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Abstract

Although the use of end-to-end neural archi-
tectures has been proven to be effective on
several sequence labeling tasks, the use of
gazetteers in these architectures is still rather
unexplored. We investigate several options,
aiming at exploiting gazetteers to extract rel-
evant features, and then at integrating these
features in a neural model for entity recogni-
tion. We provide experimental evidences on
two datasets (named entities and nominal enti-
ties) and two languages (English and Italian),
showing that extracting features from a rich
model of the gazetteer and then concatenating
such features with the input embeddings of a
neural model is the best strategy in all our ex-
perimental settings, significantly outperform-
ing more conventional approaches.

1 Introduction

In the recent years a number of neural architec-
tures have been successfully applied to several se-
quence labelling tasks, including, among others,
part-of-speech tagging (Choi, 2016), named entity
recognition (Ma and Hovy, 2016), and semantic
role labeling (He et al., 2017). It has been shown
that these architectures can achieve state-of-art
performance with an end-to-end configuration, i.e.
without recurring either to linguistic features or
to external knowledge sources (e.g. gazetteers).
However, experiments have been often conducted
over datasets with large amount of training data
and in a rather limited spectrum of experimental
conditions. Overall, we think that there has not
been much discussion about the use of gazetteers
together with neural models, and that a deeper in-
vestigation is necessary.

In this paper we focus on the role of gazetteers
for entity recognition. The following are our two
main research questions: (i) As neural networks
architectures are highly modular, which is the best

way to integrate information from gazetteers? (ii)
What is the impact of the size of both training data
and gazetteers over the performance of a neural
model for entity recognition?

As mentioned, we focus on entity recognition
and refer to the Automatic Content Extraction pro-
gram - ACE (Doddington et al., 2004). In this
context, entity recognition has been approached
as a sequence labeling task. Given an utterance
U = {t1, t2, ..., tn} and a set of entity categories
C = {c1, c2, ..., cm}, the task is to label the to-
kens in U that refer to entities belonging to the
categories in C. As an example, using the IOB
format (Inside-Outside-Beginning, (Ramshaw and
Marcus, 1995)), the sentence “I would like to order
a salami pizza and two mozzarella cheese sand-
wiches” could be labeled as shown in Table 1.
ACE distinguishes two main entity classes: named
entities and nominal entities, and we consider both
of them for our experiments.

The first entity class, named entities, roughly
corresponds to proper names, and named enti-
ties recognition (NER) tools for frequent cate-
gories (i.e. persons as “Barack Obama”, loca-
tions as “New York”, and organizations as “IBM”)
have been developed for many languages. Sev-
eral datasets are available for training purposes
(e.g. the Conll-2003 datasets (Tjong Kim Sang
and De Meulder, 2003)). It has been a common
practice of NER systems to make use of gazetteers
(i.e. lists of entity names), considering the pres-
ence of a token in certain gazetteer as an additional
feature for the classifier (see, for instance, the use
of the Stanford NER useGazettes parameter for
the CRF classifier (Finkel et al., 2005)).

Nominal entities, on the other hand, are noun
phrase expressions describing an entity. Differ-
ently from named entities, nominal entities are
typically compositional, as they do allow mor-
phological and syntactic variations (e.g. for food



I would like to order a salami pizza and two mozzarella cheese sandwiches
O O O O O O B-FOOD I-FOOD O O B-FOOD I-FOOD I-FOOD

Table 1: IOB annotation of food entities inside user request.

names, spanish baked salmon, roasted salmon and
hot smoked salmon), which makes it possible to
combine tokens of one entity name with tokens of
another entity name to generate new names (e.g.
for food names, salmon tacos is a potential food
name given the existence of salmon and tacos).
In the framework of the ACE program there have
been several attempts to develop supervised sys-
tems for nominal entities (Biggio et al., 2010);
these systems, however, had to face the problem
of the scarcity of annotated data, and, for this rea-
son, were developed for few entity types.

