate their strings; they entail that
parsing is finitely e~numerable. The hypotheses on
semantic compositignality are related to functional
application and composition in categorial gram-
mars (see e.g. [15]). They entail that generation
is finitely enumerable.

A lexical grammar G is therefore finitely re-
versible. This does not imply that it can be used
directly for parsing and for generation, but only,
as seen previously, that there exist two programs
Pp and P9 implementing G respectively for pars-
ing and for generation. These programs are each
obtained by a technique of adding to the grammar
some redundant knowledge--respectively a conser-
vative guide for parsing and aconservative guide for
generation--and by applying a left-recursion elim-
ination transformation (see [5]).

6 S o m e c o u n t e r - e x a m p l e s to
f inite revers ib i l i ty and a
" m o d e r a t i o n " c o n d i t i o n on
l inguist ic descr ip t ion

Fig.1 sums up graphically some of tile relations
which have been est,ablished in §3 between tile com-
putational problems associated with a grammar.
The full arrows indicate entailments which have
been established. The dotted arrows relate to a
rather obvious question: What are the connections
between the computational properties of parsing
and those of generation? For instance, does the
finite enumerability of parsing entail the finite enu-
merability of generation? If not, does it at least
entail that g-acceptation is decidable? (The same
questions can be asked in the reverse direction.)
The answer is that, if no further assumptions are

made (see below §6.3), then there are no connec-
tions. To show this, we now sketch one example
which shows that finite enumerability of parsing
does not even entail that g-acceptation is decid-
able.

6 .1 A " g r a m m a r " r e l a t e d t o M a t i y a -
s e v i c h ' s t h e o r e m

Matiyasevich's theorem [2, p. 116] provides--
among other things--a negative solution to
Hilbert's tenth problem: "Does there exist an al-
gorithm capable of solving all diophantine equa-
tions?", a diophantine equation being a multivari-
able polynomial in integer coefficients and whose
variables range over N. 2°

Let K be a recursively enumerable, but non-
recursive, subset of N. One corollary of Matiya-
sevich's theorem is the following proPerty [2, p.
127-28]:

There exists a polynomial q(zx , . . . , zn) in
integer coefficients such that K is the set
of values taken by q, for z l , . . . , z,~ ranging
over all integers.

This corollary can be exploited to give an exam-
ple of a "grammar" which has a finitely enumerable
parsing problem, but such that its g-acceptation
problem is not decidable.

Consider the relation r(x#y) which is true
iff: (i) x is a string encoding any instance (for
Zl , . . . , zn ranging over the integers) of the expres-
sion q(z l , . . . , zn), using the symbols 0 , . . . , 9, '+' ,
'*', '(', ')', etc., and (ii) y is a term encoding the in-
teger resulting from the arithmetical evaluation of
q(z l , . . . , zn). This relation can easily be described

2°The actual statement of Matiyasevich's theorem is
stronger: "Every partially decidable predicate is diophan-
tine" [2, p. 116].

27

by a "grammar" G: This grammar checks the welb
formedness of string x, and calculates its "seman-
tics" y.~l G has the following properties:

• parsing is finitely enumerable: there is a pro-
gram (namely G itself) finitely enumerating r
on GP. In effect, for any string x, this pro-
grams checks z for well-formedness and calcu-
lates the (single) "semantics" y resulting from
the evaluation of x.

• g-acceptation is not decidable. Indeed, the
problem of g-acceptation is the problem of de-
ciding, for any given integer y, whether y is in
the image of polynomial q, that is, whether y
belongs to K. But K is a non-recursive set,
hence the conclusion.

6.2 A "grammar" related to the un-
decidabil i ty of f i rs t -order logic

I will only very broadly sketch this example, which
I think may provide useful insights on the impor-
tance of constraining "string compositionality" in
a grammar.

Consider ordered pairs (x ,y) of (ground) terms
where x is a string encoding a certain first-order
logic tautology, and y (the "semantics") is a deriva-
tion of x using a certain fixed set of axiom schemata
and rules of inference for a complete system of first-
order logic. Let 's assume for simplicity that the
given rules of inference always have two premises
and one conclusion. 22

A grammar G can be defined along the follow-
ing general lines. The clauses of G correspond to
the system's axiom schemata and rules of inference.
Each clause corresponding to an axiom schema of
name as defines "terminal constituents" (x, as(x)),
where string z is any instance of schema as; each
clause corresponding to an inference rule of name
ir takes two "constituents" (xx ,y l) and (x2,y2),
and, if applicable (which is checked on the basis of
strings Xl and x2), builds a new constituent (x, y),
where x is the string obtained from xl and x2 ac-
cording to i t , and where y is a new derivation tree
ir(x,yx, y2). We have the following properties:

• generation is finitely enumerable: The genera-
tion problem is the problem, given a derivation

~1 This requires defining addition and multiplication of in-
tegers inside G, which presents no special problem.

