
Head-Driven Bidirectional Parsing: A Tabular Method

Giorgio Satta (0)(°°), Oliviero Stock (°°)

(°) University di Padova, via Belzoni 7, 35131 Padova, Italy

(°°) Istituto per la Ricerca Scientifica e Tecnologica, 38050 Povo, Trento, Italy

1. Introduction

Tabular methods for context-free language analysis [Graham and Harrison, 1976,

Graham et al., 1980], and in particular Earley's Algorithm [Earley, 1970], can be

considered a major reference for natural language parsing. Even if independently

conceived, Earley's Algorithm constitutes the basis for Chart parsing [Kay, 1980,

Kaplan, 1973].
One basic aspect o f known tabular methods, i.e. that the analysis proceedes

m onodirectionally, is a relevant limitation, that, although reasonable for artificial
languages, seems reductive for natural language. A strong reason for a bidirectional

approach within natural language analysis is that modem theories o f grammar emphasize

the role o f a particular element inside each constituent (phrase), called the head; this

element carries categorial as well as thematic information about other elements within the

constituent. It turns out that the acceptability and the general skeleton of each constituent,

crucially depend on such information. More concretely, a number o f possible partial

interpretations would be pruned out earlier, on the basis o f functional information attached

to the head, resulting in greater efficiency.
Some recent works in the framework o f Chart parsing [Steel and De Roeck, 1987,

Stock et al., 1989] have pointed out the importance of bidirectionality for natural language

analysis. Another work that deals with some form of bidirectionality [Bossi et a l ., 1983]

can be found in the formal language literature, though the analysis given there

presupposes Chomsky normal form grammars.
In this paper we shall introduce a tabular method coinceived for bidirectional context-

free parsing, discuss some o f its relevant properties and through an example give an idea

o f how the algorithm works.

2. Def in it ions

Assume a context-free grammar G=(N, E, P, S), where N is the finite set o f all non

terminal symbols, Z is the set o f terminal symbols, P is a finite set o f productions, and

Se N is the start symbol. L(G) represents the language generated by the grammar G. The

productions in P are numbered from 1 to IPI1, and are all o f form Dp-» C p j ... Cp ^) ,

1 The notation IPI here indicates the cardinality o f set P.
-43- International Parsing Workshop '89

.where k is a function defined over the set {1 ... IP!} and that takes values in the set Z* (the

set o f positive integers). In the following, the natural number p often will be used instead

of the production associated with it. Without loss of generality, here it is assumed that the

grammar G is in e-free form (see [Aho and Ullman, 1972:147]); a more general

formulation o f the algorithm does not lead to the loss o f the properties shown here.
A function x is defined over the set { 1...IPI} and it takes values in Z+. This function

indicates, for every production p in P, a position in the right-hand side o f the production,
occupied by a symbol in N u l . This position is called the head position , and the

corresponding symbol is said to be in the head position for production p. Every time,
during the analysis, a symbol is recognized that is in head position for some production p ,
the presence o f the symbol Dp relative to production p is then locally hypothesized

DEFINITION 2.1

A s ta t e is defined to be any quadruple [p, I d o t , r d o t , m] , with l< p ^ lP I,
0<ldot<rdot<K(p), m e { Im, rm).

The component p indicates the corresponding production in P; the components Idot and

rd o t represent two distinct positions, one after the other, in the right-hand side o f

production p. The component m is a simple indicator m -lm indicates that the value of

Idot cannot be further diminished, even if greater than zero, while m -rm indicates that the
value o f rd o t cannot be increased further, even if it is less than 7z(p). Note that, by

definition, one limitation excludes the other. The value is used for the indicator m in

the absence o f both the limitations just described. The use o f the index m, as it will be

shown, prevents the duplication o f “partial analyses” for substrings o f w. Every state

j=[p, Idot, rdot, m] may be understood to be a partial analysis relative to production p,

for which the constituents Cpjdot+1 ... Cp/dot* belonging to the right-hand side, have

been recognized. In the following, for convenience, the states will often be referred to in
these terms. The symbol Is denotes the set o f all states.

DEFINITION 2.2

The function F is defined as follows:
F: N u l - ^)

F(X)={5=[p, Idot, ldo t+ 1, -] I X=Cp ldol+1, x(p)=ldot+1}.

The set F(X) therefore contains all the states indicating partial analyses o f productions

in which the symbol X occupies the head position.

