
Paralle l Generalized LR Parsing
based on Logic P ro g ram m in g

Hozumi TANAKA Hiroaki NUMAZAKI
T o k y o I n s t i t u t e o f T e c h n o l o g y T o k y o I n s t i t u t e o f T e c h n o l o g y

Abstract

A generalized LR parsing algorithm, which lias been developed by Tomita[Tomita 86],
can treat a context free grammar. His algorithm makes use of breadth first strategy
when a conflict occcurs in a LR parsing table. It is well known that the breadth first
strategy is suitable for parall processing. This paper presents an algorithm of a par
allel parsing system (PLR) based on a generalized LR parsing. PLR is implemented
in GHC[Ueda 85] that is a concurrent logic programming language developed by
Japanese 5th generation computer project. The feature of P L R is as follows: Each
entry of a LR parsing table is regarded as a process which handles shift and re
duce operations. If a process discovers a conflict in a L R parsing table, it activates
subprocesses which conduct shift and reduce operations. These subprocesses run in
parallel and simulate breadth first strategy. There is no need to make some subpro-
.cesses synchronize during parsing. Stack information is sent to each subprocesses
from their parent process. A simple experiment for parsing a sentence revealed the
fact th a t PLR runs faster than PAX[Matsumoto 87][Matsumoto 89] tha t has been
known as the best parallel parser.

1 Introduction

As the length of a sentence becomes longer, the number of parsing trees increases and it will take
a lot of time to parse a sentence. In order to achieve fast parsing, we should look for a parallel
parsing system based on the most efficient and general parsing algorithms. One of parallel
parsing systems we have ever known is PAX[Matsumoto 87][Matsumoto 89] tha t is based on
C hart parser. It is well known th a t L R parser is the most efficient paser, since L R parsing
algorithm runs deterministicly for any L R gram m ar which is a subset of context free grammar.
Unfortunately, L R gram m ar is too weak to parse sentences of natural languages. When we
apply L R parsing algorithm to context free gram m ar, it is an usual case tha t conflicts appears
in a L R pasing table. So we need to generalize the L R parsing algorithm in order to process
these conflicts. There are two kinds of strategies to resolve the conflicts, namely a depth first
stra tegy and a breadth first strategy. Nilsson[Nilsson 86] has adopted a dep th first s tra tegy and
Tom ita[Tom ita 86] a breadth first s trategy which is called a generalized L R parsing. As it is easy
for us to simulate the breadth first strategy by parall processing technique. We have developed
a parallel generalized LR parsing system (PLR) based on the generalized L R parsing algorithm
which makes use of a breadth first strategy.

-329- Intemationai Parsing Workshop '89

After we will give a brief introduction of LR parsing algorithm in section 2, we will describe
our PLR system details of which will be explained in section 3. PLR is implemented in a
concurrent logic programming language called GHC[Ueda 85] that is developed by Japanese
5th generation computer project. One of the most significant feature of PLR is to regard each
entry of a LR parsing table as a process which handles shift and reduce operations. If the
process discovers a conflict in a LR parsing table, it creates and activates subprocesses in order
to process shift and reduce operations in the conflict. These subprocesses run in parallel and
simulate breadth first strategy. There is no need to make subprocesses synchronize during
parsing. Stack information is sent to each subprocesses from their parent process. In order to
understand PLR algorithm we will show a trace of actual parsing in subsection 3.6.

In section 4, we will explain some results of the experiment which parses sentences using
PLR and PAX. The experiment revealed the fact that PLR runs faster than PAX that is one of
the best parallel parsers.

2 G e n e r a l i z e d L R P a r s i n g a l g o r i t h m

The generalized LR parser is guided by a LR parsing table which is generated from grammar
rules given. Fig.2 shows an ambiguous English grammar. Fig.2 shows a LR parsing table
generated from the English grammar. The LR parsing table is devided into two parts, an action
table and a goto table.

The lefthand side of the table is called ’action tab le’, the entry of which is determined by
a pair of generalized LR parser’s state (the row of the table) and a lookahead preterm inal(the
column of the table) of an input sentence. There are two kinds of operations, a shift and a
reduce operations. Some entries of the LR table contains more than two operations which mean
th a t there is a conflict in the entry, and a parser should conduct more than two operations at
once.

