
Proceedings of the Third Workshop on Abusive Language Online, pages 135–145
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

135

Neural Word Decomposition Models for Abusive Language Detection

Sravan Babu Bodapati Spandana Gella Yaser Al-Onaizan
Amazon AI, USA

{sravanb, sgella, onaizan}@amazon.com

Abstract

User generated text on social media often suf-
fers from a lot of undesired characteristics in-
cluding hatespeech, abusive language, insults
etc. that are targeted to attack or abuse a
specific group of people. Often such text is
written differently compared to traditional text
such as news involving either explicit mention
of abusive words, obfuscated words and typo-
logical errors or implicit abuse i.e., indicating
or targeting negative stereotypes. Thus, pro-
cessing this text poses several robustness chal-
lenges when we apply natural language pro-
cessing techniques developed for traditional
text. For example, using word or token based
models to process such text can treat two
spelling variants of a word as two different
words. Following recent work, we analyze
how character, subword and byte pair encod-
ing (BPE) models can be aid some of the chal-
lenges posed by user generated text. In our
work, we analyze the effectiveness of each
of the above techniques, compare and con-
trast various word decomposition techniques
when used in combination with others. We ex-
periment with finetuning large pretrained lan-
guage models, and demonstrate their robust-
ness to domain shift by studying Wikipedia at-
tack, toxicity and Twitter hatespeech datasets.

1 Introduction

In recent years, with the growing popularity of
social media applications, there has been an expo-
nential increase in the amount of user-generated
text including microblog posts, status updates and
comments posted on the web. The power of com-
municating freely with large number of users has
resulted in not only sharing news and exchang-
ing content but has also led to a problem of large
number of harmful, offensive and aggressive in-
teractions online (Duggan, 2017). Previous work
on identifying abusive language has tackled this

problem by training computational methods that
are capable of automatically recognizing offensive
content for text on MySpace (Yin et al., 2009),
Twitter (Waseem and Hovy, 2016; Davidson et al.,
2017), Wikipedia comments (Wulczyn et al., 2017)
and Facebook posts (Vigna et al., 2017; Kumar
et al., 2018).

Most of these models are based on features ex-
tracted from words or word n-grams or the recur-
rent neural networks that operate on word embed-
dings (Pavlopoulos et al., 2017; Badjatiya et al.,
2017) with few exceptions of models that utilize
character n-grams that can model noisy text and
out-of-vocabulary words (Waseem and Hovy, 2016;
Nobata et al., 2016; Wulczyn et al., 2017). How-
ever, these models are not very effective at mod-
eling obfuscated words such as w0m3n, nlgg3r
which are prominent in user generated text that are
intended at evading hate speech detection (Mishra
et al., 2018). In this work, we aim to address this by
investigating word, subword and character-based
models for abusive language detection.

Recent advances in unsupervised pre-training
of language models have led to strong improve-
ments on various general natural language process-
ing and understanding tasks such as question an-
swering, sentiment and natural language inference
(Peters et al., 2018; Devlin et al., 2018). However,
it is unclear how such models trained on standard
text would transfer information when fine-tuned on
noisy user generated text. In additional to study-
ing word, subword and character-based model per-
formances on abusive language detection we also
combine these with pre-trained embeddings and
fine-tuning these pre-trained language models and
understand their efficiency and robustness in iden-
tifying abusive text.

Specifically, in this work, we address the effec-
tiveness of character-based models, subword or
Byte Pair Encoding (BPE) based models and word



136

features based models along with pre-trained word
embeddings and fine tuning pretrained language
models for detecting abusive language in text. Pre-
cisely we make following contributions:

• We compare the effectiveness of end-to-end
character based models, with word + charac-
ter embedding models, byte pair encoding and
subword models, to show which of the tech-
niques perform better than pure word based
models.

• We demonstrate how fine-tuning large pre-
trained language models, the latest break-
through in NLP, enhance state of the art on few
of the abusive language datasets, and show
that the domain shift isn’t considerable when
applied to abusive language datasets.

• We also examine how preprocessing docu-
ments with byte pair encoding model pre-
trained on a large corpus, boost the perfor-
mance of several word embedding based mod-
els massively.

