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Abstract

This paper expands on recent studies of very large treebank collections aiming to find empirical
evidence for language universals, specifically for the functionally motivated Dependency Length
Minimization (DLM) hypothesis. According to DLM grammars are set up to support the ex-
pression of utterances in a way that minimizes the distance between heads and dependents. We
construct several incremental baselines that lead from the random free order linearization to the
real language by adding various word order constraints. We conduct detailed analyses on 55 tree-
banks and find that all of the constraints contribute to DLM. We show that DLM on the one hand
shapes the regularity and on the other motivates the attested exceptions from canonical word or-
der. The findings contribute to a more fine-grained, differentiated picture of the role of DLM in
the interaction of competing constraints on grammar and language use.

1 Motivation and Background

The recent development of comparable dependency treebanks for a considerable number of languages
across the typological spectrum (Nivre et al., 2016) has made it possible to address some long-standing
hypotheses regarding a functional explanation of linguistic universals.

A number of recent papers (Liu, 2008; Futrell et al., 2015, a.o.) have used evidence from treebanks
across languages to address what is arguably the most prominent hypothesis of a functionally motivated
universal constraint, the Dependency Length Minimization (DLM) hypothesis, which can be traced back
to (Behaghel, 1932).

Phrased as a language typological universal, the DLM hypothesis states that the evolution of languages
is driven by the constraint that grammars should allow dependents to be realized as closely as possible to
their heads – which is known to reduce the cognitive burden in processing (Gibson, 1998; Gibson, 2000).
The Dependency Length (DL) of a sentence is defined as the sum of the distance between the head and
dependent of all the dependency arcs in the sentence (see the example in Figure 1).

John threw out the trash sitting in the kitchen
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Figure 1: Example dependency trees and their dependency lengths, adapted from Futrell et al. (2015).
The tree on the left is preferred since it has shorter DL and lower cognitive burden.

Liu (2008) perform the first cross-treebank study to compare the actual length of dependencies, for
20 languages, against the length that results when the dependency structures are linearized in random
ways. The results indicate that languages indeed tend to minimize the dependency distance. Futrell
et al. (2015) present a recent expansion of this type of treebank study to a set of 37 languages (which
they argue to be the first comprehensive analysis that covers a broad range of typologically diverse



languages), presenting comparisons of the real dependency trees from the treebank with random re-
orderings of the same dependency structures. The analysis shows that indeed across all 37 analyzed
languages the real DL is significantly shorter than chance. This result corroborates findings from a
broad range of empirical studies that are typologically less comprehensive (Gildea and Temperley, 2010;
Gulordava and Merlo, 2015; Gulordava et al., 2015). This type of cross-treebank study has prompted
a fair number of expansions and discussion regarding the typological implications (e.g. Jiang and Liu
(2015), Chen and Gerdes (2018), Temperley and Gildea (2018)). In the present contribution, we go
into some detail regarding a question that Futrell et al. (2015) have touched on, namely the relation
between (the objective of minimizing) dependency length and language-specific word order constraints
(which can also contribute to minimizing the cognitive load in parsing – but may conflict with the DLM
objective).

Futrell et al. (2015) are careful to point out their awareness that the type of corpus study they performed
makes it hard to distinguish the language typological aspect of the DLM hypothesis on the one hand
(which would explain the exclusion of certain logically possible grammatical systems, which go against
functional constraints/cognitive processing preferences) from facts about language use, relative to the
respective grammatical constraints of a language, on the other.1 The latter aspect, which is purely a
matter of language processing, has also been discussed extensively under the DLM hypothesis (see e.g.
Wasow (2002)). Futrell et al. (2015) “do not distinguish between DLM as manifested in grammars and
DLM as manifested in language users’ choice of utterances; the task of distinguishing grammar and use
in a corpus study is a major outstanding problem in linguistics, which we do not attempt to solve here.”

Besides the methodological question of how one could separate effects from corpus observations, it is
worthwhile noting that in the logic of the typological DLM hypothesis, the aspect of language use cannot
be completely ignored: if language evolution is indeed driven by these functional constraints, it should
favor languages that permit variation – so speakers can react to the relative heaviness of constituents in
the specific content they want to realize.