The symbol ’sh N’ in some entries means that generalized LR parser has to push a lookahead
preterminal on the LR stack and go to ’s ta te N’. The symbol ’re N’ means tha t generalized LR
parser has to reduce several topmost elements on the stack using a rule numbered ’N \ The
symbol ’acc’ means tha t generalized LR parser ends with success of parsing. If an entry doesn’t
contain any operation, generalized LR parser recognizes an error.

The righthand side of the table is called a ’goto tab le’ which decides a s ta te tha t the parser
should enter after every reduce operation. The LR table shown in fig.2 has 4 conflicts at the
s ta te 14 (row number 14) and s ta te 16 for the column of ’p ’ and ’relp’. Each of four entries,
which have a conflict, contains two operations, a shift and a reduce operation. Such a conflict is
called a ’shift-reduce conflict’. When a parser encounters a conflict, it cannot determine which
operation should be carried out first. In PLR explained in the next section, conflicts will be
resolved using parallel processing technique and we do not mind the order of the operations in
a conflict.

3 I m p l e m e n t a t io n o f P L R

PLR is implemented in GIIC th a t is a concurrent logic programming language developed by
Japanese 5th generation computer project. In our system, each entry in a LR parsing table are
regarded as a process which will handle shift and reduce operations. If the process discovers
a conflict in a LR parsing table, it activates subprocesses in order to process shift and reduce

-330- International Parsing Workshop '89

(1) S — NP, VP.
(2)' s — S, PP.
(3) NP — NP, RELC

(0 NP — NP, PP.
(5) NP — det, noun.
(6) NP — noun.

(') NP — pron.
(8) VP — v, NP.

(9) RELC — relp, VP.
(10) PP — P, NP.

fig.l: Ambiguous English grammar

det noun pron V P relp % NP PP VP RELC S
0 sh l sli2 sh3 5 4
1 sh6
2 re6 re6 re6 re6
3 re7 re7 re7 re7
4 sh7 acc 8
5 shlO sh7 sh9 12 11 13
6 re5 re5 re5 re5
7 sh l sh 2 sli3 14
8 re2 re2
9 shlO 15
10 sh l sh2 sh3 16
11 rel rel
12 re4 re4 re4 re4
13 re3 re3 re3 re3
14 relO sh7/re 10 sh 9 /re l0 relO 12 13
15 re9 re9 re9 re9
16 re8 sh7/re8 sh9/re8 re8 12 13

fig.2: LR parsing table obtained from fig.l gram m ar

-331- Intemational Parsing Workshop '89

(1) a:- true| b,c.
(2) b:- tr 11 e| true.
(3) c:- t r u e| t r u e .

fig.3: typical stat nent of GIIC

operations in the conflict. These subprocesses run in parallel and simulate breadth first strategy
for the generalized LR parsing. There is no need to make subprocesses synchronize during
parsing. Stack information is sent to each subprocesses from their parent process.

3 .1 B r ie f I n tr o d u c t io n o f G H C

Before explaining the details of PLR algorithm, we will give a brief introduction of GHC. Typical
GHC statem ents are given in fig.3. Roughly speaking, the vertical bar in a GHC statem ent of
fig.3 works as a cut symbol of Prolog. When a goal ’a ’ is executed, i process corresponding to
the sta tem ent (1) is activated and the body becomes a new goal in which ’b ’ and ’c’ are excuted
simultaneously, since GHC adopts AND-parallel strategy. In other word, subprocesses V and
V are created by a parent process ’a ’ and they run in paralell. Although GHC has a few of
synchronization mechanisms, it will not be necessary for you to understand them.

3 .2 D e s c r ip t io n o f P L R A lg o r ith m

At first, PLR creates a list of preterminals of an input sentence which will be parsed. PLR
parser begins activating an action process which corresponds to the LR table entry determined
by the s ta te ’O’ and the first preterminal in the preterminal list. The action process activates the
other processes according to the comands specified in the LR talbe entry. Activated processes
recieves stack information from the parent process and also perform some comands specified in
the corresponding LR table entry. The process activation will continue until some processes find
out an ’acc’ or an ’erro r’ entry. If we have a conflict during parsing, more than two subprocesses
will be activated at once and run in parallel. There are three kinds of processes which are
activated in PLR parser.

