
Finite State Machines from Feature
Grammars

Alan W Black
Centre for Speech Technology Research

and Dept of Artificial Intelligence
University of Edinburgh

80 South Bridge
Edinburgh EHl 1HN
awb3eusip.ed.ac.uk

A bstract

This paper describes the conversion of a set of feature grammar rules into a deterministic
finite state machine that accepts the same language (or at least a well-defined related language).
First the reasoning behind why this is an interesting thing to do within the Edinburgh speech
recogniser project, is discussed. Then details about the compilation algorithm are given. Finally,
there is some discussion of the advantages and disadvantages of this method of implementing
feature based grammar formalisms.

1 B ackground

Real-time continuous speech recognition is still not possible but is becoming more possible each
year. One of the many problems in recognition is doing symbolic analysis in the higher levels of
the system in a reasonable time.

W ithin CSTR, we are investigating analyses using high level GPSG-type formalisms (like that
in [Gazdar85]) to describe the grammar of various restricted domains. This high level notation is
then automatically compiled into a basic feature grammar formalism called FBF ([Thompson89])
thus compiling out aliases, feature passing conventions etc. This FBF grammar is then used directly
in the run-time recogniser within a chart parser.

However, at run tim e, the many hypotheses predicted by the lower levels of the system give
rise to many partial constituents in the chart. Thus a large amount of time was spent in the chart
doing unification. However, when we look at the real requirements of the lower level of the system
(lexical access), we note that what is required in the majority of cases is merely a simple prediction
of the next possible symbol in a sentence from a given state.

Consequently we started to think about ways to provide this information as quickly as possible.
Obviously representing the grammar as a Finite State Machine would make lexical access prediction
significantly faster. As we currently write our grammars in a high level formalism it seems wrong
to throw that information away and start again, so we hope to find some form of compilation from
feature grammars to finite state grammars.

Of course, the first theoretical point to note is that feature grammars are, in essence, context-
free thus allowing more complex languages to be described than FSGs. For example, there does

-277- Intemational Parsing Workshop '89

not exist an equivalent finite state grammar for the (context-free) grammar

S —► a S b
S —* a b

Which describes the language anbn where n is greater than or equal to 1. However if we set a finite
limit on n then there does exist a (possibly very large but finite) FSM. Thus we could accept anbn
only where n is greater than or equal to one but less than some finite number d.

In terms of natural language, an equivalent example is the restriction that you can only have
up to n levels of centre embedding within a language. This seems to be no less a restriction on a
language than the restrictions you are imposing on that language when you try to write a grammar
for it in the first place, irrespective of the grammar formalism.

Practically, there may be other problems in writing a compilation function from feature gram
mars to finite state grammars. There is of course the problem of the size of FSM created, as
well as the time that is needed to generate it. Both these question were open at the start of our
investigation.

Because we hoped that this compilation need only be run occasionally and that the high level
formalism could be debugged using a conventional chart parser, we feel that compilation tim e can
be up to 12 hours without any problem. As for the resulting FSM, it seems that with today’s
workstations up to 100,000 transitions might be acceptable. But the question still remained: how
big a feature grammar can be compiled within these constraints?

2 T he Initial S tructures

The grammarian first writes a grammar in the high level GPSG-like notation which is then trans
lated to FBF. This translation is relatively simple, it merely converts the user-written form into an
internal Lisp form, expanding aliases, feature passing conventions etc. The FBF formalism seemed
like a good input to the FSM compiler as it is well defined and quite fixed within our system.

FBF is effectively an assembly language for feature grammars. It is much in the spirit of PATR-
II ([Shieber86]) but differs in that it uses term unification rather than graph unification as its basic
operation, though that distinction if not important here.

The inputs to the FSM compilation are:

• a distinguished category

• a set of feature grammar rules.

• a set of lexical entries

The lexicon consists of a mapping of atomic symbols to categories. In actual fact within our
system these atoms are not words but preterminals. It is these preterminals which label the arcs
of the generated finite state machine.

It should be added that FBF is not a prerequisite for this technique. Any feature grammar
notation would be suitable (though the code would have to be changed).

-278- Intemational Parsing Workshop '89

3 The Com pilation Process

The com pilation takes place in five stages:

• conversion into in ternal s truc tu res for fast access. This consists of the conversion of categories
in the gram m ar and lexicon into an in ternal form, consisting of an atom ic type and a list of
feature values, thus unification can be done more efficiently. Also, two indexes are created
— one for the gram m ar and one for the lexicon — both indexed by category type, allowing
efficient access to them .