2 Related Work

Identifying abusive context on the web is one of
the widely studied topics on social media text. This
problem has been studied for Hate Speech detec-
tion (Kwok and Wang, 2013; Waseem and Hovy,
2016; Waseem, 2016; Ross et al., 2016; Saleem
et al., 2017; Warner and Hirschberg, 2012), Ha-
rassment (Yin et al., 2009; Cheng et al., 2015),
Cyberbullying (Willard, 2007; Tokunaga, 2010;
Schrock and Boyd, 2011), Abusive language detec-
tion (Sahlgren et al., 2018; Nobata et al., 2016), ag-
gression identification (Kumar et al., 2018; Aroye-
hun and Gelbukh, 2018; Modha et al., 2018), iden-
tifying toxic comments on forums (Wulczyn et al.,
2017) and offensive language identification (Wie-
gand et al., 2018; Zampieri et al., 2019). While
most of the work in identifying abusive on so-
cial media is predominantly studied for English
social media posts some of the latest work include
study on German (Wiegand et al., 2018), Italian
(Bosco et al., 2018) and Mexican Spanish (Álvarez-
Carmona et al., 2018).

Some of the early methods on identifying abu-
sive text used word n-gram, part-of-speech (POS)
tagging (syntactic features), manually created pro-
fanity lexicons or stereotypical words, TF-IDF fea-
tures along with sentiment and contextual features

and trained supervised classifiers such as support
vector machines (Yin et al., 2009; Warner and
Hirschberg, 2012). Waseem (2016) studied charac-
ter n-grams, skipgrams, brown clusters and POS tag
based features for identifying hatespeech. Waseem
and Hovy (2016) studied usefulness of various
socio-linguistic features such as gender, location,
word-length distribution, Author Historical Salient
Terms (AHST) features in identifying hatespeech.

Some of the recent work compared efficiency
of both character n-gram based models as inputs
to logistic regression and multi-layer perceptron
models (Wulczyn et al., 2017). Nobata et al. (2016)
showed that character n-grams features alone can
perform well and can efficiently model noisy text.
They also showed off-the-shelf word embeddings
can be used to identify abusive text.

Pavlopoulos et al. (2017) used deep-learning
based models specifically they employed RNN with
a novel classification-specific attention mechanism
and achieve state-of-the-art results on identifying
attack and toxic content in Wikipedia comments.
Badjatiya et al. (2017) investigated three different
neural networks for hatespeech detection: (i) Con-
volutional neural network (inspired by CNN’s for
sentiment classification by Kim (2014)) (ii) Long
short-term memory networks (LSTM) to capture
long range dependencies and (iii) FastText classi-
fication model that represents document by aver-
aging word vectors that can be fine-tuned for the
hatespeech task.

While Badjatiya et al. (2017) analyzed various
architectures to encode text for hatespeech detec-
tion, we are not aware of any work that studied
various word decomposition models for identifying
abusive language in text. Recent work on identify-
ing offensive language in text include fine-tuning
large pretrained languege model BERT which use
subword units to encode text (Zampieri et al., 2019;
Zhu et al., 2019). For the SEMEVAL-2019 task
of offensive language identification 7 out of top
10 submissions used BERT finet tuning. Zampieri
et al. (2019) highlighted that 8% of 104 systems
participated in the shared task used BERT based
fine-tuning.

In this work, we analyze the effectiveness of
different ways of learning representations with
character-based models, subword or BPE based
models and word features based models. We also
combine these with well known pre-trained word
embeddings and very large pretrained language



137

models for fine-tuning and detecting abusive lan-
guage in text. In Section 3 we describe the datasets
that we study in this work for hatespeech and abu-
sive detection.

3 Datasets

We experiment with three datasets: Twitter dataset
(Waseem and Hovy, 2016), Personal Attack and
Toxicity datasets from Wikipedia Talk dataset (Wul-
czyn et al., 2017) that covers sexism/racism, per-
sonal attack and toxicity aspects of abuse in user
generated text online.

3.1 Twitter Dataset

We use the hatespeech Twitter dataset (Hatespeech)
provided by Waseem and Hovy (2016). This
dataset was created from a corpus of 136k tweets
collected from Twitter by searching for commonly
used racist and sexist slurs on various ethnic, gen-
der and religious minorities over a two-month pe-
riod. The original data had 16,907 tweets corre-
sponding to sexist, racist and neither labels (3378,
1970 and 11559 respectively). However, we could
only retrieve 11170 of the tweets (2914: sexism, 17:
racism and 8239: neither) with python’s Tweepy
library. Similar issue of missing tweets has been
reported by Mishra et al. (2018). However, the per-
cent of tweets we lost are much higher than theirs
and most of the tweets lost are for the racism label.
We have lost majority of the tweets corresponding
to sexism label. Since we lost large chunk of tweets
we conduct our experiments on cross validation of
5 splits and report scores on all of the 5 splits.

