
ConlluEditor: a fully graphical editor for Universal dependencies
treebank files

Johannes Heinecke
Orange Labs

2 rue Pierre Marzin
F - 22307 Lannion cedex

johannes.heinecke@orange.com

Abstract

In this paper we present the ConlluEditor annotation tool for manual annotation of files in
CoNLL-U format, such as Universal Dependencies treebanks. Apart from providing a graphical
editor for basic and enhanced dependencies, multi-token words, it also runs validation scripts to
find potential errors. ConlluEditor uses a client-server architecture. It is freely-available under
the 3-Clause BSD License.

1 Introduction

The Universal dependencies (UD) project (Nivre et al., 2016) currently contains more than 140 tree-
banks in nearly 80 languages, all annotated following the same guidelines for POS tags (UPOS) and
dependency relations and stored in a standard format, CoNLL-U. Some treebanks have been converted
from an original annotation scheme, whereas others have been annotated from scratch using the UD an-
notation guidelines. Annotating new sentences for a treebank with a text editor is diffcult, that is why
many editing tools exist to help annotators.

2 Related Work

The UD project lists some of the most prominent editors for UD data1. We describe a subset of these
editors, which we used for various annotation tasks, in order to explain the motivation for this work. We
do not go into detail for annotation tools, which do not handle (import/export) CoNLL-U format.

BRAT (Stenetorp et al., 2012) is a powerful annotation tool, which can be configured in detail for
manu different annotation tasks, like named entities, coreferences, POS tagging, and dependency rela-
tions. BRAT uses an internal character-based format, which can be transformed into CoNLL-U. Since the
annotation is character-based, it is the annotator who can decide the start and the end of the tokens. BRAT

uses a server and a frontend within a web browser. The display of the annotations, however, becomes
confusing if the linked tokens are too wide apart to be shown on a single line.

WebAnno (Eckart de Castilho et al., 2016) is like BRAT a general annotation tool, as powerful as the
former and highly configurable through a web interface. As BRAT WebAnno is multi-user and annota-
tions can be made in parallel. apart from UD’s CoNLL-U format, WebAnno reads and writes many other
standard annotation formats, depending on the annotation tasks. As BRAT, WebAnno displays depen-
dency trees in a flat graph mode (cf. figure 3). Long sentences are wrapped into multiple line, which
makes it sometimes difficult to grasp complex dependencies.

UD Annotatrix (Tyers et al., 2018) is a lightweight browser based annotation tool for UD treebanks.
Dependency trees can either be edited in a graphical (flat graph) mode or by directly modifying the
underlying CoNLL-U data. Annotatrix provides tools to modify the tokenisation (splitting or joining
tokens). Apart from CoNLL-U other formats can be used, including plain text. Dependency graphs can
be exported as image or LATEX-code.

Arborator (Gerdes, 2013) permits, like WebAnno, a collaborative annotation of dependency corpora.
As Annotatrix, the dependency graphs can be edited in a graphical mode or by modifying the underlying

1https://universaldependencies.org/tools.html

https://universaldependencies.org/tools.html


CoNLL-U code. Like WebAnno, the corpus being annotated is curated by an administrator. Several
annotations of a single sentence can be compared to find the best annotation. Arborator provides a
complex search language which enables the annotator to find examples of existing annotations. The
dependency graphs can be exported in several image formats. Both Arborator and Annotatrix display
sentences as graphics, without wrapping into multiple lines.

3 Motivation

Why yet another tool? Every tool has advantages and inconveniences, either technical issues (on-
line/offline, needs a server or not, provides a functionality like searching or validating or not) or er-
gonomic ones (size of graphs/trees displayed, edition mode).