• conversion of the gram m ar to a non-determ inistic finite s ta te m achine. This is the main part
— see the the next section for details about this.

• removal of error s ta tes from the non-determ inistic finite s ta te m achine. S tates can be created
which cannot lead to final sta tes, these are removed as well as all arcs pointing to them .

• determ inising. S tandard determ inising of the finite s ta te m achine (as described in [Hopcroft79
p. 22])

• analysis to produce sta tistics, th is finds the size, average and m axim um branching rates.

4 The A ctu a l Conversion

The conversion is done by building “agenda s ta tes” on an agenda and processing them until the
agenda is em pty. An “agenda s ta te ” consists of the following:

• A dep th — the num ber of rew rites th a t are required to get the first category in the rem ainder

• a list of rem aining categories — these are the categories (preterm inal or otherwise) th a t have
yet to be found before the end of a sentence is reached

• A set of variable bindings

• a s ta te in the non-determ inised m achine

The basic loop s ta r ts w ith an initial “agenda s ta te ” w ith the following settings:

• a dep th of 0

• a list con tain ing only the distinguished category

• a set of em pty bindings

• the in itial s ta te of the (non-determ inistic) FSM

The processing is as follows:

Take an “agenda s ta te ” from the agenda and take its rem ainder. R ew rite the first category in
the rem ainder, using the gram m ar, in all ways, recursively un til e ither the dep th lim it is m et or a
lexical category is found (i.e. a category which is in the lexicon).

R ew rites are m ade by replacing the first category w ith the righ t hand side of a gram m ar rule,
whose left hand side unifies w ith the first category. T hus a rew rite changes the first category,

-279- Intemational Parsing Workshop '89

increments the depth, and possibly binds some variables1. Also, in addition to the right hand side,
a special “end-subrule” marker («m) is added so that we can tell when to decrease the depth count.
For example: S may rewrite as follows2

S ==>
NP VP em = >
Det Noun em VP em

Then for each rewrite, check the lexicon and find all entries that can match the first category.
Add a transition to the state in the current “agenda state” , labelled with that lexical item, to a
new state, in the non-deterministic FSM.

This may be a (truly) new state or an already existing state. Each state in the non-deterministic
FSM has a “state descriptor” which symbolizes which categories from this state would lead to a final
state. The state descriptor is constructed by taking the remaining categories list and dereferencing
the variables, removing the “end-subrules” markers, and replacing any unbound variables with a
unique atom name representing a variable3. Thus no unification is required in searching, a simple
Lisp EQUAL is adequate (actually a more complex indexing system is used).

When looking for a “new state” , the state descriptor of the required state is constructed and a
(rather large) index is checked to find if such a state already exists, if so the new transition points
to the state related to that “state descriptor” .

If a truly new state is required a corresponding new “agenda state” is created. The “cdr” of
the remaining categories list is taken: that is the next category is found in the remainder list, any
“end-subrule” markers which precede it are removed and the depth is decremented.

5 A n E xam ple

For the sake of brevity the example grammar used here is only a standard context-free grammar
with atomic categories rather than a feature grammar. Thus we use EQUAL as our test operator,
while with feature grammars we would use unification, and record any resulting bindings.

Given the following grammar:

S — NP VP
NP —► Det Noun
NP —► PropNoun
VP — Verb NP

And a lexicon as follows:

th e —♦ Det
boy —► Noun
Hanako —♦ PropNoun
saw —► Verb

1 Because variable* are “uniquified* at each instantiation of a rule the correct bindingi are ensured throughout the
conversion.

3 Atomic symbols are used here as categories for brevity
9This is actually over-general, as variables which have been bound to one variable, and hence co-referenced, but

not (yet) bound to a literal, will still be treated as distinct by this method.

