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Abstract

Inspired by the success of the General Lan-
guage Understanding Evaluation benchmark,
we introduce the Biomedical Language Un-
derstanding Evaluation (BLUE) benchmark
to facilitate research in the development of
pre-training language representations in the
biomedicine domain. The benchmark consists
of five tasks with ten datasets that cover both
biomedical and clinical texts with different
dataset sizes and difficulties. We also evaluate
several baselines based on BERT and ELMo
and find that the BERT model pre-trained
on PubMed abstracts and MIMIC-III clinical
notes achieves the best results. We make the
datasets, pre-trained models, and codes pub-
licly available at https://github.com/
ncbi-nlp/BLUE_Benchmark.

1 Introduction

With the growing amount of biomedical informa-
tion available in textual form, there have been
significant advances in the development of pre-
training language representations that can be ap-
plied to a range of different tasks in the biomedi-
cal domain, such as pre-trained word embeddings,
sentence embeddings, and contextual representa-
tions (Chiu et al., 2016; Chen et al., 2019; Peters
et al., 2017; Lee et al., 2019; Smalheiser et al.,
2019).

In the general domain, we have recently ob-
served that the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2018a) has been successfully promoting the de-
velopment of language representations of general
purpose (Peters et al., 2017; Radford et al., 2018;
Devlin et al., 2019). To the best of our knowledge,
however, there is no publicly available bench-
marking in the biomedicine domain.

To facilitate research on language representa-
tions in the biomedicine domain, we present the

Biomedical Language Understanding Evaluation
(BLUE) benchmark, which consists of five dif-
ferent biomedicine text-mining tasks with ten cor-
pora. Here, we rely on preexisting datasets be-
cause they have been widely used by the BioNLP
community as shared tasks (Huang and Lu, 2015).
These tasks cover a diverse range of text genres
(biomedical literature and clinical notes), dataset
sizes, and degrees of difficulty and, more impor-
tantly, highlight common biomedicine text-mining
challenges. We expect that the models that per-
form better on all or most tasks in BLUE will ad-
dress other biomedicine tasks more robustly.

To better understand the challenge posed by
BLUE, we conduct experiments with two base-
lines: One makes use of the BERT model (Devlin
et al., 2019) and one makes use of ELMo (Peters
et al., 2017). Both are state-of-the-art language
representation models and demonstrate promising
results in NLP tasks of general purpose. We find
that the BERT model pre-trained on PubMed ab-
stracts (Fiorini et al., 2018) and MIMIC-III clini-
cal notes (Johnson et al., 2016) achieves the best
results, and is significantly superior to other mod-
els in the clinical domain. This demonstrates the
importance of pre-training among different text
genres.

In summary, we offer: (i) five tasks with ten
biomedical and clinical text-mining corpora with
different sizes and levels of difficulty, (ii) codes
for data construction and model evaluation for
fair comparisons, (iii) pretrained BERT models on
PubMed abstracts and MIMIC-III, and (iv) base-
line results.

2 Related work

There is a long history of using shared lan-
guage representations to capture text semantics in
biomedical text and data mining research. Such re-

https://github.com/ncbi-nlp/BLUE_Benchmark
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search utilizes a technique, termed transfer learn-
ing, whereby the language representations are pre-
trained on large corpora and fine-tuned in a variety
of downstream tasks, such as named entity recog-
nition and relation extraction.

One established trend is a form of word embed-
dings that represent the semantic, using high di-
mensional vectors (Chiu et al., 2016; Wang et al.,
2018c; Zhang et al., 2019). Similar methods
also have been derived to improve embeddings of
word sequences by introducing sentence embed-
dings (Chen et al., 2019). They always, however,
require complicated neural networks to be effec-
tively used in downstream applications.

Another popular trend, especially in recent
years, is the context-dependent representation.
Different from word embeddings, it allows the
meaning of a word to change according to the con-
text in which it is used (Melamud et al., 2016; Pe-
ters et al., 2017; Devlin et al., 2019; Dai et al.,
2019). In the scientific domain, Beltagy et al. re-
leased SciBERT which is trained on scientific text.
In the biomedical domain, BioBERT (Lee et al.,
2019) and BioELMo (Jin et al., 2019) were pre-
trained and applied to several specific tasks. In the
clinical domain, Alsentzer et al. (2019) released a
clinical BERT base model trained on the MIMIC-
III database. Most of these works, however, were
evaluated on either different datasets or the same
dataset with slightly different sizes of examples.
This makes it challenging to fairly compare vari-
ous language models.