3.2 Wikipedia talk page

We use the personal attacks (W-ATT) and toxic-
ity (W-TOX) datasets that were randomly sampled
from 63 Million talk page comments from the pub-
lic dump of English Wikipedia by Wulczyn et al.
(2017). Each comment in both the datasets were
annotated by at least 10 workers and we use the
majority label as its gold label. Overall, we have
115.8k comments in W-ATT dataset (69.5k, 23.1k
and 23.1k in train, dev and test splits respectively)
and 159.6k comments in W-TOX dataset (95.6k,
32.1k and 31.8k in train, dev and test splits). Simi-
lar to hatespeech dataset both the W-ATT and W-
TOX datasets also have skewed distribution of la-
bels having 13.5% and 15.3% of them labeled as
abusive.

4 Methods

In this section, we present various word decom-
position methods and modeling architectures we
analysed for studying Twitter and Wiki Talk page
W-ATT and W-TOX comment datasets.

4.1 Word-based Model

As a baseline, we adpot the fastText (Grave et al.,
2017) classification algorithm. The fastText algo-
rithm performs mean pooling on top of the word
embeddings wemb

i to obtain a document represen-
tation. This document representation is passed
through a Softmax layer to obtain classification
scores. The embeddings can either be learned or
can be initialized with pre-trained embeddings and
fine-tuned during training. We run multiple vari-
ants of fastText in our experiments.

4.2 Subword-based Model

Subwords are formed by concatenating all the char-
acters of a particular length within a word bound-
ary. Addition of subwords gives the model abil-
ity to learn words which are misspelled such as
emnlp and emnnlp are similar. A pure word based
model would consider emnnlp as out-of-vocabulary
(OOV) word, if not seen in training set, but a sub-
word model would decompose emnnlp into “emn”
and “nlp”, and train subword embeddings wemb

sub for
each of these subwords. We take subword variant
of fastText model to incorporate subword context
into the model. The algorithm considers all sub-
words of varying lengths within the boundary of a
word.

4.3 Joint Word and Character Embedding
Model

Our joint word and character embedding based
model is adapted from Kim (2014) and Peters et al.
(2018). We refer to Kim (2014) as TextCNN going
forward.

Let xi be the input word and cn0 be its character
representation, where n is the number of charac-
ters in the word. We transform cn0 representation
by passing through a character embedding layer,
which is a n-gram Character-CNN similar to (Pe-
ters et al., 2019). The output of the n-gram Char-
acterCNN is concatenated with the word’s corre-
sponding pretrained embedding to obtain wemb

full as
described in 1(a) Character-level features are con-
catenated with wemb

i , the word embedding of word
i, to form wemb

full , the full set of word-level input



138

Word embedding

w

t

f

wtf

char CNN
output

(Concatenate)

Final embedding for 
wtf

char
CNN
layer

(similar 
to  

ELMo)

(a)

He’s
entitled
to
say
wtf
he
wants
isn’t
he

(b)

Figure 1: Architecture for model described in 4.3. In Figure 1(a), we present an example of for obtaining a word
embedding by concatenating character embeddings with the embedding of the word itself. These final embeddings
are then fed into the non-static variant of the Kim2014 (Kim, 2014) architecture (shown in Figure 1(b)). The layers
of Kim2014 model alongwith the character CNN layer are updated during training.

features:

wemb
full = (wchar

i ;wword
i )

We randomly replace singleton words with special
[UNK] (unknown) tokens for obtaining its wemb

i

, and also apply dropout (Srivastava et al., 2014)
on wemb

full . The input word embeddings wemb
full , in a

sentence with l tokens and convolutional window
size h, wemb

i:i+h is transformed through a convolution
filter wc:

ci = f(wc.w
emb
i:i+h−1 + bc)

where bc is a bias term and f is a non-linear function
(ReLU). This produces a feature map c, on-top of
which we apply a global max-over time pooling.

c‘ = max(c)

This process for one feature is repeated to obtain m
filters with different window sizes h. The resulting
filters are concatenated to form TextCNN docu-
ment representation. The document representation
is passed through Softmax layer to obtain classifica-
tion predictions. We also experiment with original
version of TextCNN, which is a pure word based
model, without the character embedding variant.