DEFINITION 2.3

An equivalence relation Q,in Isx ls is defined so that for two generic states s=[p, Idot,

r d o t , m] and j '= [p \ Idot', r d o t ', m rj, sQ§' holds if and only if p - p \ I d o t - l d o t ' and

rdo t= rdo t\

-44- International Parsing Workshop '89

3. The Algorithm

A recognizer is an algorithm capable o f accepting a generic string w e L(G) for a

particular grammar o f interest G. In all other cases, the string w is refused. A parser ,
instead, is an algorithm that can solve the problem of whether or not w belongs to L(G)
and is also able to indicate the possible derivation trees2 for every w e L(G). In this

section, a recognizer algorithm for context-free languages is presented. The use o f a

simple algorithm able to reconstruct the derivation trees by interpreting the recognition

matrix T (see for example [Graham et Harrison 1983]) is sufficient to obtain a parser

algorithm.
The algorithm uses a matrix T o f size (rt+l)x(n+l); each component fy of this matrix

takes values in the set Is), and is initialized with as empty set. The presentation o f the

recognition algorithm is preceded by a schematic illustration of the computation involved.
The algorithm inserts into the recognition matrix T each state s that indicates a partial

analysis previously obtained for the generic substring jWj. There is a one to one

correspondence between the indicies of the analyzed substring jWj and the indices o f the

component ry, in which state s has been inserted. The algorithm then processes each

state, combining it with nearby states in an effort to extend the portions of the string

dominated by these states. When the analysis relative to a particular state is completed

(for both the right and left sides), if the constituent obtained is in a head position for some

production p in P, a new partial analysis for the production p itself is inserted into matrix

T. Note that the algorithm straightforwardly separates the problem of the combination o f

different states from the problem of control. The algorithm in fact does not specify the

order in which the different states must be considered, nor in which order every single

state must be expanded in the two opposing sides. To that end, the algorithm uses a
variable A which takes values in the set ^(IsxNxN).

ALGORITHM 3.1

Given a context-free grammar G=(N, E, P, S) in e-free form, let w = a\ ... an, n>0 , be

an input string. D evelop a recognition matrix T, o f size (n+l)x(rt+ l), whose components

fy are coindexed from 0 to n for both sides.

b e g in

1. for i in {1 .. n) do
2. for s in F(a.) do

3. add triple e=(s , M , /) to set A only if s Q sq

does not hold for any triple e q = (s q ,

i - l , i)
4. while A not empty do

2 A derivation tree D associated with a string L(G), is a labeled tree formed by all the
productions used in the derivation ofw, representing the correct hierarchic order.

-45- International Parsing Workshop '89

5. extract any element e=(s, i , j) from the set A and
insert state s in fg ; apply each of the follow ing

procedures, in any order, to element e :
left-expander(e),

right-expander(e),

left-completer(e),

right-completer(e),

trigger(e);
6 . if s=[p, 0, n(p), m]<= tQ n, for some p e P such that Dp=S

7. then output(true)

8 . else output(error)

en d .

The five procedures mentioned above are described in the following.

PROCEDURE 3.1 Left-expander

Precondition The procedure is applied only when e - { s , iyJ) with s=[p, Idot, rdot , m],
ldot>0 , m*lm.

Description The following two cases are possible.
C ase 1: Cpj dole N . For every s '= [p \ 0, Kip'), /'</, such that D p'=Cpldot,

the state s ”=[p, Idot-1, rdot , -] is created and the triple e'=(s”, i \ j) is insened in set A,
only if j"Q^q does not hold for any state in or for any triple £q=(5q, i \ j) in A. If at

least one state s ’ is found with the above properties, set m -rm in s.
Case 2: C p ^ e l . If Cp ĉjot=ai, the state s'=[p, ld o t - \y rdot, -] is created and the

triple e'=(s\ i - 1, j) is insened into set A, only if j'C&q does not hold for any state s in

t{ j or for any triple ^q=(5q, i - l , j) in A. If C ^ ^ Q=a{, set m=rm in 5 .

This procedure is applied only if state s can be extended leftward (ldot>0) and only if it

has not already been extended rightward that is, if it is not subsumed to the right

by a more updated state. There are two cases, depending upon whether the left-hand
expansion symbol is a terminal symbol or not. If Cp ldol is a non-terminal symbol, the

search proceeds to the left o f state j, to any state s' (adjacent), that corresponds to a
completed analysis rdot’=n(pr)) o f a constituent usable by state s (Dp.=Cpjdot)*

If successful, the analysis is extended in correspondence with state s, including the

constituent found nearby; state s then is marked with m -rm , since this has been
subsumed on the left by a more updated state. If Cp Jdol is, instead, a terminal symbol,

and if C an extension o f the analyses corresponding to state s is made, including

the terminal symbol a ̂ Still, state s is marked with m -r m for the same reasons as in

Case 1. Furthermore, note that Procedure 3.1 never duplicates the triples in A, nor the

states belonging to the same component o f recognition matrix T.