A comparison of the real DL with a random re-ordering baseline will necessarily conflate the effect
from strict grammatical constraints (which the baseline re-orderings may break arbitrarily) and the rel-
ative freedom that any given grammar will leave open within the space of its constraints – and which
speakers can exploit to optimize their utterances. Since they are aware of the effects of strict word
order constraints that many languages impose, Futrell et al. (2015) present an additional comparison
with a Fixed Word Order Baseline that is not fully random, but enforces consistent ordering constraints
within each sentence. We note that the fact that this baseline chooses a new dependency relation order-
ing scheme for each sentence does not make it a good candidate for getting closer to the separation of
globally fixed word order constraints dictated by the grammar and remaining spaces of free variation
– which does seem to play a crucial role for approaching more fine-grained typological generalizations
(and which ultimately needs to be clarified before one can claim to have empirical evidence for the DLM
hypothesis as manifested in grammars rather than as a cognitive processing preference).

In this paper, we propose alternative baseline realizations of dependency trees that allow us to look
more closely at the effect of specific relative ordering constraints in the comparison between random
re-ordering realizations and the real treebank sequences along with their DL. We can thus study the
manifestations of DLM relative to specific ordering phenomena in isolation. With a differentiated set of
baselines, we can identify the DLM effect (1) in the distribution of dependents to both sides of the head;
(2) in the direction of each single dependent to its head, and (3) in the ordering of the siblings on the
same side of the head. These three phenomena can be seen as different types of word order constraints,
where the first one concerns the quantity and balance of dependents, the latter two involve the order of
individual dependency patterns, i.e., the combination of part-of-speech and dependency relation of the
involved tokens. These word order constraints have been studied in various work (Ferrer-i Cancho, 2008;
Ferrer-i Cancho, 2015; Liu, 2010; Gulordava et al., 2015). In this work, we identify all of the constraints

1Other effects that cannot be captured (as Futrell et al. (2015) note) are differences in inflectional marking (in languages with
strong case marking, much of the functional burden from word order is lifted) and the availability of non-projective dependency
structures, which are a way of achieving shorter overall dependency length without violating certain hard word order constraints
(Ferrer-i Cancho and Gómez-Rodríguez, 2016).



together in a large collection of treebanks, and show that each constraint contributes to the DLM in its
unique way. Furthermore, we study their interaction by experimenting alternative word orders deviating
from the original data and observe the impact on the dependency length.

We experiment with data instances following the regularities of word order and instances that manifest
exceptions separately, and show that the word orders in the real data have shorter DL in both cases. This
suggests that DLM is likely not just a result of the fixed word order, since it also happens in the non-
canonical word order. Rather, it supports the hypothesis that the DLM influences both the regularities
and the exceptions of word order.

2 Experiments on Dependency Length

2.1 Data
We perform our experiments on a selection of 55 treebanks from Universal Dependencies v2.4 (Nivre
et al., 2019). The selection consists of training sets from all treebanks with at least 500 sentences (we
take sentences with maximum 50 words). Where there are multiple treebanks for one language, we use
the largest one to ensure stable and consistent estimation. We remove punctuation from trees and do not
consider it when calculating DL, since punctuation biases statistics by introducing many long-distance
right dependencies, and such dependencies do not contribute to the meaning of the head.

We consider only projective trees, since the non-projectivity could be interpreted as another way to
minimize DL (Ferrer-i Cancho and Gómez-Rodríguez, 2016), which is out of the scope of this paper.
Focusing on projective trees allows us to (1) analyze the DL on the subtree level, since the internal
ordering of each subtree does not influence other subtrees; and (2) efficiently find the optimal ordering
in terms of DL (Gildea and Temperley, 2007).

2.2 Baselines

1 2 3 4 5 6

(a) Original tree

5 3 1 4 2 6

(b) FREE

5 1 3 6 2 4

(c) VAL

2 1 3 6 4 5

(d) SIDE

6 4 1 3 2 5

(e) OPT

Figure 2: An example tree and results of four baseline linearization methods.