22See for instance [8, p. 43---44] which describes a system
having the two rules of in_ference p I pDqq and ~ (where
x is free in p). The second rule has one premise, but can
easily be viewed as having two, if the premise True is added
t o i t s original premise.

tree y, of enumerating all formulas x that are
associated with it. But y contains an explicit
representation of x, so that generation is triv-
ially finitely enumerable.

p-acceptation is not decidable: The p-acceptation
problem is the problem of checking if a string
x can be derived from the axioms and the in-
ference rules of the system. Tha t is, it is the
problem of checking if x is a tautology of first-
order logic. By Church's undecidability result,
this problem is undecidable.

6.3 Under a "moderation" condit ion
on l inguistic description, parsing
is f initely enumerable iff genera-
t ion is

The two counter-examples that we have just given
have one property in common: the p-parameter can
stay "small", while the g-parameter grows indef-
initely "large", or conversely the g-parameter can
stay small while the p-parameter grows indefinitely
large. For instance, in the first counter-example,
for a given value of y, there is no way to bound
a priori the sizes of the integers z l , . . . , z n tha t
may produce this y; in the second counter-example,
there is similarly no way to bound a priori the sizes
of proofs y for a given formula x.

In order to characterize this phenomenon for-
mally, we will define a notion of "moderat ion" for a
grammar G, defined as a definite program over the
Herbrand universe H. As previously r is the unary
relation representing the denotational semantics of
G.

If a is a ground te rm in H, let us call size of
this term, and denote by size(a), the number of
nodes in a. Grammar G will be called moderate iff
there exist total recursive functions f : N ~ N,
and g : N ~ N, such that:

Vx, y E H r(x, y) :.~ size(y) _< f(s ize(x))

^ size(x) < g(size(y)).

We have the following property:

If G is moderate, then, relative to G, pars-
ing is finitely enumerable iff generation is (4)
finitely enumerable.

Let us briefly sketch the proof: Suppose that pars-
ing is finitely enumerable, then we know (see §3.1.4)
tha t bi-acceptation is decidable. On the other hand,
for any fixed ground term y, there are only finitely
many ground terms z in H such that size(x) <

28

g(size(y)). Therefore, we can finitely enumerate
all these z's, and for each of them, decide whether
r(x, y) holds. This shows that generation is finitely
enumerable. The converse is proven in ,the same
way.

Moderation might be claimed to be a "natural"
constraint to impose on grammars used for "legit-
imate" linguistic purposes: One might want to ar-
gue that , in natural language, complexity of ex-
pression is a rather direct reflection of complexity
of meaning. For example, semantic rules which re-
duced "you love htm or you don't" to ' true' , or

• J 7 " "how much is 6 times 7 . to '?x.(x = 42)' would
seem to be ruled out as valid linguistic descriptions.
But we will not ffirther pursue these tricky ques-
tions here.

Acknowledgments
Thanks to Pierre Isabelle, Francois Perrault, Patrick
Saint-Dizier, Tomek Strzalkowski and Gert jan van
Noord for their comments on an earlier version of
this paper. English and content have bigly suffered
from my lacking time to impose, as usual, its read-
ing on Elliott Macklovitch.

Appendix

E x a m p l e s o f f i n i t e l y r e v e r s i b l e g r a m -

m a r s t h a t a r e i n h e r e n t l y d i f f i c u l t t o

r e v e r s e

In this appendix, we give two examples of gram-
mars that , although they are finitely reversible, are
such that one mod~ is easy, while the reverse mode
has a high degree o f complexity. These examples
are closely parallel, in the context of complexity,
to the examples o f section 6, which were concerned
with computability.

N u m b e r p r o d u c i s , c r y p t o g r a p h y a n d r eve r s ib i l -
i ty

Consider the binary relation r(x#y) which is true
iff x is a string of the form:

N * M

where N and M are strings, interpreted as integers,
of O's and l 's a n d ' . ' is interpreted as multiplica-
tion, and where y is an integer equal to tile product

of M and N. 23 We impose a priori tha t integers
M and N be strictly greater than 1.

This relation can be defined by a "grammar"
G: this essentially simply involves constraining the
"syntax" of z and defining multiplication by a set
of definite clauses.

Implementing r in p-enumeration mode is easy:
it involves verifying that x is well-formed, and com-
puting its product according to specification G; In
fact, G itself can be used for tha t purpose, using a
standard interpreter.

On the other hand, efficiently implementing r in
g-enumeration mode is extremely difficult, what-
ever the interpreter, program transformations, math-
ematical properties of prime factorization, ..., which
are brought to the task. The fact tha t it is so dif-
ficult is the basis of the best known "public key
cryptography" algorithm, RSA [11].

