FASS is the Swedish drug catalogue. An information retrjeval system FASSIS has been designed and implemented by LINFO AB and Uppsala Unjversity Computing Center (UDAC) with this as a basjs. In this system every word occurrence is treated as a key word.

Work has been under way sjnce spring lyij at the Center for Computational. Linguistics to produce a key word jndex of basic forms for FASSIS by semjautomatic means. One step towards this goal is to bujld a stem dictjonary covering the material (see further Sågvall Hein 1985a). Two parallel lines have been followed side by side. On the one hand, the full text of FASS has been investigated and prepared for treatment by the Center's program package for jinguistic text processing, TFXI'PACK, which produces word lists, concordances, etc (see Rosen 1986 and Rosén \& Sjöberg 1985 for further detajls). On the other hand, the present key word file in FASSIS has been used as a test file in attempting to jdentify stems in the material. This presentation will concentrate on these attennts.

For the sake of illustration an extremly short but in other respects representative drug description from FASS is presented in fig. 1 below.

Capsolin
Parke-Davjs
Salva
Smärtstijllande salva Grupp 12F U510
Deklaratjon: 1 g innehäller: Oleoresin capsic. 12 mg , camphor. $52,5 \mathrm{mg}$, aetherol. tereb. $97,5 \mathrm{mg}$, eucalypti aetherol. 25 mg , cera flava, vaseljn. et odor q.s.
Upplysningar. Parke-Davis, tel. 08-82 0350.
Fgensiaper. Ükar hudgenomblüdnjingen och ger en värmekänsla j det behandlade området.
Indikatorer. Lokal behandling vid tillfällijg huvudvärk.
Försiktignet. Üverkänslighet mot ingäende bestăndsdelar, speciellt terpentinolja, kan förekomma.
Dosering. Appliceras tunt och ingnides lätt några gånger dagligen. I barnpraxis spädes helst med 3-4 delar vaselin. Observera. Capsoljn skall ej komma j kontakt med ügon, slemhinnor eller skadad hud. Händerna tvättas vall. Förpacknjngar och priser. Salva
35 g 17:40

- fig. 1. -

1. Strategy.

Our aim has veen to identjfy automatically as many stems as possjble starting from the present key word index. One problem with this file is that all words longer than fifteen letters have been chopped off $a t$ the fifteenth letter. Another problem is that the distinction between capjtal and common letters is not maintained in the file. When TEXTPACK produces a correct and complete file of the vocabulary of the materjal, with this difference kept and with deleted letiers beyond the fifteenth restored, this file will replace the present test file.

A study of the material shows that there are a lot of exceptions from standard Swedish morphology. Many word forms are of forejgn origin or are numerical expressions or hybrids as jllustated below.
... jbland av karaktären bull's eye ...
... aktjvt ulcus ventriculi et duodeni ...
... mixtur $40 \mathrm{mg} / \mathrm{ml}$..
... 24 st var 411496 ..
.. cirka 1-2 timmar ...
... uppges till 80-85\% ...
... 12:-/st ...

In all there are ca. 40,000 graphical words in the key word file among which ca. 10,000 are purely numerical expressions. These have been removed from the target set for the stem identification programne.

As a first step in the stem identjfication process I wanted to mark, and thus, for the time being, remove from further analysis, words of foreign orjgin, together with abbrevjations and proper namnes. And FASS contajns a lot of them! [here are, for example, a large number of names of drugs and companjes which produce them, of Latin names of chemjcal substances and abbreviations of these. There are, furthermore, a lot of Latin names of organs, illnesses, bacterial specjes and so forth, together with Finglish expressions and quotations, with references. Quite a number of these "special words" can be identified by capitalising on the internal structure of the drug descripijons. Thus, names of drugs (1,377) and companjes which produce them (150) occur in posts which are specjally marked in the FASS source file. As for the greater part of the aodreviated Latin names of chemical substances, they occur under the suiveading of 'DFK' - for "declarations" (see fig. 1). Ca. 1,200 different words ending with the full stop of abbreviation have so far been identifjed in these sections. These names and abureviatjons are marked in tne source file.

There is a concentration of Latin names of chemical substances in the 'DEK'-sections, and, as the result of the envisaged TFXCPACK treatment of the source file will allow us to treat different parts of the material as a corpus of jts own, i.t wi.ll also for example be possible to gather a large number of the Latin words by picking out word forms in 'DFK' sections, which neither contain the full stop of aboreviation nor occur in the remainder of the text. With the distinction of words with capital and common initial letters maintained we will also be able to heuristically juentify the remaining proper names in the text assuming that words which only occur with an jnjitjal capital letter are proper names.