We compare the DL of the observed sentences in the treebanks (OBS) with four baselines that generate
random linearizations with incremental constraints that leads to the real data:

FREE: free word order baseline, which does not impose any constraints except projectivity to the
linearization. It is also used in Futrell et al. (2015).

VAL: same-valency baseline, which ensures that the numbers of left and right dependents of a head
in the random subtree are the same as in the real data2. In other words, we shuffle the left and right
dependents in the original tree separately.

SIDE: same-side baseline, which ensures that the dependents in the random tree stay on the same side
of the head as in the real data. This also satisfies the constraints in VAL, and differs from OBS only in the
linear arrangement of dependents on each side.3

OPT: optimal baseline, which minimizes the dependency length, as in Gildea and Temperley (2007).
Figure 2 illustrates and example for each baseline, where 2a is the original ordering; 2b shuffles all the

tokens in the tree; 2c ensures that there are 2 left dependents and 3 right dependents as in 2a; 2d shuffles
the left and right dependents of 2a separately; and 2e is the optimal ordering of the tokens, assuming the
label of each dependent also signifies the size of its subtree.

2We use the term valency only to describe the number of dependents, not their types.
3SIDE baseline is mentioned but not analyzed in the appendix of Futrell et al. (2015).



2.3 Results
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Figure 3: Average DL vs. sentence length
across 55 treebanks; grey bars indicate
frequency of the sentence length.

Figure 3 illustrates the average DL of the five described
baselines with respect to the sentence length.4 From the
longest to the shortest are: FREE, VAL, SIDE, OBS, and
OPT, and each adjacent pair is clearly separated. We fol-
low with systematic analyses to explain the differences be-
tween the baselines. Section 3.2 explains the influence of
balanced left and right dependents to the DL (FREE vs.
VAL); Section 3.3 illustrates the influence of the head di-
rection as a word order constraint (VAL vs. SIDE); and 3.4
shows the ordering of same-side siblings as another word
order constraint (SIDE vs. OBS). In each of the aspects, the
constraints from the observed data show clear preference
for shorter DL, but does not reach the shortest possible DL
due to other constraints, which partly explains the differ-
ence between OBS and OPT.

3 Analysis on Word Order Constraints

3.1 Definition and Statistics
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Figure 4: All treebanks characterized by
the two types of word order freedom.

Apart from the quantitative distribution of dependents, we
study two types of word order constraints conditioned on
the dependency pattern, namely head direction and sib-
ling ordering.
The head direction constraint describes on which side of
the head lies the dependent for each dependency pattern.
Its dependency pattern is a triple of the universal part-of-
speech (UPOS) tag of the head, the UPOS tag of the depen-
dent, and the dependency label. An example dependency
pattern from Figure 1 is <VERB, ADP, comp:prt>, and its
value is right.
The sibling ordering constraint describes the pairwise
precedence relation of the dependents on the same side of
the head. It is an approximation of the total order of the
siblings, but much simpler and resistant to the data scarcity
problem (Gulordava, 2018). Its dependency pattern is a sextuple of the UPOS of the head, the side of
the involved dependents, and the UPOS and label of the two dependents. An example is <VERB, right,
ADP, comp:prt, NOUN, obj>, and the value is left for Figure 1a and right for Figure 1b.

For both dependency patterns, we count the frequency of their values, and use the entropy to measure
the freedom of that pattern. For example, if a noun appears 50 times on the left of a verb as the subject,
and 10 times on the right, then the entropy of <VERB, NOUN, obj> is 0.65. We then measure the free-
dom of the overall word order constraint by taking the average entropy of each single dependency pattern
in that constraint type weighted by its frequency in the data. Figure 4 shows all treebanks characterized
by the two types of word order freedom. We mark four most common language families and annotate
the rest with their language codes. Generally, we do not see correlation of these two types of freedom,
which indicates that they characterize different aspects of the word order. Many verb-final languages
cluster near the top left corner, since they tend to have strict constraints that all arguments of a verb are
uttered before the verb, but the exact ordering of the arguments is very flexible.

4The general trend and ranking of the baselines in each individual treebank are consistent with the average.