When we started working with UD treebanks, the then existing tools to graphically display dependency
trees did not provide all display and search functions we needed. Further, for a demo we needed an offline
solution. Finally, from a personal point of view, flat dependency graphs are more difficult to understand
than dependency trees, which show horizontally the dependents. Notably in long sentence, one can
see quickly the clausal structure. What started as a quick javascript hack to display dependency trees
graphically, grew finally into a fully fledged editor which we tested in correcting existing CoNLL-U files
and annotations of new sentences from scratch. Annotating dependency relations and correcting token
information like form, lemma UPOS, XPOS and features proved to be really fast with this tool.

ConlluEditor provides the following features, which will be explained in the remaining sections:

• full graphical editor for basic and enhanced dependency relations
• word edit (form, lemma, UPOS, XPOS, features, misc-column)
• autocompletion (UPOS, XPOS, deprels; lists of valid labels must be provided)
• editing multitoken words ([1-2] ...)
• support for empty nodes ([5.1] ...)
• comment editing
• support for right-to-left scripts like Arabic or Hebrew
• split and join words (to correct bad tokenization)
• split and join sentences (to modify sentence segmentation)
• undo/redo
• regex search functions (including sequences of tokens, sub-graphs and comments)
• git support (add/commit)
• validation: indicates undefined UPOS, XPOS, dependency relations (based on lists given to the

server)
• prohibition of invalid (cyclic) trees
• normalisation of token ids (first column, from 1 to n, taking into account multitoken words, empty

words and heads)
• validation with external script (such like UD’s validate.py2) on the current sentence
• export of dependency graphs as .svg image, LATEX-code (for the tikz-dependenciy3 package or the
deptree.sty4 LATEX style, provided by ConlluEditor), sd-parse5, CoNLL-U

• limited multi-user support: as long as two users do not edit the same sentence

ConlluEditor does not (yet) allow collaborative working like Arborator or WebAnno or other tools. So
each annotator works on an individual copy which have to be merged in a second step.

The ConlluEditor is under the 3-Clause BSD License6 and available at https://github.com/

Orange-OpenSource/conllueditor.

2https://github.com/UniversalDependencies/tools.git
3https://ctan.org/pkg/tikz-dependency
4https://github.com/Orange-OpenSource/conllueditor/blob/master/doc/deptree-doc.pdf
5http://nlp.stanford.edu/software/stanford-dependencies.shtml
6https://opensource.org/licenses/BSD-3-Clause

https://github.com/Orange-OpenSource/conllueditor
https://github.com/Orange-OpenSource/conllueditor
https://github.com/UniversalDependencies/tools.git
https://ctan.org/pkg/tikz-dependency
https://github.com/Orange-OpenSource/conllueditor/blob/master/doc/deptree-doc.pdf
http://nlp.stanford.edu/software/stanford-dependencies.shtml
https://opensource.org/licenses/BSD-3-Clause


Figure 1: Main view in tree mode (note the multitoken word at nodes 9 and 10). The search buttons can
be hidden to have place for deeper trees. Morpho-syntactic features can be displayed or hidden (to gain
vertical space). Search results are highlighted (here dormito). The horizontal and vertical spacing can
be modified to accomodate longer sentences. In order to change the font size, a .css style sheet can be
modified. A help-Button provides detailed help on how to use the editor interface. (Example taken from
the UD Italian-ISDT treebank).

4 Features

ConlluEditor is a server/client architecture with a server implemented in java which reads and manages
the CoNLL-U file, writes modifications to disk and commits the changes to a git repository (if under git
control). The front-end is implemented in javascript (using Bootstrap and jQuery), the main edit view
is shown in figure 1. The data is passed between client and server using AJAX. The front-end has been
tested with recent versions for Firefox, Chrome and Edge on Linux and Windows 10.

4.1 Graphical editing

Annotating dependency relations graphically speeds up the annotation work enormously. In ConlluEd-
itor a simple click on a word (the future dependent) and a subsequent click on a second word (head)
establishes a dependency relation, a dependency label edit window (fig. 2) opens to set the dependency
relation label. Clicking twice on the same word makes this word root.