In this paper we make use of an end-to-end
state-of-art entity recognition system (described
in Section 2), and investigate the combination
with gazetteers under several integration methods,
which are described in Section 3 and 4. Datasets
for our experiments are described in Section 5,
while results are presented and discussed in Sec-
tion 6.

2 Core Entity Recognition System

In order to investigate the use of gazetteers in com-
bination with neural models we first need an entity
recognition system. For our experiments we have
adopted the neural system proposed in (Ma and
Hovy, 2016), which achieved state-of-art perfor-
mance for named entity recognition for English on
the ConLL-2003 dataset (see section 5). Specifi-
cally, we use the most recent implementation of
the system in Pytorch distributed by the authors1,
and called NeuroNLP2. The system is composed
of three layers (Figure 1): (i) a CNN that allows to
extract information from the input text without any
pre-processing; (ii) a bidirectional LSTM layer
that presents each sequence forwards and back-
wards to two separate LSTM; (iii) a CRF layer that
decodes the best label sequence.

For each token in the input sequence, first a
character-level representation is computed by a
CNN with character embeddings as inputs. Then
the character-level representation vector is con-
catenated with the word embedding vector to feed
the BLSTM network. The CNN for Character-
level Representation is an effective approach to

1https://github.com/XuezheMax/NeuroNLP2

Figure 1: The main NeuroNLP2 structure. Dashed ar-
rows indicate dropout layers applied on both the input
and output vectors of BLSTM.

extract morphological information (like the pre-
fix or suffix of a word) from characters of words
and encode it into neural representations. In Neu-
roNLP2 the CNN is similar to the one proposed in
(Chiu and Nichols, 2015), except that it uses only
character embeddings as inputs, without character
type.

At the second layer each input sequence is pre-
sented both forwards and backwards to a bidirec-
tional LSTM, whose output allows to capture past
and future information. LSTMs (Hochreiter and
Schmidhuber, 1997) are variants of recurrent neu-
ral networks (RNNs) designed to cope with gradi-
ent vanishing problems. The LSTMs hidden state
takes information only from the past, knowing
nothing about the future. However, for many tasks
it is beneficial to have access to both past (left) and
future (right) contexts. A possible solution, whose
effectiveness has been proven by previous work
(Dyer et al., 2015), is provided by bi-directional
LSTMs (BLSTM). (Ma and Hovy, 2016) apply a
dropout layer on both the input and output vectors



of the BLSTM.
Finally, the third layer implemented by Neu-

roNLP2 is a Conditional Random Fields (CRF)
based decoder, which considers dependencies be-
tween entity labels in their context and then jointly
decodes the best chain of labels for a given input
sentence. For example, in NER with standard IOB
annotation, an I-token can not follow an O, a con-
straint which is captured by the CFR layer. Con-
ditional Random Fields (Lafferty et al., 2001) of-
fer several advantages over hidden Markov models
and stochastic grammars for such tasks, including
the ability to relax strong independence assump-
tions made in those models. For a sequence CRF
model (only interactions between two successive
labels are considered), training and decoding can
be solved efficiently by adopting the Viterbi algo-
rithm.

We use exactly the same network parameters
described in (Ma and Hovy, 2016) and provided
as default by the available implementation. As in-
put embeddings we use Stanford’s publicly avail-
able GloVe 100-dimensional embeddings trained
on 6 billion words from Wikipedia and web texts
for English (in the same way as (Ma and Hovy,
2016)); for Italian we use Stanford’s GloVe 50-
dimensional embeddings trained on a Wikipedia’s
dump 2 with the default setup. For the out of vo-
cabulary words we use a unique randomly gener-
ated vector for every word.

3 Gazetteers as Features

In this section we present three methods that allow
us to exploit information contained in gazetteers
and to represent such information as features to
be used by the neural entity recognition system.
While the first two methods, single token pres-
ence and multi-token presence, have been often
used, the third method, i.e. gazetteer neural model,
is based on the assumption that a more complex
model can better exploit the properties of nominal
entities.