4.4 End-to-end Character Embedding Model
To understand the potential of end to end character
based models in dealing noisy text, we use Very
Deep Convolutional Neural Network (VDCNN) ar-
chitecture proposed by Conneau et al. (2017) that
operates at character level by stacking multiple con-
volutional and pooling layers that sequentially ex-
tract a hierarchical representation of the text. This
representation is fed into a fully connceted layer
which is trained to maximize the classification ac-
curacy on training data.

4.5 Byte Pair Encoding + Word + Char
embedding models

We train a Byte Pair Encoding(BPE) based model
introduced by Sennrich et al. (2016) on the given
training corpus. We use this trained BPE model on
training data to tokenize/encode our documents in
training, validation and test data and use each BPE
unit as a word to learn embeddings. We perform
30, 000 merge operations on each training dataset
to learn subword or BPE units.

4.6 Pretrained Language Models
Recent liteature have shown that transferring
knowledge from large pre-trained language models
could benefit various NLP tasks either by adding a
task specific architecture or by fine-tuning the lan-
guage model for the end task (Peters et al., 2018;
Devlin et al., 2018; Peters et al., 2019). In this
work, we use BERT model and we fine-tune the
model for each of our train datasets.

5 Experiments

In this section, we present different variants of the
models described in Section 4 presented in Table
1.

fastText: We use multiple variants of fastText
model. Our fastTextngrams=1 uses embeddings
learned for each unigram. We treat this as our
baseline model without any preprocessing of the
text. Our fastTextngrams=2 model also uses bi-
grams along with unigrams as independent to-
kens to learn embeddings. All pairs of bigrams
are chosen wtihout ant frequency threshold. Our
fastTextngrams=2 + subword (2− 6) also uses all
subwords within a word boundary within the range
of 2− 6. All our models are trained with learning
rate of 0.5 and for 5 epochs.



139

BERT pretrained LM

   BERT WordPiece model

the very usage of the word in 
any instance is self-verifying

the very usage of the word in any 
instance is self - verify ##ing

FastTextTextCNN

Figure 2: We present the approach discussed in 5.1. The Input text for a document is tokenized via the BERT
Wordpiece tokenized model pretrained on GoogleNews and Wikipedia. This tokenized text is fed as input to the
word based models which aids in forming representations from a more informative subword split as an independent
unit.

TextCNN (Kim, 2014): We run the TextCNN for
classification in non-static mode, with learning rate
of 0.0001, dropout of 0.5 for 50 epochs. We have
used default kernel window sizes Nf = (3, 4, 5)
with m = 100 filters. We initialize the embeddings
layer with word2vec pretrained embeddings1 pub-
licly available from google. We used the non-static
variant of TextCNN, with pretrained embedding
initialization for word embedding layer.

TextCNN + char n-grams: The word embed-
ding layer is constructed for this approach as men-
tioned in 1(b). The kernel window sizes h for
character tokens are Nf = (1, 2, 3, 4, 5, 6) with
m = (32, 32, 32, 64, 64, 64) filters respectively. In-
creasing the number of filters further to match those
of parameters in Peters et al. (2018) for character
tokens led to overfitting on our datasets, and hence
we reduced the parameters. All the layers are al-
lowed to be tuned while training. The character em-
beddings CNN layer is initialized randomly with
Xavier initialization (Glorot and Bengio, 2010).
We set the character embedding layer output to
300, upon concatenation the word embedding wemb

full

1https://code.google.com/archive/p/word2vec/

length would be 600. This model is trained in ex-
actly similar settings as the above mentioned word
based TextCNN model.

Fully Character Embeddings Model: We run
VDCNN (Conneau et al., 2017) with 9 convolu-
tion layers with learning rate of 0.0001 reducing
the learning rate by hald every 15 intervals for 100
epochs. We use a batch size of 64 and use stochas-
tic gradient descent (SGD) as optimizization func-
tion with 0.9 momemtum.