N P - c o m p l e t e p r o b l e m s a n d r e v e r s i b i l i t y

A NP-complete problem is, informally, a problem
for which solutions can be checked in polynomial
time (relative to the length of the problem), but
which requires more than polynomial time for the
discovery of a solution [1].24

For specificity, let us focus on one NP-complete
problem, namely the "3-colorability problem" which
consists, given a certain graph x, in finding a color-
ing y for x using blue, green and red, in such a way
that vertices sharing a common arc have different
colors.

It is possible to state the problem as a definite
program G, whose main relation is of the form
r(x#y), x and y being suitable term encodings for
the graph z and for the solution y. The solution
y can be considered as implicitely containing a de-
scription of graph x.

It is obvious that g-acceptation is computation-
ally easy (polynomial): it consists in verifying that
the coloring y respects the coloring condition. On
the other hand, p-acceptation is computationally
costly: it consists in checking whether graph x has
a solution, a problem which is at the present time
believed to require exponential time.

23The string N*M and the integer y are suitably encoded
as ground terms on H.

24More exactly, which is believed to require more than
polynomial t ime. This belief constitutes the content of the
famous P~NP conjecture.

29

R e f e r e n c e s

[1] Alfred V. Aho, John E. Hopcroft, and Jef-
frey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Read-
ing, MA, 1974.

[2] N.J . Cutland. Computability. Cambridge Uni-
versity Press, Cambridge, England, 1980.

[3] Marc Dymetman. A Generalized Greibach
Normal Form for Definite Clause Grammars
and the decidability of the offline-parsability
problem, May 1991. Paper presented at the
Second Meeting on the Mathematics of Lan-
guage, Yorktown Heights, NY. (To be pub-
lished).

[4] Marc Dymetman and Pierre Isabelle. Re-
versible logic grammars for machine transla-
tion. In Proceedings of the Second Interna-
tional Conference on Theoretical and Method-
ological Issues in Machine Translation of Nat-
urai Languages, Pittsburgh, PA, June 1988.
Carnegie Mellon University.

[5] Marc Dymetman, Pierre Isabelle, and Francois
Perrault. A symmetrical approach to parsing
and generation. In Proceedings of the 13th In-
ternational Conference on Computational Lin-
guistics, volume 3, pages 90-96, Helsinki, Au-
gust 1990.

[6] Mark Johnson. Attribute-Value Logic and the
Theory of Grammar. CSLI lecture note No.
16. Center for the Study of Language and In-
formation, Stanford, CA, 1988.

[7] John Wylie Lloyd. Foundations of Logic Pro-
gramming. Springer-Verlag, Berlin, second
edition, 1987.

[8] Roger C. Lyndon. Notes on Logic. Van Nos-
trand, New York, NY, 1966.

[9] Fernando C. N. Pereira and David H. D. War-
ren. Parsing as deduction. In Proceedings of
the ~lth Annual Meeting of the Association
for Computational Linguistics, pages 137-144,
MIT, Cambridge, MA, June 1983.

[10] Francois Perrault. Un nouveau formalisme de
grammaire logique r6versible. Master's thesis,
McGill University, Montr6al, Canada, 1991.

[11] R. L. Rivest, A. Shamir, and L. Adleman. A
method for obtaining digital signatures and
public key cryptosystems. Communications of
the ACM, 21:120-126, February 1978.

[12] Stuart M. Shieber. A uniform architecture
for parsing and generation. In Proceedings of
the 12th International Conference on Compu-
tational Linguistics, pages 614-619, Budapest,
August 1988.

[13] Stuart M. Shieber. Parsing and type inference
for natural and computer languages. Techni-
cal note 460, SRI International, Menlo Park,
CA, 1989. (Ph.D. dissertation, Department of
Computer Science, Stanford University).

[14] Stuart M. Shieber, Gertjan van Noord,
Robert Moore, and Fernando Pereira. A
semantic-head-driven generation algorithm for
unification-based formalisms. In Proceedings
of the ~7th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 7-
17, Vancouver, BC, Canada, June 1989.

[15] Mark Steedman. Dependency and coordina-
tion in the grammar of dutch and english. Lan-
guage, 61(3):523-568, 1985.

[16] Tomek Strzalkowski and Ping Peng. Auto-
mated inversion of logic grammars for genera-
tion. In Proceedings of the 28th Annual Meet-
ing of the Association for Computational Lin-
guistics, pages 212-19, Pittsburgh, PA, June
1990.

[17] Gertjan van Noord. Towards convenient bi-
directional grammar formalisms. In Proceed-
ings of the 18th International Conference on
Computational Linguistics, volume 2, pages
294-298, Helsinki, August 1990.

[18] Gertjan van Noord. BUG: A directed bottom-
up generator for unification based formalisms.
Technical report, RUU, Department of Lin-
guistics, Utrecht, Holland, 1989.

[19] Remi Zajac. A uniform architecture for pars-
ing, generation and transfer. In Proceedings
of the Workshop on Reversible Grammars in
Natural Language Processing, Berkeley, CA,
1991.

30