3.1 Single Token Presence

A simple and straight-forward approach to use a
gazetteer is to consider the presence of a single
token in the gazetteer as a feature. To do that, we
extract the vocabulary of the gazetteer and provide
a boolean value to every token in the sentence,
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which indicates the presence or absence of the to-
ken in the vocabulary. If the number of gazetteers
in the domain is n, corresponding to the number
of entity classes, a single token takes a vector of
n-dimensions: if the vocabularies of the different
gazetteers do not overlap this is a one-hot vector,
otherwise we can have multiple positive dimen-
sions.

3.2 Multi-token Presence

The second approach uses the same feature space
as the single token presence method, but instead
of checking for the presence of a single token
in the gazetteer, it looks for the longest entity
name in the gazetteer contained in the sentence.
Let us consider the example in Table 1, I would
like to order a salami pizza and two mozzarella
cheese sandwiches, and assume a gazetteer for the
class FOOD composed of two entries: mozzarella
pizza and salami sandwiches. With the multi-
token approach none of the tokens would have the
gazetteer feature equal to true, while with the sin-
gle token approach both salami, pizza, mozzarella
and sandwiches would have the presence set to
true. The multi-token technique enables a more
consistent usage of gazetteers, especially in case
of noisy entity names, although a possible draw-
back could be a lack of generalization.

3.3 Gazetteer Neural Model: NNg

The third method to extract features from a
gazetteer follows the intuition that the presence-
absence approaches presented in Sections 3.1 and
3.2 might not be adequate for nominal entities,
which show higher linguistic complexity than
named entities. The idea is to build a neural clas-
sifier trained solely on gazetteers, that classifies a
subsequence of tokens on the input sentence as be-
longing to a certain entity class with a certain con-
fidence. Then we use the output of such classifier
as a feature to be integrated within the NeuroNLP2
system.

The neural architecture of the entity classifier,
the features it uses, and the methodology to gen-
erate synthetic negative examples are briefly pre-
sented in the following.

Architecture of the NNg Classifier. We used
the neural gazetteer-based approach (called NNg)
proposed by (Guerini et al., 2018). The NNg clas-
sifier is implemented using a multilayer bidirec-
tional LSTM that classifies an input sequence of
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Figure 2: Structure of the neural gazetteer entity recog-
nition (NNg). The input layer concatenates the features
in a single vector.

tokens either as an entity of a certain gazetteer
or a non-entity, with a degree of confidence, i.e.
the system classifies the sequences in number-of-
gazetteers plus one (non-entity) different classes.
The NNg classifier is based on the system pro-
posed in (Lample et al., 2016). The core is still
a bidirectional LSTM, but it has a 3-layer BLSTM
with 128 units per layer and with a single dropout
layer (with a dropout probability of 0.5) between
the third BLSTM and the output layer (a softmax
layer). The topology of the network is depicted in
Figure 2.

NNg Classifier Features. The NNg classifier
combines several features: word embeddings,
char-based embedding, and nine handcrafted fea-
tures. Word embeddings are similar to those
used for NeuroNLP2. For English we used Stan-
fords publicly available 50-dimensions embed-
dings, while for Italian we use 50-dimensional
embeddings trained on a Wikipedia’s dump with
the default setup. The char-based embeddings,
with a dimension of 30, are based on (Lample
et al., 2016), and are trained on the entries in the
gazetteers. The expected role of the char-based
embeddings is to deal with out of vocabulary terms
and possible word misspellings.