Based on these reasons, a standard benchmark-
ing is urgently required. Parallel to our work, Lee
et al. (2019) introduced three tasks: named en-
tity recognition, relation extraction, and QA, while
Jin et al. (2019) introduced NLI in addition to
named entity recognition. To this end, we deem
that BLUE is different in three ways. First, BLUE
is selected to cover a diverse range of text genres,
including both biomedical and clinical domains.
Second, BLUE goes beyond sentence or sentence
pairs by including document classification tasks.
Third, BLUE provides a comprehensive suite of
codes to reconstruct dataset from scratch without
removing any instances.

3 Tasks

BLUE contains five tasks with ten corpora that
cover a broad range of data quantities and diffi-
culties (Table 1). Here, we rely on preexisting

datasets because they have been widely used by
the BioNLP community as shared tasks.

3.1 Sentence similarity

The sentence similarity task is to predict simi-
larity scores based on sentence pairs. Following
common practice, we evaluate similarity by using
Pearson correlation coefficients.

BIOSSES is a corpus of sentence pairs
selected from the Biomedical Summarization
Track Training Dataset in the biomedical do-
main (Soğancıoğlu et al., 2017).1 To develop
BIOSSES, five curators judged their similarity, us-
ing scores that ranged from 0 (no relation) to 4
(equivalent). Here, we randomly select 80% for
training and 20% for testing because there is no
standard splits in the released data.

MedSTS is a corpus of sentence pairs se-
lected from Mayo Clinic’s clinical data ware-
house (Wang et al., 2018b). To develop MedSTS,
two medical experts graded the sentence’s seman-
tic similarity scores from 0 to 5 (low to high sim-
ilarity). We use the standard training and testing
sets in the shared task.

3.2 Named entity recognition

The aim of the named entity recognition task is
to predict mention spans given in the text (Ju-
rafsky and Martin, 2008). The results are evalu-
ated through a comparison of the set of mention
spans annotated within the document with the set
of mention spans predicted by the model. We eval-
uate the results by using the strict version of preci-
sion, recall, and F1-score. For disjoint mentions,
all spans also must be strictly correct. To construct
the dataset, we used spaCy2 to split the text into a
sequence of tokens when the original datasets do
not provide such information.

BC5CDR is a collection of 1,500 PubMed titles
and abstracts selected from the CTD-Pfizer cor-
pus and was used in the BioCreative V chemical-
disease relation task (Li et al., 2016).3 The dis-
eases and chemicals mentioned in the articles were
annotated independently by two human experts
with medical training and curation experience.
We use the standard training and test set in the

1http://tabilab.cmpe.boun.edu.tr/
BIOSSES/

2https://spacy.io/
3https://biocreative.bioinformatics.

udel.edu/tasks/biocreative-v/
track-3-cdr/

http://tabilab.cmpe.boun.edu.tr/BIOSSES/
http://tabilab.cmpe.boun.edu.tr/BIOSSES/
https://spacy.io/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/
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Corpus Train Dev Test Task Metrics Domain Avg
sent len

MedSTS, sentence pairs 675 75 318 Sentence similarity Pearson Clinical 25.8
BIOSSES, sentence pairs 64 16 20 Sentence similarity Pearson Biomedical 22.9
BC5CDR-disease, mentions 4182 4244 4424 NER F1 Biomedical 22.3
BC5CDR-chemical, mentions 5203 5347 5385 NER F1 Biomedical 22.3
ShARe/CLEFE, mentions 4628 1075 5195 NER F1 Clinical 10.6
DDI, relations 2937 1004 979 Relation extraction micro F1 Biomedical 41.7
ChemProt, relations 4154 2416 3458 Relation extraction micro F1 Biomedical 34.3
i2b2 2010, relations 3110 11 6293 Relation extraction F1 Clinical 24.8
HoC, documents 1108 157 315 Document classification F1 Biomedical 25.3
MedNLI, pairs 11232 1395 1422 Inference accuracy Clinical 11.9

Table 1: BLUE tasks

BC5CDR shared task (Wei et al., 2016).
ShARe/CLEF eHealth Task 1 Corpus is a col-

lection of 299 deidentified clinical free-text notes
from the MIMIC II database (Suominen et al.,
2013).4 The disorders mentioned in the clini-
cal notes were annotated by two professionally
trained annotators, followed by an adjudication
step, resulting in high inter-annotator agreement.
We use the standard training and test set in the
ShARe/CLEF eHealth Tasks 1.