• action process:

An action process carries out shift and /or reduce operations. In case of a shift operation,
the action process pushes a lookahead preterminal on a stack and activates a new process
which corresponds to new state given by the shift operation. When an action process
encounters a reduce operation, a reduce process will be activated and recieve stack infor
mation from the parent action process. If an action process finds a conflict, more than two
subprocesses will be activated each of which perform either a shift or a reduce operation.
These subprocesses run in parallel. If an action process enconters an ’acc’ operation, the
action process will extract the result of the parsing and end with success. On the contrary,
if all of the above conditions are not satisfied, an action process will end with failure.

• reduce process:

Using a gram m ar rule specified by a reduce operation, the reduce process makes a reduction
of an appropriate portion of stack, and the reduce process activates a goto process in order
to enter a new state .

-332- Intemational Parsing Workshop ’89

• goto proccss:

Using stack information given by a reduce process, a goto process activates an action
process to enter a new state.

In the following subsections, we will give the GIIC definition of PLR processes obtained by
the LR table shown in fig 2.

3 .3 D e f in it io n o f A c t io n P r o c e s s

Followings are examples of definitions of an action process.

1. Suppose an action process iO’ that corresponds to the entry in fig.2 whose row and column
are 0 and ’noun’ respectively. As the entry contains ’sh 1’, the process has to activate a
subprocess which carries out a shift operation. The definition of the process ’iO’ is shown
below.

iO(noun, S lack , [noun,NextCat|List], Info) :- true |
i l (N e x tC a t , [[l,noun]|Stack], [NextCat|Listj, Info).

In the above process definition, the predicate ’iO’ is a process name, and its first argument
is a lookahead preterminal ’noun’. The second argument is ’S tack’ on which information
about state , grammatical categories and the'o ther information are pushed. The third is a
list of preterminals of an input sentence. The fourth outputs ’Info’, the results of parsing.
The subprocess ’i 1 ’ is activated and carries out a ’sh 1’ operation. The subprocess ’i l ’
recieves a new stack which consists of ’S tack’, s tate ’T’ and a preterminal ’noun’. Note
tha t in the third argument of the process ’i l ’, preterminal ’noun’ is eliminated from the
list of preterminals, since preterminal ’noun’ should be shifted.

2. Consider an entry of s ta te ’2’ and a lookahead preterminal V in fig.2. The definition of
action process ’i2’ is given below :

i 2 (v , S tack , List, Info) true |
re6(v, S tack , List, Info).

In the body of an action process ’i2’, a subprocess ’re6’ is activated in order to conduct a
reduce operation. The subprocess ’re6’ recieves the same stack information and a preter
minal list as those of the parent process ’i2’. The detail of the reduce process will be
explained later.

3. Consider an entry of s ta te ’14’ and a lookahead preterminal ’p ’ in fig.2. We will find out
a shift-reduce conflict, ’sh 7 /re 10’. The definition of an action process ’i l 4 ’ is as follows.

i l4 (p , S tack , [p,NextCat|List], Info) true |
i7 (N ex tC a t, [[7,p]|Stack], [NextCat|List], Infol),
re 10(p , S tack , [p,NextCat|List], Info2),
merge(Infol , Info2 , Info).

-333- Intemational Parsing Workshop '89

In the body of the proccss ’i l 4 ’, both subprocesses 'i7’ and 're 10* carry out a shift and a
reduce operation simultaneously. The ’merge’ process is a built-in process which merges
the outpu t produced by the subprocesses ’iT’ and ’re 1 O’.

4. Consider the entry of state ’4’ and a lookahead preterminal ’S’ in fig.2. We will find out
’acc’ in the entry which indicates a success of parsing. The definition of the action process
’i4’ is as follows.

il($, [[_,Resu11.]|_], Info) true |
11) fo = [Res

In the body of the action process ’i4’,’[Result]’ is sent to the fourth argument ’Info’, and
finally the action process 'i4’ terminates with success.