The handcrafted features are meant to explicitly
represent the structure of a certain entity name, as
it can be induced from the gazetteer in which the
entity appears. NNg considers nine features for
each token in an entity name: (i) the actual po-
sition of the token within an entity name; (ii) the
length of the entity name under inspection; (iii) the
frequency of the token in the gazetteer; (iv) the av-
erage length of the entity names containing a cer-

tain token; (v) the average position of the token
in the entity names it appears in; (vi) the bigram
probability with reference to the previous token in
the entity name; (vii) whether the token can be an
entity or not; (viii) the ratio of the times the token
is the first token in an entity name; (ix) the ratio
of the times the token is the last token in an entity
name.

Generating Synthetic Training Data. The
NNg classifier for a certain entity class is trained
with both positive examples, i.e. entity names
present in a gazetteer of the entity class, and neg-
ative examples, which are obtained by synthetic
generation from the positive examples. In the fol-
lowing we explain how negative examples are gen-
erated.

For each entity name i in a gazetteer G (i.e. the
positive example), negative counterparts are sub-
sequences of i, or i with additional tokens at the
beginning or end of it (or both), e.g. t1 + i + t2.
Where t1 is the ending token of a random entity
in G and t2 is the starting token of a random en-
tity in G. Between these tokens and i there can be
separators, as a white space, a comma or the and
conjunction, so to mimic how multiple entities are
usually expressed in sentences. Alternatively, t1
and t2 can be tokens randomly extracted from a
generic corpus, so to mimic cases when the entity
is expressed in isolation.

For example, if the initial positive example is
Community of Madrid, the possible negative sub-
sequences that are generated are: | Community
| of | Community of | of Madrid |. The sub-
sequence | Madrid | is not considered because it
is already included in the gazetteer as positive ex-
ample. Adding tokens, using the pattern t1 + i +
t2, we obtain other potential negative examples:
| contemporary Community of Madrid | Commu-
nity of Madrid and Murcia | contemporary Com-
munity of Madrid and Murcia |, and so on. Ac-
cording to this procedure, we generate more neg-
ative examples than positive. In order to avoid a
too unbalanced datatset, we randomly selected two
negative examples for each positive example: a
sub-sequence and an example surrounded by other
words, resulting in a 1 : 2 proportion.

4 Integrating Gazetteer Features

In this section we present the two methods used in
our experiments to integrate the features extracted
from gazetteers (see Section 3) into NeuroNLP2,



the neural entity recognition system. Each of the
integration methods adds one boolean feature for
each gazetteer.

4.1 Integration 1: Gazetteer Features as
Embedding Dimensions

Once we have extracted gazetteer features for each
token of the input sentence, the first approach that
we consider is to feed such features directly into
the neural network. In this method the gazetteer
information, represented by a n-dimensions vec-
tor, is simply concatenated with the embedding of
each token of the input sentence. By default, the
NeuroNLP2 system (see Section 2) uses both char-
acter and word embeddings, which are concate-
nated and passed on to the BLSTM layer to learn
from them. In this approach the gazetteer feature
is concatenated with the character and word em-
bedding, and then it is passed to the BLSTM. The
embedding representation for a given token x is as
follows:

Embeddingx = [xword;xchar;xgaz]

While the integration as embedding dimensions
for the single token and the multi-token features
is straightforward, in order to combine NNg with
NeuroNLP2 we need to substitute part of the
NNg’s network after training. In fact, we need a
NNg’s output for every token, while NNg classi-
fies a sequence of tokens. To do that we remove
the softmax layer of NNg and we feed the output
vectors of the third BLSTM to a fully connected
layer of 32 nodes followed by a rectified linear unit
(ReLU). With this modification we add to Neu-
roNLP2 32 features that represent a model of the
gazetteers.

4.2 Integration 2: Gazetteer Features as
Input for the CRF Classifier

As NER is a classification task, the system uses
features extracted by the BLSTM layer to classify
the tokens as one of the possible entity types. CRF
is the probabilistic model adopted by NeuroNLP2
to classify a token with an entity type based on the
features extracted. Providing the information of
the gazetteer to this layer should help the model
to better classify tokens. So this integration tech-
nique uses the gazetteer features as an additional
dimension by concatenating them with the fea-
tures extracted by the BLSTM.