-280- Intemational Parsing Workshop 89

Let us go through some of the steps. The first stage is an agenda sta te of the form4:

depth : 0 rem ainder: (S) sta te : al

There are two possible rew rites

depth : 2 rem ainder: (PropNoun em VP em)
depth : 2 rem ainder: (D et Noun em VP em)

We then add transitions from al to two new sta tes labelled with “th e ” and “Hanako” like so:

Hanako

We then create two new “agenda s ta te s” and add them to the agenda

dep th : 1 rem ainder: (VP em) sta te : a2
depth : 2 rem ainder: (Noun em VP em) sta te : aS

Now consider the second one. As Noun is already a lexical category, there is no need to rewrite
it. We can add a transition from aS to a “new s ta te ” . To find the “s ta te descrip tor” of this “new
s ta te ” we first remove the first category, and then remove any “em” m arkers, decrem enting the
dep th accordingly. The resulting rem ainder and dep th is

depth : 1 rem ainder: (VP em)

Then we create the “s ta te descrip tor” from this new rem ainder, which will give sim ply (VP), which
is the sam e as the descrip to r of s2. Thus th is new arc labelled w ith “boy” will go from aS to a2.
Like this:

Hanako

Thus we only need one occurrence of the VP despite there being two “types” of NP. Of course
in larger grammars, we would probably have two parts of the FSM representing VPs, one dealing
with singular subject VPs, and the other with plural VPs (actually there may be more depending
on the distinctions made in the grammar). This of course means building a large FSM, but that
is, in part, the object of this exercise, trading space (i.e. the size of the FSM) with time (reducing
the number of unifications required).

4no bindings are shown as we dealing with a sim ple atom ic C F G

-281- International Parsing Workshop 89

5 .1 G e t t in g L o o p s fro m R e c u r s io n

Consider the following three rules in isolation:

NP — NP PP
NP —► Det Noun
PP — Prep NP

If we can collapse recursion into loops, we can represent these three rules by the very simple FSM

prep

We have two problems to deal with here, left recursion, and right recursion. Left recursion is a
lot harder to deal with than right recursion. With left recursion, during the rewrite stage we must
check to see if we have already used the rule during this rewrite. If we detect this, we construct
the new rewrite in a different way.

Instead of replacing the first category with its expansion, we find: what the non-recursive
rewrites are; and the rules which introduce the rewrites. For the sake of description we will consider
the case where there is only one non-recursive and one recursive rule, as in this example. Thus we
have a “non-recursive rewrite” (Det Noun en) and a “non-recursive part of a recursive rule” (PP
em — from the rule NP —► NP P P). We then construct a new remainder (for an “agenda state”)

(“non-recursive rewrite”
(“non-recursive part of a recursive rule”)
“top remainder”

)

When there are multiple occurrences of the first two parts we must form remainders for the cross-
product of them. However in our example, suppose we start with the remainder (NP VP e a) , the
three parts are

non-recursive rewrite Det Noun ea
non-recursive part of recursive rule PP ea
top remainder VP ea

Thus the complete rewrite is

(D et Noun ea (PP ea) VP ea)

The “looping part” in brackets, (PP ea), does not appear in the “state descriptor” and hence
this state is treated the same as (D et Noun ea VP ea). The important feature is this: when the
categories before the bracketed part have been dealt with and we have remainder of the form ((PP
ea) VP ea), we construct two new “agenda states” , one with remainder (PP ea VP ea) and the
other (VP ea) .

-282- International Parsing Workshop '89

This of course is too general as we are now trea ting the sta tes w ith the “s ta te descrip tors” (Det
Noun em VP em) and (Det Noun em (PP em) VP ea) as the same, which may not be true. W hat
we need to do is ensure th a t after the “looping p a rt” we can get back to the same sta te which did
not follow th a t p a rt. (Assuming no variable bindings have m ade th a t join inappropria te).

Right recursion is a lot easier, having generated a state w ith the remainder (PP em VP em),
we rewrite to (p rep NP em em VP em). After removing the prep we will be left w ith a remainder
of (NP em em VP em). Because we ignore “depth” and the “end-subrule” markers in generating
“state descriptors” , the “state descriptor” of (NP em em VP em) is the sam e as that of (NP em VP
em) , despite the different depths and number of “end-subrule” markers. Thus after the preposition
we can return to the point in the FSM where we require an NP followed by a VP.

It is true that this N P is “different” from the other. One is an NP w ithin a P P the other is the
subject of a sentence, but because we are merely doing recognition th is is all we need.

N otice that this m atching of states by a sta te descriptor is not guaranteed to merge similar
sta tes, since there m ay be cases where one remainder does not start w ith a lexical category and
another does. These may represent the sam e state if the first category can be written to the a
remainder the sam e as the other (and only that rem ainder). This m eans th at we will not guarantee
the m ost m inim al FSM during com pilation, but will collapse many states.