3.3 Relation extraction

The aim of the relation extraction task is to pre-
dict relations and their types between the two enti-
ties mentioned in the sentences. The relations with
types were compared to annotated data. We use
the standard micro-average precision, recall, and
F1-score metrics.

DDI extraction 2013 corpus is a collection of
792 texts selected from the DrugBank database
and other 233 Medline abstracts (Herrero-Zazo
et al., 2013).5 The drug-drug interactions, includ-
ing both pharmacokinetic and pharmacodynamic
interactions, were annotated by two expert phar-
macists with a substantial background in pharma-
covigilance. In our benchmark, we use 624 train
files and 191 test files to evaluate the performance
and report the micro-average F1-score of the four
DDI types.

ChemProt consists of 1,820 PubMed abstracts
with chemical-protein interactions annotated by
domain experts and was used in the BioCre-
ative VI text mining chemical-protein interactions
shared task (Krallinger et al., 2017).6 We use the

4https://physionet.org/works/
ShAReCLEFeHealth2013/

5http://labda.inf.uc3m.es/ddicorpus
6https://biocreative.

bioinformatics.udel.edu/news/corpora/

standard training and test sets in the ChemProt
shared task and evaluate the same five classes:
CPR:3, CPR:4, CPR:5, CPR:6, and CPR:9.

i2b2 2010 shared task collection consists of
170 documents for training and 256 documents
for testing, which is the subset of the original
dataset (Uzuner et al., 2011).7 The dataset was
collected from three different hospitals and was
annotated by medical practitioners for eight types
of relations between problems and treatments.

3.4 Document multilabel classification
The multilabel classification task predicts multiple
labels from the texts.

HoC (the Hallmarks of Cancers corpus) con-
sists of 1,580 PubMed abstracts annotated with ten
currently known hallmarks of cancer (Baker et al.,
2016).8 Annotation was performed at sentence
level by an expert with 15+ years of experience
in cancer research. We use 315 (∼20%) abstracts
for testing and the remaining abstracts for train-
ing. For the HoC task, we followed the common
practice and reported the example-based F1-score
on the abstract level (Zhang and Zhou, 2014; Du
et al., 2019).

3.5 Inference task
The aim of the inference task is to predict whether
the premise sentence entails or contradicts the hy-
pothesis sentence. We use the standard overall ac-
curacy to evaluate the performance.

MedNLI is a collection of sentence pairs se-
lected from MIMIC-III (Romanov and Shivade,
2018).9 Given a premise sentence and a hy-

chemprot-corpus-biocreative-vi/
7https://www.i2b2.org/NLP/DataSets/
8https://www.cl.cam.ac.uk/˜sb895/HoC.

html
9https://physionet.org/physiotools/

mimic-code/mednli/
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https://physionet.org/works/ShAReCLEFeHealth2013/
http://labda.inf.uc3m.es/ddicorpus
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/
https://www.i2b2.org/NLP/DataSets/
https://www.cl.cam.ac.uk/~sb895/HoC.html
https://www.cl.cam.ac.uk/~sb895/HoC.html
https://physionet.org/physiotools/mimic-code/mednli/
https://physionet.org/physiotools/mimic-code/mednli/


61

pothesis sentence, two board-certified radiologists
graded whether the task predicted whether the
premise entails the hypothesis (entailment), con-
tradicts the hypothesis (contradiction), or neither
(neutral). We use the same training, development,
and test sets in Romanov and Shivade (Romanov
and Shivade, 2018).

3.6 Total score
Following the practice in Wang et al. (2018a) and
Lee et al. (2019), we use a macro-average of F1-
scores and Pearson scores to determine a system’s
position.