CoNLL-2003
tokens types entities sentences

Train 204567 23624 23499 14987
Dev 51578 9967 5942 3466
Test 46666 9489 5648 3684

DPD
tokens types entities sentences

Train 4748 636 1757 450
Dev 296 138 122 49
Test 2315 379 583 200

Table 2: Statistics about data sets used for our experi-
ments.

dev ∩ train test ∩ train test ∩ gazetteers
CoNLL-2003 50% 35% 35%
DPD 48% 26% 33%

Table 3: Unique entities overlap between various sets.
The percentage refers to the count of unique entities in
the first dataset.

An example of this integration methodology ap-
plied to the features provided by the NNg classi-
fier is presented in Figure 3. It is important to no-
tice that, like in the previous integration approach,
NNg is pre-trained and it is not jointly trained with
NeuroNLP2.

5 Data Sets

In this section we describe the two datasets and
the various gazetteers used for our experiments.
The first dataset is CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003), for named entity recog-
nition, while the second one is a novel dataset
(DPD) (Magnini et al., 2018), specifically focused
on nominal entities. In Table 2 we report the main
characteristics of the two datasets and the parti-
tions used for the experiments, while in Table 3 we
report the intersection among entities in the vari-
ous sets (e.g. how many entities in the test set can
be also found in the training set or the gazetteers).
These percentages are a rough indicator of: (i)
how a perfect match baseline using gazetteers can
perform, and (ii) how much the NeuroNLP2 sys-
tem can take advantage of already seen entities
during training phase.

We describe the two datasets with more detail
in the following two paragraphs.

CoNLL-2003 is a dataset specifically devoted to
named entities: persons, locations, organizations
and names of miscellaneous entities that do not
belong to the previous three groups. While the
data set comes in two languages (English and Ger-
man) in this work we focus on English, whose
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Figure 3: NeuroNLP + NNg - the output layer of the two systems is combined into the CRF layer. For NNg , a fully
connected layer with 32 nodes and a ReLU has been substituted for the original SoftMax layer (in red).

data was taken from the Reuters news corpus. For
instance, the sentence “EU rejects German call
to boycott British lamb” is tagged as follows in
CoNLL-2003:
<EU>ORG rejects <German>MISC call to

boycott <British>MISC lamb.

DPD – Diabetic Patients Diary – is a data set
in Italian made of diary entries of diabetic pa-
tients. Each day the patient has to write down
what s/he ate in order to keep track of his/her di-
etary behavior. In this data set, which is much
smaller than CoNNL-2003, all entities of type
FOOD have been manually annotated by two an-
notators (inter-annotator agreement is 96.75 dice
coefficient). Sentences in the dataset have a tele-
graphic style, e.g. the main verb is often missing,
resulting in a list of foods like the following:

“<risotto ai multicereali e zucchine>FOOD

<insalata>FOOD e <pomodori>FOOD”
(“<risotto with multigrain and zucchini>
<salad> and <tomatoes>”).

Entity Gazetteers. In Table 4 we describe the
gazetteers that we have used in our experiments
for the two datasets, reporting, for each entity type,
sizes in terms of number of entity names, the av-
erage length of the names (in number of tokens),
plus the length variability of such names (standard
deviation). We also report additional metrics that
try to grasp the complexity of entities names in
the gazetteer: (i) the normalized type-token ratio
(TTR), as a rough measure of how much lexical
diversity is in the nominal entities in a gazetteer,
see (Richards, 1987); (ii) the ratio of type1 tokens,
i.e. tokens that can appear in the first position of an
entity name but also in other positions, and type2

tokens, i.e. tokens appearing at the end and else-
where; (iii) the ratio of entities that contain another
entity as sub-part of their name. With these mea-
sures we are able to partially quantify how diffi-
cult it is to recognize the length of an entity (SD),
how difficult it is to individuate the boundaries of
an entity (ratio of type1 and type2 tokens), how
much compositionality there is starting from basic
entities (i.e. how many new entities can be po-
tentially constructed by adding new tokens - sub-
entity ratio). Note that type1 and type2 ratios can
cover some cases in common with sub-entity ratio,
but they model different phenomena: given white
t-shirt, the entity name black and white skirt rep-
resents a case of type1 token for white but without
sub-entity matching, while white t-shirt with long
sleeves represents a sub-entity matching without
making white a type1 token.