While wajting for the TEXTPACK preliminaries to be completed, Latin, Figlish and French words and expressions as well as proper names 'other than the ones already marked) have been entered manually into special files as they crop up on inspection of preliminary results of rough test marking in the key word file. At present the English "dictionary" contains 110 words and expressions, the latin "dictjonary" 380 and the list of names 145, the latter comprising mainly names of persons, journals and drugs. After thjs markjing there remain ca. 27,000 unmarked word forms for further analysjs.

The next step towards building a stem dictionary was to jdentify automatically as many stems as possjble among these remaining word forms. For this purpose I have chosen to work with heurjstic rules for the recognition of word endings which I have expressed in Brodda's BFTA system (for a descriptjon of the system see for example Brodda \& Karlsson 1980). Because of the size of the material and the definite need for manual inspection of the result produced by the heuristic rules I found it necessary to concentrate on smaller parts of the materjal at a time, gradually trying to correct mistakes in the analysis more or less manually by adding "exception rules". I therefore divjded the set of rules into groups that tentatj.vely mark approximately 2,000-5,000 word forms each, the markings then bejng carefully checked and new rules added until the set of words is correctly analysed and marked.

A stem dictionary has been created with the help of the markings introduced into the key words, and word forms containing these stem are removed from the source file. So far, ca. 16,500 different stems have been jdentified in FASS, and with word forms containing these stems removed from the source file there remain ca. ?,000 unmarked forms. Of these, ca. 2,800 are words which have been chopped off at the fifteenth letter, the majority of which will be ascribed a correct analysis by our rules when restored to their
full length. The rest remain to be treated.
2. Corments on the BETA rules.

The rules I lave devised analyse word endings only. They mark stems in word forms depending primarily on whether they contain a characteristic suffix or a derjvational component. The rules are divided into five mutually independent groups, two of which concentrate on identjfying noun suffixes, one on verbs and one on adjectives. In the fifth group I employ a list of final derivational strings which occur frequently in the text.

The first set of rules includes the most distinctive suffixes '-arna!s)', '-erna(s)', '-orna!(s)', '-ar(s)','-er(s)' and '-or!(s)', the central rules bejing*

```
'ARNA' --> '=ARNA/s'
'ERNA' --> '=FRNA/s'
'ORNA' --> '=ORNA/s'
    'AR' --> '=AR/s' after 'D','G','L','M','P','S'
    'AR' --> 'A=R/v' otherwise
    'FR' --> '=FR/v' after 'G','J'
    'ER' --> 'ER=/s' after 'C','K'
    'ER' --> '=FR/s' otherwise
    'OR' --> 'OR=/s' after 'U'
    'OR' --> '=OR/s' otherwj.se
```

There is also a set of rules by which incorrect analyses generated by these heuristic rules can be avoided. We call them "exception rules" simply. Let the following examples suffice as an illustration.

```
'KAR' --> 'K=AR*/s' after 'C','J','N','S'
'KVAR ' --> 'KVAR/adv'
'DELAR' --> 'DFLAR/hom'
'MOLAR' --> 'MOLAR/adj'
'SPFLAR' --> 'SPELA=R/v'
```

[^0]In all. there are 230 rules in this set, and they mark a total of 2,813 stems $!455$ are verbs, 50 adjectives, 22 homographs and the rest nouns. Examples of homographs are 'delar', 'klumpar', 'pumpar', 'isomer'.). The number of "exception rules" is 210.

The main rules in the next set of rules which deal with possible noun suffixes are

'AN'	-->	' $=$ AN/s'
'ANS'	-->	' $=$ ANS/s'
'ATS'	-->	' $=$ ATS/s ${ }^{\prime}$
'EN'	-->	'=EN/s'
'ENS'	-->	' $=\mathrm{FNS} / \mathrm{s}^{\prime}$
'ET'	-->	$1=\mathrm{ET} / \mathrm{s}^{\prime}$
'ETS'	-->	' $=$ ETS/s ${ }^{\prime}$

Fiven more rules for exceptional cases must be added here in order that mistakes in the analysis should not multi.ply inordinately. There are altogether 28 ? rules (278 "exceptional" ones) here which together mark 3,100 stems ! 32 adjectives, 38 adverbs, 110 verbs, 20 homographs and the rest nouns).