3.2 Dependent Distribution: FREE vs. VAL

Imposing the valency constraints on the FREE baseline makes the first reduction of DL. It can be easily
explained by the fact that DL is shorter when the left and right dependents are more balanced, or in other
words, when the head is positioned in the middle of its dependents, as shown in Ferrer-i Cancho (2015).
In the FREE baseline, the head is equally likely to be placed in any position of the dependents, while in
the VAL baseline, where the number of left and right dependents of each head is the same as from the
real tree, it is more likely than chance to have balanced number of dependents on both sides.

To demonstrate this fact, we measure the imbalance of a head by the difference of numbers of depen-
dents on both sides divided by the number of dependents. The more balanced a tree is, the smaller the
value. We take the averaged imbalance value of all heads with more than one dependent as the imbalance
measurement of the whole treebank. We also calculate the expected imbalance of FREE. For a head with
n dependents, there are n+1 possible location to insert the head, and the difference of dependents at each
location would be: {n, n−2, ..., 2, 0, 2, ..., n−2, n} if n is even, or {n, n−2, ..., 1, 1, ..., n−2, n} if n is
odd. The sum of these values is

⌊
(n+1)2

2

⌋
, normalized by the length n and averaged by the equiprobable

locations n+1, thus the expected imbalance value is: imb(n) =
⌊
(n+1)2

2

⌋
/n(n+1).

The measured average imbalance value for VAL is 0.47 (same as OBS) and 0.67 for FREE (also very
close to the expectation from the formula) , which means that VAL distributes the dependents in a more
balanced way. There are only three languages (Telugu (te), Uyghur (ug), and Korean (ko)) where VAL

has higher imbalance, mainly because they are verb-final languages, which have very unbalanced verb
dependents. This general trend indicates that the real languages tend to have more balanced dependents
(in other words, position the head more central) than chance level, thus the reduction of length from
FREE to VAL.

Note that in this scenario, we only consider the number of dependents as the measurement of balance,
which is a simplistic heuristics, while the subtree size of the dependents is the more accurate measure-
ment. We explore this factor in Section 3.4.

3.3 Head Direction: VAL vs. SIDE

Next, we consider the length reduction from VAL to SIDE, which puts additional constraints on the head
direction based on the real data.

We illustrate the relation between the head direction preference and its effect on DL through two
scenarios. The first scenario studies the regularity of head direction: we flip the dependent to the other
side of the head if it is on the majority side of its dependency pattern based on the statistics of the real
data. The second scenario studies the exception of head direction: we flip the dependent if it is on the
minority side. While flipping the dependent, we keep the order of all other dependents unchanged, and
insert the flipped dependent into a position that minimizes the DL. This way, we make sure that the
hypothetical flipping is optimal and the comparison to the original order is fair.

All the results are shown in Figure 5, where the y-axis shows the percentage of cases where the original
order has shorter DL, i.e., flipping would increase the length, and the x-axis show the freedom of head
direction for each language. If a point lies above the 50% line (red line on the plot), it means that the real
data in that treebank has shorter DL than by chance.

Figure 5a shows the overall trend of the flipping experiment, where the real data is more likely to
have shorter DL than the flipped ones, except for a few verb-final languages (Korean (ko), Japanese (ja),
Telugu (te), and Uyghur (ug)), similar to the exceptions in Section 3.2. Since they tend to utter all the
arguments before the verb, flipping any arguments would balance the head thus reduce the DL.

Note that by flipping one dependent to the other side, the valency of the head is also changed, therefore
it is possible that the reduction of DL is caused by the effect described in Section 3.2. However, we record
the imbalance before and after the flipping, and it is almost not changed on average, in other words, the
influence from the change of valency is very small for this experiment.

Figure 5b shows the majority flipping scenario, which is very similar to the overall picture, since this
scenario has more test cases (by definition), therefore dominates the statistics. The plot shows that the
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(c) Minority scenario

Figure 5: Percentage of trees where the real order has shorter DL than flipping one dependent.
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Figure 6: Percentage of trees where the real order has shorter DL than swapping two siblings.

canonical order leads to shorter DL for most of the languages, thus supports the hypothesis that DLM
drives the evolution of word order. This then invites the question of why we still use non-canonical order
in utterance. We can explain it in terms of DLM by observing the minority scenario, where we “correct”
the head direction in the real data if it is not the majority choice. As shown in Figure 5c, for almost all
languages, the original minority order has shorter DL than the flipped majority order. More generally,
the minority scenario results resemble the mirror image of the majority case, namely the languages with
shorter DL in the majority case would have less shorter DL in the minority case.