6 Experiments

The experimental results for the various ap-
proaches that use gazetteers as features in the con-
text of a neural entity recognition system, are dis-
cussed in this Section. For all experiments, the
hyper-parameters of the neural model for both
NNg and NeuroNLP2 are the same as in (Guerini
et al., 2018) and (Ma and Hovy, 2016) respec-
tively.

6.1 Overall Results
Tables 5 and 6 show the results of gazetteer in-
tegration as embedding and as CRF features, re-
spectively. The NeuroNLP2 model benefits signif-
icantly from the gazetteer representation of NNg,
especially for the DPD dataset (with an increment
of 2.54 in terms of F1). The combination of Neu-



Data Set Gaz. #entities #tokens length ± SD TTR type1(%) type2(%) sub-entity(%)

CoNNL

PER 3613 6454 1.79 ±0.54 0.96 19.00 04.63 23.60
LOC 1331 1720 1.29 ±0.69 0.97 04.66 04.33 10.14
ORG 2401 4659 1.94 ±1.16 0.91 09.35 15.06 19.44
MISC 869 1422 1.64 ±0.94 0.89 08.61 08.73 19.85

DPD FOOD 23472 83264 3.55 ±1.87 0.75 17.22 22.97 11.27

Table 4: Gazetteers used in the experiments. Description is provided in terms of number of entity names, total
number of tokens, average length and standard deviation (SD) of entities, type-token ratio (norm obtained by
repeated sampling of 200 tokens), type1 and type2 unique tokens ratio and sub-entity ratio.

CoNLL DPD
Accuracy Precision Recall F1 Accuracy Precision Recall F1

NeuroNLP2 98.06 91.42 90.95 91.19 88.47 77.17 74.79 75.96
NeuroNLP2 + single token 98.06 91.53 90.51 91.02 88.29 75.63 77.19 76.40
NeuroNLP2 + multi token 98.08 91.41 90.76 91.08 88.98 78.90 76.33 77.59
NeuroNLP2 + NNg 98.05 91.41 91.02 91.22 89.89 79.68 77.36 78.50

Table 5: Experimental results using gazetteers as features together with embeddings.

roNLP2 and NNg reaches state-of-art performance
on ConNLL-2003 when it is added as embedding
feature, while both the single token and the multi-
token approaches do not improve the overall re-
sults. It can also be clearly seen that providing the
gazetteer feature to CRF is a deteriorating choice,
as the model probably tends to over-fit to the
gazetteer information resulting in a drop of perfor-
mance. On the other hand, using gazetteer features
as part of embedding dimensions helps the model
to adapt better when the training data are very few,
like in the DPD dataset. Furthermore, the results
on the DPD dataset of NeuroNLP2 + NNg, com-
pared to the others, show that NNg correctly gen-
eralizes nominal entities from the gazetteer, im-
proving both Recall and Precision with respect to
the multi-token approach.