-46- International Parsing Workshop ’89

PROCEDURE 3.2 Right-expander

Precondition The procedure is applied only when e-{s , i , j) with s -[p , Idot, rdot, m\,
rdot<n(p), m*rm.

Description There are the following two cases.
C a s e 1: Cp rdo[+1 e N . For every 5'=[/?', 0, K(p'), m']<= t. j ’> j , such that

D ,=C j ,, state s"=[p, Idot, rdo t+ l, -] is created and triple e'=(s'\ i j ') is insertedp p,raot+i ^
into set A, only if j"C£q does not hold for any state sq in t^, or for any triple eq=Csq, i j l

in A. If at least one state s' has been found with the properties described above, set m -lm

in s.
Case 2: Cp rdot+1e I . If Cp rdot+1=aj+1, the state s'=[p, Idot, rdo t+ l, -] is created and

the triple e '= (s \ i j + l) is inserted in A, only if .s'Q?q does not hold for any state s q in

riJ+ r 15 c P,idot= a j + r set m=lm in s -

This procedure is symmetric to the left-expander procedure, so the explanation is

omitted.

PROCEDURE 3.3 Left-completer

Precondition The procedure is applied only when e-{s , / , /) , with J=[p, 0 , 7i(p), m].
D escription For every s'=[p', Idot', rdot', tj. /'</, rdot'ciip"), m'^rm. such that

Dp=Cp. rdot’+ r state Idol’, r d o t ’+ 1 , -] is created and the triple e '-{s" , i \ j) is
inserted in set A only if s"Q$q does not hold for any state in r-,j or for any triple

e = (jq, i \ j) in A. Furthermore, set m '-lm for every s' found.

This procedure is applied whenever the analysis o f a constituent D p has been

completed through a state s=[p, 0, Kip), m]. It proceeds by searching leftward of state j

for any adjacent state s' that has not yet been subsumed to the left (m'*rm) and is able to
“expand” state 5 CDp= C p. rdot.+1). If successful, an extension o f the analysis

corresponding to s' is carried out, including the constituent D p. State s' is then marked

with m -lm , since it has now been subsumed on the right by a more updated state. Again,

note that the procedure never duplicates triples in A, nor states belonging to the same

component o f the recognition matrix T.

PROCEDURE 3.4 Right-completer

Precondition The procedure is applied only when e -(s , i , j), with s - [p , 0, n (p), m].
D escrip tion For every s ' - [p \ Idot', rd o t ', m ^e f y . , /> / , ldot'>0, m W m , such that

D =C , , . , state s"=[p, ldo t ' - \ , rd o t \ -] is created and the triple e'=(s", i j 9) is inserted p p ,laot ^ '
in set A only if .y"C&q does not hold true for any state sq in or for any triple eq=(>yq,

y") in A. Furthermore, set m - r m for every s' found.

This procedure is symmetric to the left-completer procedure, so the explanation is

omitted.

-47- Intemational Parsing Workshop '89

PROCEDURE 3.5 Trigger

Precondition The procedure is applied only when e - (s , i , j) , with j=[p, 0, K(p), m\.

Description For every se F(Dp), insert the triple e=(s, i, j) in set A only if sQ?q does

not hold for any state sq in t[j or for any triple eq=(sq, i, j) in A.

The procedure is applied whenever the analysis of a particular constituent has been

completed and this constituent occupies the head position in some production p. In this

case a new state corresponding to a partial analysis for production p is created, including

the head. Once again, note that the procedure never duplicates triples in A, nor states

belonging to the same component of the recognition matrix T.

4. Some Formal Properties of the Algorithm

In this section the most interesting properties of Algorithm 3.1 are stated. For a formal

proof o f what follows refer to [Satta and Stock, 1989b]. Four major properties have been

grouped under Invariant 4.1 below. Note that soundness and completeness for Algorithm

3.1 follow straightforwardly from statements (i) and (ii) in Invariant 4.1.