The rules in the third set are mainly concerned wjith the identification of adjective/particjple endings. The emphasis lies on suffixes like '-da', '-dd', '-ld', '-rd', '-ad', '-at', '-ade', '-ande', and '-ende'. Word forms ending with '-as' and '-es' are also marked here. There is a total of 310 rules in the group, marking 3,275 stems (ca. 2,300 verbs, including participles, 80 adjectives and the rest nouns). The number of "exception rules" is 276.

With the rules in the fourth group 2,484 stems have been identified, the majority of which $(1,925)$ are adjective stems and the remajnder nouns and verbs. The word endings recognised here are '-igt', '-iga', '-iskt', '-iska', '-frjtt', '-fria', '-bart', '-bara', '-lt', '-la', '-mt', '-mma', '-nt' '-na', '-vt', '-va', '-ta', '-ärt', '-ära', and '-are', '-ast',
'-aste'. The group consists of 230 rules in all, 180 "exceptional".

A large number of words in the text contain no explicit jnflexional ending and many of them therefore remain unmarked by the above rules. But many of these contain a derivational component indicating that the word as whole belongs to a given category, the stem being identical to the word itself. Fxamples of derivational strings of this kind are '-jd' 'hexjeid, jodid, ureid, karbamjd; gravid, fungicid, cyticid, vermicid, baktericid, tyfoid, myceloid, ...), '-fri' (valfri, alkoholfri, symptomfri, kaliumfri, ...), '-isk' (biologisk, urologisk, allergisk, kirurgisk, alkaljsk, ...), 'aär' (bacjllär, lăgosmolär, bjpolär, muskulär, högmolekylär, ...), '-ig' (mjolikig, flockig, lindrig,), '-jng' (od〕ing, mässling, pensling, rubbning, välling,..), '-tjon' and '-sion'. A list of a number of final components in compound words frequently occurring in the text such as 'terapi' (67), 'medel.' (50), 'dos' (70), 'vjrus', 'status' and 'enzym' is also used here. Altogether the rules in the group number 445 (ca. 210 "exceptional") and correctly mark around 7,000 words.
3. Future plans and concluding remarks.

Not all the stems in FASS have yet been identified, and work on the remaining stems continues. Certain suffixes, for example '-a', are so insignificant that it has not been practically feasible to consider them as yet, but now they might be of some help. And purely manual methods will presumably have to be resorted to in the final stages.

It also remajns to deal manually with the ca. 300 words and stems marked as homographs (beroende, buffrar, format, ... and allergen=, hosta=, ...) and to check for pure adjectives in the words marked as participles.

The BFTA system has proved to be practical to work with. It is a simple
matter to express rules within the system for the sort of treatment we wanted to give to our word form file. That the number of exception rules is large is not, of course, something for which the BETA system can be blamed. Certainly $j t$ is possible that we could have managed with fewer; however, the aim has not been to build up as compact a system of rules as possible, but rather to identify the stems in the text as efficiently as possible. The number of rules which are of a purely lexical character is also so large that it would seem to be very difficult to reduce them dramatically. A trial run, albejt preliminary, with a version of Brodda's SWFMORF pointed in the same direction.

In parallel with the work described in tnis paper preparartions are under way for the next step in our project, i.e. the integration of the stem dictonary in an automatic morphologic anal.yser. One morphological model for the inflectional analysis has been tested for some of the jdentified stems (Sảgvall Hein 1985b). The specificatjon of the particular word class to which the jdentjfied stems belong was made in order to facilijtate this phase.

Brodda Benny, and Karlsson Fred, 1980. "An experiment wi.th Automatic morphological analysis of Finnish". Papers from the Institute of Linguistics, University of Stockholm, Publication 40. (Reprinted 1981: Department of General Linguistics, Unjversi乞y of Helsinki, Publication, No.7.)

Rosén Valentjna, 1986. "Förberedande undersökning av FASS för automatisk nyckelordsindexerjag." Center for Computational Linguistics, University of Uppsala. (forthcoming)

Rosen Valentina, and Sjöberg Margareta, 1985. "TFXTPACK, programpaket för spräkvetenskaplig textbearbetning". Center for Computational Linguistics, University of Uppsala.

Sågvall Hejn Anna, 1985a. "Automatic Key-Word indexing for FASSIS. Proposals for a project". Center for Computational Linguistics, University of Uppsala.
---- 1985b. "Parsing by means of Uppsala Chart Processor". In Bolc, L (ed.) Natural. Language Parsing Systems. Springer-Verlag. (forthcoming)

[^0]: * '/s', '/v' , etc. are form class tags denoting respectively nouns, verbs, etc.