4 Baselines

For baselines, we evaluate several pre-training
models as described below. The original code for
the baselines is available at https://github.
com/ncbi-nlp/NCBI_BERT.

4.1 BERT
4.1.1 Pre-training BERT
BERT (Devlin et al., 2019) is a contextualized
word representation model that is pre-trained
based on a masked language model, using bidirec-
tional Transformers (Vaswani et al., 2017).

In this paper, we pre-trained our own model
BERT on PubMed abstracts and clinical notes
(MIMIC-III). The statistics of the text corpora on
which BERT was pre-trained are shown in Table 2.

Corpus Words Domain

PubMed abstract > 4,000M Biomedical
MIMIC-III > 500M Clinical

Table 2: Corpora

We initialized BERT with pre-trained BERT
provided by (Devlin et al., 2019). We then con-
tinue to pre-train the model, using the listed cor-
pora.

We released our BERT-Base and BERT-Large
models, using the same vocabulary, sequence
length, and other configurations provided by De-
vlin et al. (2019). Both models were trained with
5M steps on the PubMed corpus and 0.2M steps
on the MIMIC-III corpus.

4.1.2 Fine-tuning with BERT
BERT is applied to various downstream text-
mining tasks while requiring only minimal archi-

tecture modification.
For sentence similarity tasks, we packed the

sentence pairs together into a single sequence, as
suggested in Devlin et al. (2019).

For named entity recognition, we used the BIO
tags for each token in the sentence. We considered
the tasks similar to machine translation, as predict-
ing the sequence of BIO tags from the input sen-
tence.

We treated the relation extraction task as a sen-
tence classification by replacing two named en-
tity mentions of interest in the sentence with pre-
defined tags (e.g., @GENE$, @DRUG$) (Lee
et al., 2019). For example, we used “@CHEMI-
CAL$ protected against the RTI-76-induced inhi-
bition of @GENE$ binding.” to replace the orig-
inal sentence “Citalopram protected against the
RTI-76-induced inhibition of SERT binding.” in
which “citalopram” and “SERT” has a chemical-
gene relation.

For multi-label tasks, we fine-tuned the model
to predict multi-labels for each sentence in the
document. We then combine the labels in one doc-
ument and compare them with the gold-standard.

Like BERT, we provided sources code for fine-
tuning, prediction, and evaluation to make it
straightforward to follow those examples to use
our BERT pre-trained models for all tasks.

4.2 Fine-tuning with ELMo

We adopted the ELMo model pre-trained on
PubMed abstracts (Peters et al., 2017) to accom-
plish the BLUE tasks.10 The output of ELMo em-
beddings of each token is used as input for the
fine-tuning model. We retrieved the output states
of both layers in ELMo and concatenated them
into one vector for each word. We used the maxi-
mum sequence length 128 for padding. The learn-
ing rate was set to 0.001 with an Adam optimizer.
We iterated the training process for 20 epochs with
batch size 64 and early stopped if the training loss
did not decrease.

For sentence similarity tasks, we used bag of
embeddings with the average strategy to transform
the sequence of word embeddings into a sentence
embedding. Afterward, we concatenated two sen-
tence embeddings and fed them into an architec-
ture with one dense layer to predict the similarity
of two sentences.

10https://allennlp.org/elmo

https://github.com/ncbi-nlp/NCBI_BERT
https://github.com/ncbi-nlp/NCBI_BERT
https://allennlp.org/elmo
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Task Metrics SOTA* ELMo BioBERT
Our BERT

Base Base Large Large
(P) (P+M) (P) (P+M)

MedSTS Pearson 83.6 68.6 84.5 84.5 84.8 84.6 83.2
BIOSSES Pearson 84.8 60.2 82.7 89.3 91.6 86.3 75.1
BC5CDR-disease F 84.1 83.9 85.9 86.6 85.4 82.9 83.8
BC5CDR-chemical F 93.3 91.5 93.0 93.5 92.4 91.7 91.1
ShARe/CLEFE F 70.0 75.6 72.8 75.4 77.1 72.7 74.4
DDI F 72.9 78.9 78.8 78.1 79.4 79.9 76.3
ChemProt F 64.1 66.6 71.3 72.5 69.2 74.4 65.1
i2b2 F 73.7 71.2 72.2 74.4 76.4 73.3 73.9
HoC F 81.5 80.0 82.9 85.3 83.1 87.3 85.3
MedNLI acc 73.5 71.4 80.5 82.2 84.0 81.5 83.8