INVARIANT 4.1
*

(i) s = [p , Id o t , r d o t , m] e ti j o n l y i / C p ldot+1 ... Cp rdot => a i+1 ... a j , i < j ,

ldot+ 1 <x{p)<rdor,

(H) Cp^dot+i-.Cp^ot => i<j, Idot +1 <x(p)<rdot only if a quadruple h=[h\,

hi, /13, h4\, hq>0, 1^7<4 exists such that s=[p , ldo t-h \, rdot-^h^, m]e ti_h3j+h^

(Hi) s=[p, Idot, rdot, lm \e only ifs'=[p, Idot, rdo t+ \, tx \'yf > j \

(iv) s= [p , Idot, rdo t , rm]e r,j only i f s = [p , Idot-1, rdo t , m]e f< i.

Algorithm 3.1 allows the extension o f a state to both the left and right sides. This

possibility, if not carefully controlled, can lead to the duplication o f an analysis, in the

follow ing way. If a state s , relative to a partial analysis for a constituent Cs, is

independently extended to both sides, it would lead to the introduction o f two partially

overlapping states, s' and s ' \ for the same analysis. The completion o f s' and 5 " then
would lead to the duplication o f constituent Cs- The algorithm presented here uses the

index m, associated with each state, so as to avoid partial overlapping for two (partial)

analyses o f the same constituent. Formally, we define the partial overlapping relation as

follow s.

DEFINITION 4.1 Partial Overlapping Relation

Tw o states s= [p , Idot , rdot, m]e ry and 5 = [p , Idot’, r d o t \ t[' j ’ are p a r t ia l ly

overlapped (s‘Dsr) iff /< /'< /< /, ldot<ldot’< rdot<rdot\ and, furthermore, s subsumes the

same constituents Cpjdot'+l—Cpjciot subsumed in s ’.

Note that for two states s= [p , Idot, rdot, m] and J = [p , Idot’, r d o t \ m *] such that
s(Ds\ it always holds that Idot'<z(p)<rdot. The following theorem can now be stated.

-48- International Parsing Workshop '89

THEOREM 4.1

Algorithm 3.1 never generates two states s and s' such that sUs'.

The following result regards space and time complexity for Algorithm 3.1. Such a
result is intended for a Random Access Machine model of computation.

t h e o r e m 4.2

Algorithm 3.1 requires an amount of space 0 (n 2) and an amount of time 0(rc3), where

n is the length of the input string.

5. A Brief Example

In order to have an insight into Algorithm 3.1, an example regarding a simple
computation is given here. Assume an unambiguous context-free grammar G=(N, I , P,
S), where N =(S , A, B}, L={a, b, c, d, e) , and P is the production set given as follows:

1 : S —» A a , x (l)= 2 , 7t (l)= 2 ;
2 : S -> B b , l(2)= 2 , tt(2)=2;
3: A - » c A c , t(3)=2, 7T(3)=3;
4: A —> d , X(4)=l, 7t(4)=l;

5: B —> c B c , t(5)=2, ti(5)=3;

6: B -» e , x(6)= l, 7t(6)= l.

From Definition 2.2 it follows that:

F(A) = {[3, 1 , 2 , -] } ; F(B) = {[5, 1 , 2 , -] } ;

F(a) = {[1, 1 , 2 , -] } ; ¥(b) = {[2, 1 , 2 , -] } ;

F(*f) = {[4, 0, 1 , -] } ; F(e) = {[6 , 0, 1 , -] };
F(S) = F(c) = 0 .

A run o f Algorithm 3.1 on the string w=cceccb is simplified by the follow ing steps

(the order o f application for the five procedures at line 5 is chosen at random).

1) ^ i= [6 , 0 , 1 , -] is inserted in ^ 3 and S2=[2 > 1 * 2 , -] is inserted in rj 5 , by

line 3;
2) 3̂=[5 , 1 , 2 , -] is inserted in f2 3 by the trigger procedure;

3) 54=[5, 0, 2, -] is inserted in and m is set to rm in state 53 , by Case 2 o f

the left-expander procedure;
4) J5=[5 , 0, 3, -] is inserted in f 1>4 and m is set to Im in state s4 , by Case 2 of

the right-expander procedure;
5) 5‘6=[5 , 1 , 2 , -] is inserted in r1>4 by the trigger procedure;

6) j 7=[5, 1 , 3 , -] is inserted in and m is set to Im in state by Case 2 o f

the right-expander procedure;
7) 5g=[5 , 0, 3, -] is inserted in ^ and m is set to rm in state s-j, by Case 2 o f

the left-expander procedure;

-49- International Parsing Workshop '89

8) ^ - [5 , 1 , 2 , -] is inserted in r0,5 by the trigger procedure;

9) 5 io= [2 , 0, 2, -] is inserted in fQ,6 an<̂ m *s set t0 rm state by the
right-completer procedure;

1 0) the algorithm outputs true and then stops.