5. If no operation is specfied in an entry, an error handling process has to be activated. We
have to define an error handling process in some states if necessary. The following is a
definition of an error process in state ’0 ’ which should be placed at the end of definitions
of the process ’i0’.

otherwise.
i0(_ - Info) true |

Info = [].

The sta tem ent ’otherwise’ is a built-in s ta tem ent which declares tha t GHC statem ents
below ’otherwise’ should be executed after all GHC stetements before ’ohterwise’ fails.

3.4 Definit ion of Reduce Process

The following definition of a reduce process ’relO’ is an example of reduce actions correspondds
to the gram m ar rule numbered 10 in fig.l((10) PP —p,NP).

relO(NextCat., Old Stack , List, Info)
OlclS tack=[[_,Tl] ,[_,T2] ,[S tate,T3] [Tail] |
p p (S ta te , N ex tC a t , [pp,T2,Tl], [[State,T3]|Tail], L is t, Info).

In the second argum ent of ' r e l 0 \ the topmost two elements of ’OldStack’ are popped and sent
to a goto process ’p p ’ iu which the third argument ’[pp ,T 2 ,T l]’ constructs a syntactic tree whose
root is ’p p ’ in accordance with the gram m ar rule 10 in fig.l. The name of the goto process ’pp’
is the name of the lefthand side nonterminal symbol in the gram m ar rule 10. The first argument
’S ta te ’ is a new s ta te number extracted from ’OldStack’. Note that the reduce process ’relO’
passes a next incomming proterminal ’N ex tC a t’ to the ’pp ’ process, since a reduce process does
not consume any incomming preterminals.

3.5 Definit ion of Goto Process

After a reduce operation is carried out, a goto process is activated in order to enter a new state
in which a new action process will be activated. At that time, the goto process uses both an
incomming nonterminal symbol and a s ta te number on the top of the stack.

-334- Intemational Parsina Workshop '89 ^

We will give a sample definition of goto processes.

s(0 , Next-Cat , Tree, S tack , List, Info) true |
i l (N e x tC a t , [[4,Tree]|Stack], List, Info).

The process ’s ’ defined above is activated after ’s ’ is constructed by a reduce process in state
’O’. As the entry of row ’0 ’ and column ’s ’ in the LR table of fig.2 includes ’4’, the goto process
’s ’ activates an action process ’i4’ pushing state ’4 ’ and tree information onto the stack.

3.6 A n E x a m p le o f P L R P a r s in g

Given a LR table of fig.2, a Iran slate r generates the following definitions of parsing processes.

i 0 (d e t , S t a c k , [_ , N e x t C a t l L i s t] , In fo) : - t r u e I
i l (N e x t C a t , [[l , d e t] I S t a c k] , [N e x t C a t l L i s t] , In fo) .

i O (n o u n ,S t a c k , [_ , NextCat I L i s t] , I n f o) t r u e I
i 2 (N e x t C a t , [[2 ,n] I S t a c k] , [NextCat I L i s t] , I n f o) .

i 0 (p r o n , S t a c k , [_ .N e x tC a t1 L i s t] , I n f o) : - t r u e I
i 3 (N e x t C a t , [[3 ,p ro n] I S t a c k] , [NextCatI L i s t] , I n f o) .

o th e r w i s e .
i 0 (_ , _ , _ , I n f o) t r u e 1 I n f o = [] .

i l (n o u n , S t a c k , [_ , N e x t C a t l L i s t] , I n f o) : - t r u e I
i 6 (N e x t C a t , [[6 , n o u n] 1 S t a c k] , [N e x t C a t i L i s t] , I n f o) .

Following is an example of PLR parsing,

input sentence : i open the door with a key .