Total 78.8 80.5 82.2 82.3 81.5 79.2
* SOTA, state-of-the-art as of April 2019, to the best of our knowledge: MedSTS, BIOSSES (Chen et al.,
2019); BC5CDR-disease, BC5CDR-chem (Yoon et al., 2018); ShARe/CLEFE (Leaman et al., 2015);
DDI (Zhang et al., 2018). Chem-Prot (Peng et al., 2018); i2b2 (Rink et al., 2011); HoC (Du et al., 2019);
MedNLI (Romanov and Shivade, 2018). P: PubMed, P+M: PubMed + MIMIC-III

Table 3: Baseline performance on the BLUE task test sets.

For named entity recognition, we used a Bi-
LSTM-CRF implementation as a sequence tag-
ger (Huang et al., 2015; Si et al., 2019; Lample
et al., 2016). Specifically, we concatenated the
GloVe word embeddings (Pennington et al., 2014),
character embeddings, and ELMo embeddings of
each token and fed the combined vectors into the
sequence tagger to predict the label for each to-
ken. The GloVe word embeddings11 and character
embeddings have 100 and 25 dimensions, respec-
tively. The hidden sizes of the Bi-LSTM are also
set to 100 and 25 for the word and character em-
beddings, respectively.

For relation extraction and multi-label tasks, we
followed the steps in fine-tuning with BERT but
used the averaged ELMo embeddings of all words
in each sentence as the sentence embedding.

5 Benchmark results and discussion

We pre-trained four BERT models: BERT-Base
(P), BERT-Large (P), BERT-Base (P+M), BERT-
Large (P+M) on PubMed abstracts only, and the
combination of PubMed abstracts and clinical
notes, respectively. We present performance on
the main benchmark tasks in Table 3. More de-
tailed comparison is shown in the Appendix A.

11https://nlp.stanford.edu/projects/
glove/

Overall, our BERT-Base (P+M) that were pre-
trained on both PubMed abstract and MIMIC-III
achieved the best results across five tasks, even
though it is only slightly better than the one pre-
trained on PubMed abstracts only. Compared to
the tasks in the clinical domain and biomedical do-
main, BERT-Base (P+M) is significantly superior
to other models. This demonstrates the importance
of pre-training among different text genres.

When comparing BERT pre-trained using the
base settings against that using the large settings,
it is a bit surprising that BERT-Base is better
than BERT-Large except in relation extraction and
document classification tasks. Further analysis
shows that, on these tasks, the average length
of sentences is longer than those of others (Ta-
ble 1). In addition, BERT-Large pre-trained on
PubMed and MIMIC is worse than other models
overall. However, BERT-Large (P) performs the
best in the multilabel task, even compared with
the feature-based model utilizing enriched ontol-
ogy (Yan and Wong, 2017). This is partially be-
cause the MIMIC-III data are relatively smaller
than the PubMed abstracts and, thus, cannot pre-
train the large model sufficiently.

In the sentence similarity tasks, BERT-Base
(P+M) achieves the best results on both datasets.
Because the BIOSSES dataset is very small (there

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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are only 16 sentence pairs in the test set), all BERT
models’ performance was unstable. This prob-
lem has also been noted in the work of Devlin
et al. (2019) when the model was evaluated on the
GLUE benchmarking. Here, we obtained the best
results by following the same strategy: selecting
the best model on the development set after sev-
eral runs. Other possible ways to overcome this
issue include choosing the model with the best per-
formance from multiple runs or averaging results
from multiple fine-tuned models.

In the named entity recognition tasks, BERT-
Base (P) achieved the best results on two biomedi-
cal datasets, whereas BERT-Base (P+M) achieved
the best results on the clinical dataset. In all
cases, we observed that the winning model ob-
tained higher recall than did the others. Given that
we use the pre-defined vocabulary in the original
BERT and that this task relies heavily on the to-
kenization, it is possible that using BERT as per-
taining to a custom sentence piece tokenizer may
further improve the model’s performance.