Note how the setting of the m components in states 53 and 55 prevents the expansion of

partial analysis at both sides. Though not shown here, in more complicated cases the

setting o f the m components permits the left-completer procedure to combine a state s with

the “leftward largest” partial analyses that are adjacent to the left of s, preventing once

more partial analysis duplication (vice versa for the right-completer procedure).

Finally, note that in the above example Algorithm 3.1 has constructed 10 states, while

a run of the classic method o f Earley on the same string would have constructed 25 states.
Furthermore, by defining x(p)= 1, l<p<lPI, Algorithm 3.1 mimics the left-corner strategy

as stated in [Wir£n, 1987], resulting in the construction o f 17 states for the same analysis.

6. Final Remarks

This paper discusses a parsing algorithm that extends bidirectionally the classic tabular

methods for context-free language analysis. The algorithm is given for e-free form

context-free grammars, but it is not difficult to extend it to the general case, for example

by employing the same technique used in [Graham et al. 1980] in the treatment o f empty

categories.

With respect to natural language parsing, the presented tabular method is compatible

with the well known “Active Chart Parsing” technique, as pointed out in [Satta and Stock

1989a]. Finally, the extension to Earley's Algorithm proposed in [Shieber 1985] for

parsing complex-feature-based formalisms, could be equally applicable to the presented

approach.

R e f e r e n c e s

[Aho and Ullm an, 1972] Aho, A. V ., and J. D. Ullman. The Theory o f Parsing,
Translation, an Compiling, vol. 1, Prentice-Hall, Englewood C liffs, New Jersey,
1972.

[Bossi et a l ., 1983] Bossi, A., N. Cocco, and L. Colussi. A divide-and-conquer ap
proach to general context-free parsing. Information Processing Letters, 16 - pp. 203-
208, 1983.

[Earley, 1970] Earley, J. An Efficient Context-Free Parsing Algorithm. Communications
o f the A C M , 13(2), pp. 94-102, 1970.

[Graham and Harrison, 1976] Graham, S. L., and M. A. Harrison. Parsing o f General
Context Free Languages. Advances in Computers , pp. 77-185 , Academ ic Press,
N ew York, 1976.

[Graham et a l ., 1980] Graham, S. L., M. A. Harrison, and W. L. Ruzzo. An Improved
Context-Free Recognizer. ACM Toplas , 2(3), pp. 415-462, 1980.

[Kaplan, 1973] Kaplan, R. M. A General Syntactic Processor. In: (R. Rustin, ed)
Natural Language Processing , pp. 193-241, Algorithmics Press, New York, New
York, 1973.

-50- International Parsing Workshop '89

[Kay, 1980] Kay, M. Algorithm Schemata and Data Structures in Syntactic Processing.
Tecnical Report CSL-80 Xerox-PARC, Palo Alto, California, 1980.

[Satta and Stock, 1989a] Satta, G., and O. Stock. Formal Properties and Implementation
of Bidirectional Chans. Proceedings o f the 11th International Joint Conference on
Artificial Intelligence, Detroit, Michigan, 1989.

[Satta and Stock, 1989b] Satta, G., and O. Stock. Bidirectional Context-Free Language
Parsing within a tabular approach, submitted for publication.

[Shieber, 1985] Shieber, S. M. Using Restriction to Extend Parsing Algorithms for
Complex-Feature-Based Formalisms. Proceedings o f the 23rd Conference of the
Association for Computational Linguistics, Chicago, Illinois, 1985.

[Steel and De Roeck, 1987] Steel, S. and A. De Roeck. Bidirectional Chart Parsing.
Proceedings o f AISB-87, Edinburgh, Scotland, 1987.

[Stock et al., 1989] Stock, O., R. Falcone, and P. Insinnamo. Bidirectional Charts: a
Potential Technique for Parsing Spoken Natural Language. Computer Speech and
Language, 3, 1989.

[Wiren, 1987] Wiren, M. A Comparison o f Rule-Invocation Strategies in Context-Free
Parsing. Proceedings o f the 3rd Conference of the European Chapter o f the Associa
tion fo r Computational Linguistics, Copenhagen, Denmark, 1987.

-51- Intemational Parsing Workshop '89