6 C om plexity R esults

It is not surprising that this is possible. The really interesting part is whether useful grammars can
be converted to reasonably sized finite state m achines in reasonable tim e.

T he code is w ritten in Com m on Lisp and runs on a number of different m achines. It had to be
re-w ritten a number of tim es to get the performance we wished. It has been true that the spectre
of unacceptable com putational com plexity has been just round the corner a number of tim es but
so far we have kept it at bay.

D escribing the size of a grammar is difficult, but to give som e idea o f the feasibility of this
m ethod o f running feature gram mars, one of our current gram mars, which consists of 31 G PSG-
like rules, describes declarative sentences w ith the following features:

transitive and intransitive verbs
copula sentences
m ultiple adjectives, and intensifiers in N Ps
quantifiers
noun com pounding
N P conjunction

The N P conjunction was quite a drastic addition, which increased the size of the resulting FSM by
an order o f m agnitude.

T he gram mar described above can be converted to a non-determ inistic FSM of about 9,000
s ta tes5 in around one hour on a Sun 4 /2 6 0 w ith 32M egabytes of m em ory. We feel th is is well
w ithin our 12 h o u r / 100,000 sta te lim it. But although th is grammar is bigger than many “toy
gram m ars” , it is still rather sm all and not really large enough to cover a significant proportion of
the dom ain we wish to cover.

5without conjunction the FSM is lew than 1,000 atate*

-283- Intemational Parsing Workshop 89

It should be added that we have had problems in determinismg some of the generated FSMs.
Though the conversion stage has taken around an hour, determinising has failed to finish in 75
hours, producing a much larger FSM than its non-determinised equivalent. This does suggest t h a t

perhaps we should only produce non-deterministic FSMs as output.

7 C om m ent

So the basic question is, “is it worth it?”

The major loss in moving from a chart parser using a feature grammar to a finite state machine
is the loss of a parse tree. One of the reasons for adding a sentence grammar to a speech recogniser
is to enable (eventually) some form of semantic analysis. There is an argument that because vast
numbers of hypotheses have to be dealt with by a speech recogniser, perhaps running with a FSM
as a grammar would be effective during recognition, and that post-processing of the few sentences
found could be done with a chart parser.

Then again perhaps speed is not the real thing to worry about, a fast chart parser and unification
algorithm might work almost as well (especially if machines are doubling in speed every year).

It is true that the technique is practically limited, no matter how fast machines get there will
always be grammars which cannot be converted in reasonable time and/or produce finite state
machines with too many states.

And as noted before, the algorithm does produce a FSM which accepts the subset of the language
described by the feature grammar where the “depth” less than the given lim it, plus some extra
sentences not originally accepted by the feature grammar. These extras are because of two faults
in the conversion algorithm, namely in joining the end of left recursive rules and not constraining
where variables have been co-indexed by another variable (and not an atomic value).

This over-generation seems to encourage the idea of using a real chart parser to post-process
and correct the sentences accepted by the FSM (though the types of grammars which cause these
problems are not common in our domain, so far).

^ r;thin our working framework (speech recognition) this method does produce useful results.
As can still allow our grammarians to write a high level description, but still have a fast
implementation of their grammar. So in spite of the short comings we will probably use this
technique for the foreseeable future.

8 A cknow ledgem ents

This work was supported by the UK Information Engineering Directorate/ Science and Engineering
Research Council as part of the IED /SER C Large Scale Integrated Speech Technology Demonstra
tor Project (SERC grants D /29604, D /29611, D /29628, F /10309, F /10316), in which Marconi
Speech and Information Systems are the industrial partner.

-284- Intemational Parsina Workshoo '89

References

[Gazdar85] G. G azdar, E Klein, F. Pullum and I. Sag Generalized. Phrase Structure Grammar
Blackwell, Oxford, 1985

[Hopcroft79] J . Hopcroft and J. Ullman An Introduction to Automata Theory, Languages and
Computation Addison Wesley, Reading 1979.

[Shieber86j S. Shieber An Introduction to Unification-based Approaches to Grammar CSLI
Lecture notes Num ber 4, 1986

[Thompson89] H. Thom pson FBF - A Micro-formalism for grammar: Syntax, Semantics and
Metatheory D ept of A l, University of E dinburgh, forthcom ing

-285- Intemational Parsing Workshop '89