Parsing begins with activating the following action process ’iO’.
i0(pron,[[0,[]]], [pron,v,det,noun,p,det,noun,$],Info)

‘Stack ‘List of Preterminal
Lookahead

Activates the action process ;i3’ for ’shift 3 ’.
i3(v,[[3,pron],[0,[]]], [v ,det,noun,p,det,noun,$] ,Info)

Activates the reduce process ’ie7} for 'reduce 7 ’.
re7(v,[[3,pron],[0,[]]],[v,det,noun,p,det,noun,$],Info)

[[3,pron], [0,[]]] = [[_,T1],[State,T2]1 Tail]
Activates the goto process ’n p ’.
np(0,v ,[np,pron], [[0,[]]], [v,det,noun,p,det,noun,$],Info)

-335- International Parsing Workshop '89

‘State 'Tree ‘Stack

Activates the action process ’i5’ for ’goto 5'.
i5(v, [[5,[np,pron]] , [0, []]], [v,det,noun,p,det,noun,$],Info)

Activates the action process }il0’ for ’shift 10’.
i10(det, [[10 ,v] , [5,[np.pron]], [0,[]]], [det,noun,p,det,noun,$],Info)

i 1 6 (p , [[1 6 , [np , d e t , n o u n]] , [1 0 , v] , [5 , [n p . p r o n]] , [0 , []]] , [p , d e t , n o u n ,$] , I n f o)
A c o n f l i c t ’ s h i f t 7 / re d u c e 8 ’ o c c u re s .
A c t iv a t e s ’ i 7 ’ and ’r e 8 ’ p r o c e s s e s s im u l ta n e o u s ly .

i 7 (d e t , [[7 , p] I [[1 6 , [n p . d e t , n o u n]] , [1 0 , v] , [5 , [n p . p r o n]] , [0 , []]]] , [d e t I [n , $]] , Info)
r e 8 (p , [[1 6 , [n p , d e t , n o u n]] , [1 0 , v] , [5 , [n p . p r o n]] , [0 , []]] , [p , d e t I [n o u n , $]] , I n f o)

Both p r o c e s s e s end w ith s u c c e s s and produce the fo l lo w in g r e s u l t s i n ’ I n f o 1 .
i4($,[[4 . [s .[n p , p r o n],[vp ,v , [n p,[n p...],[p p , p , [n p ...]]]]]], [0,[]]],[$],In fo)

I n f o * [s , [n p .p r o n] , [v p ,v , [n p , [n p , d e t , n o u n] , [p p , p , [n p ,d e t , noun]]]]]

14 ($, [[4 , [s , [s , [n p .p ro n] , [v p , v , [np , [n p . . .]]]] , [pp , p , [np . . .]]]] , [0 , []]] , [$] , In f o)

I n f o = [s , [s , [n p . p r o n] , [v p ,v , [n p , [n p . d e t , n o u n]]]] , [p p , p , [n p , d e t ,noun]]]

4 T h e R e s u l t s o f A E x p e r im e n t

We conducted an experiment to parse many English sentences with many P P a ttachm ents such

as :
NP.v.NP
NP,v,NP,PP
NP,v,N P,PP,PP
N P ,v ,N P,PP .PP ,PP

In the experiment, PLR and PAX are used to parse sentences. The number enclosed by paren
thesis in fig.4 indicates the number of parsing trees. PLR runs 1.4 times faster than PAX that
was known as the best parallel parser in the past. In order to get all parsing trees of a sentence
with 9 PP a ttachm ents, PLR takes about 65 sec. on Sun-3/260 workstation. It means th a t PLR

produces a parsing tree only every 4 msec.
The reader should note th a t the PLR which we explained in this paper does not use a

graph s tructured stack. For comparison, the results of parsing which makes uses of the graph
struc tu red stack is shown by a solid line. The PLR parser with a graph structured stack runs
10 times slower than the one without a graph s tructured stack. The reason is tha t the former

-336- International Parsing Workshop '89

fig.4: The result of Parsing time

causes many processes to wait for synchronization. We are now considering the reason why PLR
parser without the graph structured stack runs so fast. One of the reasons is tha t PLR parser
without the graph does not. cause many processes to suspend for synchronizations.

5 C o n c l u s i o n

We described an exaple of the implementation of the PLR algorithm in GHC in which each
entry of the LR table is regarded as a process which handles shift and reduce operations. When
a conflict occurs in an entry of the LR table, the corresponding parsing process activates two or
more subprocesses which run in parallel and simulate breadth Jirst strategy of the generalized
LR parsing. Each subprocess is given the stack information from the parent process and runs
further to execute a shift and a reduce operation.