The graphical display of dependency trees is often a matter of personal taste. For space reasons,
dependency graphs are often presented as flat graphs (e.g. generated with the tikz-dependencies package
for LATEX). In order to visually understand the syntax of a tree, a tree presentation (cf. figure 1) is often
clearer. ConlluEditor proposes both views (check-button). Figure 3 shows the flat mode (here, the search
functions are hidden).

In order to modify the word, a double-click or Control-click opens the word edit window (fig. 4). In
order to avoid errors on UPOS, XPOS or dependency labels, ConlluEditor reads lists of valid labels and
provides autocompletion. It also highlights invalid values in the main view.

Multitoken words can be edited (first and last word, multitoken wordform), by clicking on the multi-



Figure 2: Dependency label edit window. All possible labels are proposed via autocompletion. Invalid
labels, however, are accepted.

token indicator.

Figure 3: Dependency tree in flat mode. Multitoken words are marked as in tree mode. In flat mode,
enhanced dependencies are also displayed and can be edited.

4.2 Searching
Once treebanks grow in size, search for similar phrases becomes extremely useful, not only to annotate
similar structures in an similar way. ConlluEditor provides searching (with regular expressions) for
forms, lemmas, UPOS, XPOS, dependency relations and comments. Searching sequences of forms,
lemmas etc. is also possible, as well as a combination of these, like searching for all UPOS PRON which
precede the lemma fish. It is, however, much less powerful than, for example, the Grew system (Bonfante
et al., 2018)7, which provides a complex query language to find sub-trees/sequences of forms, lemmas,
UPOS, etc.

4.3 Data export and git support
Currently ConlluEditor reads and saves only files in the CoNLL-U standard8. However the interface
permits to get the current sentence either as an .svg image or as code for LATEX (tikz-dependencies),
sd-parse or CoNLL-U. A simple click on the corresponding button opens a window to copy the generated
code. The LATEX-code includes enhanced dependencies.

7http://match.grew.fr/
8http://universaldependencies.org/format.html

http://match.grew.fr/
http://universaldependencies.org/format.html


Figure 4: Word edit window (proposed a second method of editing enhanced dependencies). For UPOS,
XPOS and dependency relation labels, the editor proposes autocompletion of valid values.

If the edited CoNLL-U file is under git version-control, ConlluEditor performs a git add and git commit
on every edit. The commit message contains information about the document, and the modified word
and sentence. In order to have less commits, a server option permits to have commits only after n edits.

4.4 Display modes
Apart from the two layout modes (tree and flat), ConlluEditor supports languages written in right-to-left
mode like Arabic or Hebrew (figure 5).

رداغي
رَداَغ

4
VERB

VIIA-3MS--

Aspect : Imp
Gender : Masc
Mood : Ind

Number : Sing
Person : 3

VerbForm : Fin
Voice : Act

دفولا
دفَو
1

NOUN
N------S1D

Case : Nom
Definite : Def
Number : Sing

يمسرلا
يّمِسرَ

2
ADJ

A-----MS1D

Case : Nom
Definite : Def
Gender : Masc
Number : Sing

amod

ينانبللا
يِّناَنبُل

3
ADJ

A-----MS1D

Case : Nom
Definite : Def
Gender : Masc
Number : Sing

amod

nsubj

سلبارط
سُلُبارََط

6
NOUN

N------S2I

Case : Gen
Definite : Ind
Number : Sing

ىلا
ىَلِإ

5
ADP

P---------

AdpType : Prep

case

obl

لابقتسا
لاَبقِتسِا

8
NOUN

N------S2R

Case : Gen
Definite : Cons
Number : Sing

ل
لِ
7

ADP
P---------

AdpType : Prep

case

لابقتسلا

ةنيهرلا
ةَنيِهرَ

9
NOUN

N------S2D

Case : Gen
Definite : Def
Number : Sing

سبرعم
سبرعم

10
X

U---------

nmod nmod

obl

root

Figure 5: Support for languages which write right-to-left (example taken from the UD Arabic-PADT
treebank). Here the display of morphological features is activated.