6 Conclusion

In this study, we introduce BLUE, a collection of
resources for evaluating and analyzing biomedical
natural language representation models. We find
that the BERT models pre-trained on PubMed ab-
stracts and clinical notes see better performance
than do most state-of-the-art models. Detailed
analysis shows that our benchmarking can be used
to evaluate the capacity of the models to un-
derstand the biomedicine text and, moreover, to
shed light on the future directions for developing
biomedicine language representations.
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A Appendices

TP: true positive, FP: false positive, FN: false neg-
ative, P: precision, R: recall, F1: F1-score

A.1 Named Entity Recognition

BC5CDR-disease TP FP FN P R F1

(Yoon et al., 2018) - - - 85.6 82.6 84.1
ELMo 3740 749 684 83.3 84.5 83.9
BioBERT 3807 637 617 85.7 86.1 85.9
Our BERT

Base (P) 3806 635 564 85.9 87.3 86.6
Base (P+M) 3788 655 636 85.3 85.6 85.4
Large (P) 3729 847 695 81.5 84.3 82.9
Large (P+M) 3765 799 659 82.5 85.1 83.8

BC5CDR-chemical TP FP FN P R F1

(Yoon et al., 2018) - - - 94.3 92.4 93.3
ELMo 4864 386 521 92.6 90.3 91.5
BioBERT 5029 404 356 92.6 93.4 93.0
Our BERT

Base (P) 5027 336 358 93.7 93.4 93.5
Base (P+M) 4914 341 471 93.5 91.3 92.4
Large (P) 4941 454 444 91.6 91.8 91.7
Large (P+M) 4905 484 480 91.0 91.1 91.1

ShARe/CLEFE TP FP FN P R F1

(Leaman et al., 2015) - - - 79.7 71.3 75.3
ELMo 3928 1117 1423 77.9 73.4 75.6
BioBERT 3898 1024 1453 79.2 72.8 75.9
Our BERT

Base (P) 4032 1010 1319 80.0 75.4 77.6
Base (P+M) 4126 948 1225 81.3 77.1 79.2
Large (P) 3890 1441 1461 73.0 72.7 72.8
Large (P+M) 3980 1456 1371 73.2 74.4 73.8

A.2 Relation extraction
DDI TP FP FN P R F1

(Zhang et al., 2018) - - - 74.1 71.8 72.9
ELMo - - - 79.0 78.9 78.9
BioBERT 786 229 193 77.4 80.3 78.8
Our BERT

Base (P) 737 172 242 81.1 75.3 78.1
Base (P+M) 775 198 204 79.7 79.2 79.4
Large (P) 788 206 191 79.3 80.5 79.9
Large (P+M) 748 234 231 76.2 76.4 76.3

Chem-Prot TP FP FN P R F1

(Peng et al., 2018) 1983 746 1475 72.7 57.4 64.1
ELMo - - - 66.7 66.6 66.6
BioBERT 2359 803 1099 74.6 68.2 71.3
Our BERT

Base (P) 2443 834 1015 74.5 70.6 72.5
Base (P+M) 2354 996 1104 70.3 68.1 69.2
Large (P) 2610 948 848 73.4 75.5 74.4
Large (P+M) 2355 1423 1103 62.3 68.1 65.1

i2b2 TP FP FN P R F1

(Rink et al., 2011) - - - 72.0 75.3 73.7
ELMo - - - 71.2 71.1 71.1
BioBERT 4391 1474 1902 74.9 69.8 72.2
Our BERT

Base (P) 4592 1459 1701 75.9 73.0 74.4
Base (P+M) 4683 1291 1610 78.4 74.4 76.4
Large (P) 4684 1805 1609 72.2 74.4 73.3
Large (P+M) 4700 1719 1593 73.2 74.7 73.9

A.3 Document classification
HoC P R F1

(Du et al., 2019) 81.3 81.7 81.5
ELMo 78.2 81.9 80.0
BioBERT 83.4 82.4 82.9
Our BERT

Base (P) 86.2 84.4 85.3
Base (P+M) 84.0 82.3 83.1
Large (P) 91.0 83.9 87.3
Large (P+M) 88.8 82.1 85.3
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