The experiment has revealed that PLR runs faster than PAX that has been known as the
best parallel parser. PLR runs so fast tha t it will be a promising parser for processing many
complex natura l language sentences.

However, PLR has many problems to be solved, for example, handling of gapping and idiom,
and integration of syntactic and semantic processing which are urgent problems to be solved in
the near future.

Ref erences

[Aho 72] Aho,A.V.and Ulman,J.D.: The Theory of Parsing,Translation,and Compiling,
Prcniice-Ilall,Englewood ClifTs,New Jersey (1972)

[Aho 85] Aho,A.V.,Senthi,R .and Ulman.J.D.: Compilers Principles,Techniques,and

-337- International Parsing Workshop '89

[Fuclii 87]

(Knuth 65]

[Konno 86]

[Nakata 81]

[Matsumoto S6]

[Matsumoto 87]

[Matsumoto 89]

[Mellish 85]

[Nilsson 86]

[Okumura 89]

[Pereira 80]

[Tokunaga 88]

[Tomita 86]

[Tomita 87]

[Ueda 85]

[Uehara 83]

Tooli,Addison-Wesley (1985)

Fucli.K. Furukawa,K. Mizoguch^F.i/Teirefu Ronn Gata Gengo GHC To Sono
Oinjou, Kyoritsu Syuppan (1 9 8 7) in Japanese

Knuth,D.E.: On the translation of languages from left to right,Information
and Control 8:6,pp.607-639

Konno,A. Tanaka ,K.:Hidari Gaichi Wo Kouryo Shita Bot tom Up Koubun
Kaiseki, Conputer Softwear,Vol.3, No.2, p p .1 15-125 (1986) in Japanese

Nakata,I.-.Compiler, Sangyo Tosyo (1981) in Japanese

Matsumoto,Y. Sugimura,R.:/2onn Gata Gengo Ni Motodsuku Koubun Kaiseki
System 5/1 A', Computer Soft\vear,Vol.3, No.4, pp.4-11 (1986) in Japanese

Matsumoto,Y.:/l Parallel Parsing System for Natural Language Analysis , New
Generation Computing, Vol.5, No. 1, pp.63-78 (1987)

M atsum oto,Y. .Natural Language Parsing Systems based on Logic Program
ming, Ph.D thesis of Kyoto University, (June 1989)

Mellish,C.S.: Computer Interpretation of Natural Language Descriptions, Ellis
Ilorwood Limited (1985)

Nilsson,U.: AID:An Alternative Implementat ion of DCGs, New Generation
Computing, 4, pp .383-399 (1986)

Okumura,M.:5»'2engengo Kaiseki Ni Okeru Imiteki Aimaisei Wo Zoushtn-
teki Ni Kaisyou Suru Keisan Model , Natural Language Analysis Working
Group,Information Processing Society of Japan,NL71-1 (1989) in Japanese

Pereira,F.and Warren,D.: Definite Clause Gram m ar for Language Analysis-
A Survey of the Formalism and a Comparison with Augmented Transition
Networks, Artif. [ntell, Vol.13, No.3, pp .231-278 (1980)

Tokunaga,T. Iwayama,M. Kamiwaki,T. Tanaka,K.:Natural Language Anal•
ysis System Lang LAB, Transactions of Information Processing Society of
Japan,Vol.29, No.7, pp .703-711 (1988) in Japanese

Tomit a,M.:£/7ic»enJ Parsing for Natural Language, Kluwer Academic Publish
ers (1986)

Tomita,M.: An Ejjicien Augmented-Context-Free Parsing Algorithm, Compu
tational Linguistics, Vol.13, Numbers 1-2, pp.31-46 (1987)

Ueda,K .:Guarded Horn Clauses, Proc. T he Logic Program ming Conference,
Lecture Notes in Com puter Science, 221 (1985)

Uchara.K. Toyoda,J.: Sakiyomi To Yosokukinou Wo Motsu Jutugo Ronri Gate
Koubun Kaiseki Program : PAMPS, Transactions of Information Processing
Socicty of Japan , Vol.24, No.4, pp .496-504 (1983) in Japanese

*338- International Parsing Workshop '89