6.2 Impact of Training Size

Neural network architectures are data-hungry
models, requiring large amounts of training data
in order to generalize. In those scenarios where
the amount of available training is not an issue the
effect of the gazetteer on the model performance
is negligible, as the model learns to generalize on
the large number of annotated sentences. How-
ever, for domains where there is scarcity of train-
ing data, the gazetteer feature is much appreci-
ated for a better performance. To understand this
effect, we simulated a low data scenario for the
CONLL-2003 dataset by training the model on a
small amount of data. The test and dev datasets
are kept the same, while varying only the training

data size. Tables 7 and 8 show the performance
of the models with varying training data sizes on
CONLL and DPD datasets, respectively. We can
infer that for Named Entity Recognition using to-
ken presence is not the right approach especially
when the gazetteer is well formed and with little
noise. The multi-token feature approach is more
consistent, and it improves the performance of the
NeuroNLP2 model by at least 3 points over all
data sizes used. However, these approaches tend
to be inconsistent when learning nominal entities.
Results show that NNg proves to be more robust
for nominal entities and provides a more consis-
tent performance indicating its impact in recog-
nizing compositional entities. We can see that, for
nominal entities, the single token approach is not
recommended, as both the learning curve and the
gazetteer size effect show (see Table 9).

Results are variable particularly for food names,
which are nominal entities that can considerably
change in length, contain stop-words, numbers or
nouns that usually can appear in other contexts
(i.e. Miami beach cocktail, chinese chicken, white
wine, pad thai, energy balls...).

6.3 Impact of Gazetteer Size

In this section we investigate the impact of reduc-
ing the number of entities in the gazetteer, based
on a “less common” principle, i.e. removing rare,
but numerous, entries. As we can see in Table 9,
the single token approach does not work well on
food nominal entities, giving variable and unre-
liable results. In addition, removing entries that



CoNLL DPD
Accuracy Precision Recall F1 Accuracy Precision Recall F1

NeuroNLP2 98.06 91.42 90.95 91.19 88.47 77.17 74.79 75.96
NeuroNLP2 + single token 94.82 86.90 71.03 78.17 85.75 69.79 68.95 69.37
NeuroNLP2 + multi token 92.20 85.44 59.24 69.97 87.52 74.23 74.61 74.42
NeuroNLP2 + NNg 97.96 90.95 90.53 90.74 89.37 78.56 74.79 76.63

Table 6: Experimental results using gazetteers as features for CRF.

Data Size
100 200 300 450

NeuroNLP2 47.31 56.78 56.96 69.55
NeuroNLP2 + single token 47.70 59.25 61.32 71.66
NeuroNLP2 + multi token 51.24 62.77 63.19 74.63
NeuroNLP2 + NNg 42.30 57.99 58.65 69.20

Table 7: Learning Curve on the CONLL 2003 dataset.
Columns report the number of sentences in the training
dataset.

Data Size
100 200 300 450

NeuroNLP2 55.99 74.93 73.88 75.96
NeuroNLP2 + single token 48.93 72.29 78.53 76.40
NeuroNLP2 + multi token 63.82 72.80 77.30 77.59
NeuroNLP2 + NNg 52.85 72.24 77.02 78.50

Table 8: Learning Curve on the DPD dataset. Columns
report the number of sentences in the training dataset.

contain tokens that appear less than 10 times helps
NNg to better generalize food names, without fo-
cusing on rare and uncommon entities. With this
approach the size of the gazetteer is nearly halved,
and it is noticeable that 5019 out of 8420 unique
tokens in the gazetteer appear only once. Remov-
ing common tokens, i.e. those that appear be-
tween 10 and 49 times, no model seems to give de-
cent results, with performance lower than the Neu-
roNLP2 model alone. A last reduction experiment,
i.e. removing entities that contain very common
tokens, occurring more than 150 times, bringing
the gazetteer to a size of only 779 entries, leave
NNg with too few compositions to learn how to

Data Size
776

Tc > 150
4366

Tc > 50
12477

Tc > 10
23472

all
NeuroNLP2 + single token 75.90 75.19 70.99 76.40
NeuroNLP2 + multi token 76.11 75.05 76.96 77.59
NeuroNLP2 + NNg 74.63 75.62 79.69 78.50

Table 9: Results of reducing gazetteer size on a less
common principle; in the columns, the first number is
the gazetteer size, while the second element represents
the minimum number of occurrences for the tokens in
the FOOD gazetteer.

generalize, but permits the multi-token approach
to give core information to NeuroNLP2, increas-
ing its baseline performance.