Whereas enhanced dependencies are currently only shown in flat mode, empty nodes (using the [5.1]
format in the ID column) are shown in both modes (cf. fig. 6).

4.5 Validation of annotated sentence
ConlluEditor can run any validation programme on the current sentence. A validation script and its
arguments must be defined in a configuration script which is given to the ConlluEditor server. Clicking



fixed
fix
2

VERB

Mood : Ind
Tense : Past

VerbForm : Fin

Sam
Sam
1

PROPN

Number : Sing

nsubj

lunch
lunch
3

NOUN

Number : Sing

obj

Kim
Kim
5

PROPN

Number : Sing

and
and
4

CCONJ

cc

cc

dinner
dinner

6
NOUN

Number : Sing

orphan

obj

conj

nsubj

root

fixed
fix
5.1
VERB

Mood : Ind
Tense : Past

VerbForm : Fin

_

conj

fixed
fix
2

VERB

Mood : Ind
Tense : Past

VerbForm : Fin

root

Sam
Sam
1

PROPN

Number : Sing

ns
ub
j

lunch
lunch
3

NOUN

Number : Sing

obj

Kim
Kim
5

PROPN

Number : Sing

conj

and
and
4

CCONJ

cc

dinner
dinner

6
NOUN

Number : Sing

orphan

fixed
fix
5.1
VERB

Mood : Ind
Tense : Past

VerbForm : Fin

_

fixed
2

Sam
1

lunch
3

Kim
5

and
4

dinner
6

fixed
5.1

Figure 6: Display of empty nodes in both modes (also showing morphological features)

on the validation button runs the script on the current sentence and shows the entire output in a window
(fig. 7).

Figure 7: Output of the validation programme

5 Future work

The main features we plan to implement is support for CoNLL-U Plus (.conllp) files9 and finally
add (language specific) validation rules, to find formal errors or inconsistencies, cf. also Marneffe et al.
(2017). Even though CoNLL-U has become a standard for syntax annotations, other formats exists. Con-
lluEditor currently exports three formats (conllu, sd-parse and latex), others can be implemented
rapidly if needed.

References
Guillaume Bonfante, Bruno Guillaume, and Guy Perrier. 2018. Application of Graph Rewriting to Natural Lan-

guage Processing. Wiley-Iste.

Richard Eckart de Castilho, Éva Mújdricza-Maydt, Seid Muhie Yimam, Silvana Hartmann, Iryna Gurevych, Anette
Frank, and Chris Biemann. 2016. A Web-based Tool for the Integrated Annotation of Semantic and Syntactic
Structures. In Proceedings of the International Conference on Computational Linguistics COLING, pages 76–
84.

Kim Gerdes. 2013. Collaborative Dependency Annotation. In Proceedings of the Second International Confer-
ence on Dependency Linguistics (DepLing), pages 88–97, Prag.

9http://universaldependencies.org/ext-format.html

http://universaldependencies.org/ext-format.html


Marie-Catherine de Marneffe, Matias Grioni, Jenna Kanerva, and Filip Ginter. 2017. Assessing the Annotation
Consistency of the Universal Dependencies Corpora. In Proceedings of the Fourth International Conference on
Dependency Linguistics, pages 108–115, Pisa, Italy.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Yoav Goldberg, Jan Hajič, Man-
ning Christopher D., Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal Dependencies v1: A Multilingual Treebank Collection. In the tenth international
conference on Language Resources and Evaluation, pages 23–38, Portorož, Slovenia. European Language Re-
sources Association.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii. 2012.
BRAT: a Web-based Tool for NLP-Assisted Text Annotation. In 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages 102–107.

Francis M. Tyers Tyers, Mariya Sheyanova, and Jonathan North Washington. 2018. UD Annotatrix: An annotation
tool for Universal Dependencies. In ACL 2018, pages 10–17, Melbourne.


	Introduction
	Related Work
	Motivation
	Features
	Graphical editing
	Searching
	Data export and git support
	Display modes
	Validation of annotated sentence

	Future work