Assuming the head direction in each instance is realized without influence of DL, then either the
majority or the minority scenario should have less than 50% cases with shorter DL. However, the fact
that both scenarios have more than 50% positive cases indicates that DLM indeed influences the shaping
of the head direction preferences as well as motivating the deviation from such preferences.

3.4 Sibling Ordering: SIDE vs. OBS

Finally, we look at the length reduction from SIDE to OBS, which only differ in the ordering of siblings
on the same side. Their difference in DL indicates that the ordering of the same-side siblings is also
influenced by DLM, as in the example in Figure 1. According to the explanation of DLM, we prefer 1a
over 1b because keeping smaller subtrees closer to the head helps reduce DL and cognitive effort.

To verify whether the data supports the claim, we conduct similar experiments as in Section 3.3, where
we compare every subtree in the original data to the modification where we swap one pair of dependents
on the same side. We also compare two scenarios, majority and minority, where the swapped pair belongs
to the regularity and exception of its dependency pattern, respectively.

The results are shown in Figure 6. We notice, that overall as well as in both majority and minority
scenarios, the original subtrees has shorter DL than swapping two dependents. This again indicates that
given the head direction, the real language tends to arrange the dependents in a way to minimize the



DL, regardless of whether the order is predominant or not. It also supports the similar conclusion as in
Section 3.3 that DLM motivates both the regularity and exceptions in the ordering of siblings.

3.5 Technical Notes

It is worth noting that the dependency relation may be an artifact of the treebank design, which does
not necessarily reflect the nature of human cognition. Many previous works have analyzed the syntactic
and semantic treatment of the UD annotation scheme, cf. de Lhoneux and Nivre (2016), Wisniewski and
Lacroix (2017), Osborne and Gerdes (2019). For example, UD tend to make the content word (NOUN) as
the head of the function word (ADP), thus the common word order of placing a prepositional phrase after
the noun it modifies would have longer DL than the opposite case, which is against the DLM hypothesis.
In another annotation scheme, e.g. the Penn Treebank (Marcus et al., 1993), where the preposition is the
head of the noun, the same word order would support the DLM hypothesis.

Another example of the influence of annotation scheme is the contrast between Korean(ko) and
Japanese(ja) in our experiments. These two languages have very similar typological features, but stay
rather far away in the plots. One major reason is that the Japanese treebank splits case markers as in-
dividual tokens, while the Korean treebank treats them as part of the noun. These idiosyncrasies could
significantly change the statistics of the treebanks in terms of DL.

In this work, we do not consider other annotation schemes, e.g. the HamleDT collection (Zeman et al.,
2014), nor do we deal with annotation idiosyncrasies within UD. However, we acknowledge that they
have certain influence on the analysis of DL. Furthermore, which annotation scheme is closer to human
cognition is still an open question.

4 Conclusion

In this paper we have broken down the effect of dependency length minimization step by step, and
analyzed its relation to the dependent distribution, head direction, and sibling ordering. The systematic
breakdown indicates that natural languages universally show clear preference for shorter dependency
length in all three aspects, both in the regularities and in the exceptions. Our findings provide more
detailed evidence for the hypothesis that DLM is a universal phenomenon in natural language.

One very interesting direction for future work is the interaction of multiple word order constraints.
We have shown that most constraints are locally optimal, i.e., reversing a single constraint would likely
increase the dependency length, since it might not be compatible with some other constraints. The
grouping effect of constraints with respect to DL might provide explanations to some observations in
Greenberg’s linguistic universal (Greenberg, 1963).

In this work, we use dependency patterns extract from the treebank to characterize the word order
constraints, which is transparent but maybe not nuanced enough. An alternative way could be to use a
statistical linearizer (Bohnet et al., 2010) to model the word order constraints (but the features implicitly
related to DL should be carefully disabled), which could serve as a even stronger baseline.
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