7 Related Work

Although, at least to the best of our knowledge,
there is no much work specifically addressing the
use of gazetteers in nthe context of neural archi-
tectures, still there is a number of related contribu-
tions which we discuss in this section.

The use of gazetteers with neural networks has
been proposed by (Park et al., 2017), who present
a neural network model augmented with sylla-
ble embedding vectors, parts-of-speech probabil-
ity vectors, and gazetteer vectors as input features.
Although the proposed model showed good per-
formance, there is no attempt to isolate the impact
of gazetteers, which is the goal of our work.

A related approach is presented in (Zhao et al.,
2017), which ranked first in English NERC eval-
uation at KBP 2017. Basically this is an exten-
sion of (Lample et al., 2016) that includes entity
embedding from gazetteers, where embeddings
are derived from a noisy gazetteer created using
Wikipedia’s articles. The gazetteer is derived from
the word-entity statistics from (Park et al., 2017).

A good example of work that builds on the
idea of creating a statistical model of named en-
tity starting from gazetteers, is presented in (Al-
Olimat et al., 2017). The paper focuses on extract-
ing location names from informal and unstruc-
tured texts by identifying referent boundaries. The
core of the approach is a statistical language model
consisting of a probability distribution over se-
quences of words (collocations) that represent lo-
cation names in gazetteers. The algorithm uses the
relative likelihood of an observed word sequence
to decide the boundaries of a location name in
tweets. This is similar in spirit to the NNg used
in our approach, although we make use of a neural
model rather than a statistical model.

A second work that it is worth to mention is
(Yang et al., 2016), which addresses the problem



of using gazetteers when training a neural network
with few data. In fact, particularly for massive
data scenarios like NER on Twitter, collecting a
large amount of high quality gazetteers can allevi-
ate the problem of training data scarcity. The pa-
per shows that large gazetteers may cause a side-
effect called ‘feature under-training’, i.e. gazetteer
features overwhelm the training data and may de-
grade performance. To solve this problem, the au-
thors propose a dropout conditional random fields,
which decreases the influence of gazetteer features
with a high weight.

8 Conclusions and Future Work

In this paper we were interested to investigate sev-
eral options about the use of gazetteers in neu-
ral architectures for entity recognition. We con-
ducted several experiments on both named enti-
ties (CONLL 2003 - English) and nominal entities
(food names in DPD - Italian) and showed that:
(i) gazetteer features that are extracted by a sepa-
rately trained the NNg classifier are more signifi-
cant than conventional features based on presence-
absence of tokens; (ii) integrating such features as
extension of the input embedding outperforms in-
tegration at the CRF level; (iii) these findings are
particularly significant when either the size of the
training data or of the gazetteers are reduced.

As a general comment on the use of gazetteers
for neural NER, our experiments highlight that
gazetteers are much more useful for nominal enti-
ties (e.g. food names) than for named entities (e.g.
person names). In this respect, the paper shows
that the NNg approach significantly helps to iden-
tifying compositional variants of nominal entities.

In the paper we have based our experiments
on the neural model described in (Ma and Hovy,
2016). However, very recently, new models (e.g.
BERT (Devlin et al., 2018) and ELMO (Peters
et al., 2018)) have been proposed, which have
further improved performance on Named Entity
Recognition. Based on such expectations, we run
a preliminary experiment using the multilingual
BERT model on the DPD dataset: results, prob-
ably due to the poor performance of the model on
Italian food, are still significantly lower than Neu-
roNLP2, and additional work seems to be neces-
sary to properly take advantage of the full capacity
of the BERT model.

Finally, as for future work, we intend to apply
the current models to a larger number of scenar-

ios, including utterance understanding for conver-
sational agents.
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