BERT: For our BERT experiments we use the
BERTbase (uncased) model. BERTbase model
consists of 12 Transformer layers with 12 self-
attention heads with 768 hidden dimensions and
consists of 110 M total parameters. This model is
trained in BookCorpus and English Wikipedia cor-
pus. We attach a linear layer on top of BERTbase

model and the [CLS] token representation is fine-
tuned on the training set. We use a binary cross-
entropy loss to fine-tune BERT for our datasets.
The fine tuned model is evaluated on the test
set. We experimented with dropout values set at
(0.1, 0.2) between the transformer encoder layers.
We achieved best results at dropout of 0.2, which



140

Model pre sword Tok Hatespeech W-ATT W-TOX
0 1 2 3 4

fastTextngrams=1 N N N 69.7 71.8 84.2 95.5 82.2 93.3 95.6
fastTextngrams=1 Y N N 69.6 74.8 84.5 95.7 79.5 93.5 95.6
fastTextngrams=1 + BERT tokentization N Y Y 71.2 83.0 83.0 95.2 83.4 94.5 96.1
fastTextngrams=1 + Custom BPE N Y Y 66.3 72.0 74.8 73.2 72.4 81.5 84.6
fastTextngrams=2 + subword (2− 6) N Y N 64.3 71.2 75.9 92.2 85.7∗ 93.1 95.8
fastTextngrams=2 + subword (2− 6)
+ BERT tok

N Y Y 64.1 66.7 75.1 93.4 85.3 93.9∗ 95.7

fastTextngrams=2 + subword (2 − 6) +
+ BERT tokentization + preE

Y Y N 71.5 76.9 87.9 93.2 75.7 93.4 95.8∗

TextCNN (Kim, 2014) N N N 69.8 76.9 85.3 95.7 85.9 92.8 95.6
TextCNN + Character n-grams N N N 70.6 78.1 87.1 96.3 85.9 93.2 95.9
TextCNN + BERT tokenization N N Y 71.6 76.8 84.2 96.6 85.2 94.1 96.2
VDCNN (9 layers) N N N 65.3 71.6 80.7 89.3 85.9 91.6 93.9
BERT (dropout = 0.2) N N N 72.2 80.1 85.2 97.0 78.2 95.7 96.8

Table 1: We report Weighted F1-scores for the different models on the Hatespeech, W-TOX and W-ATT datasets.

we report in our experiments.

5.1 BERT Wordpiece Tokenizer Model with
Word models

We use Wordpiece (BPE) model of BERT (Devlin
et al., 2018) pretrained on BooksCorpus and En-
glish Wikipedia, produced using 30000 merge op-
erations. BERT uses this model as precursor before
encoding the text through transformer. We try to
examine the benefit of the wordpiece text encoding
vs the benefit we obtain from fine-tuning the pre-
trained LM. We hypothesize that pretrained BPE
model splits a word into most frequent subwords
found in the wikipedia corpus, which can help in
mining the informative subwords. The informative
subwords might prove very beneficial in noisy set-
tings where we observe missing spaces and typos.
In order to achieve this, we use this pretrained BPE
model for encoding the document text before in-
puting to our word based models, TextCNN and
fastText word variant. This is demonstrated in Fig-
ure 2. We have tried following variants with BERT
Wordpiece tokenization as preprocessing step.

BERT Tokenizer with fastTextngrams=2

TextCNN Word model: We preprocess the
given dataset text using pretrained BPE model,
and run a fastText bigram classification model
on the preprocessed output. We also evaluate the
TextCNN word model with the preprocessed text
as input.

BERT Tokenizer with fastText subword: The
preprocessed dataset with BERT trained BPE for
training fastText subword model as described in
Section 5.

Custom BPE model on the dataset: We also
tried to examine if we would get a similar perfor-
mance boost we obtained from BERT Wordpiece
model by encoding text via a custom wordpiece
model trained on the text. This helps us differenti-
ate if the gains are from training a wordpiece model
on a large text or if the gains are from using sub-
word splitting. We used 30,000 number of merge
operations for the custom BPE model, which is the
same as in BERT BPE to aim for a meaningful com-
parison. We have also tried other values of merge
operations from the custom BPE model, but none
have yielded substantially better performance.

6 Results and Analysis

Table 1 presents the Weighted F1 score based on
the support of each of the classes in the test set for
our classification task. For a classification prob-
lem with N samples in the test set and C classes,
Weighted F1 score 2 is defined as

1

N

C∑
i=1

ni ∗ Fi (1)

2we use sklearn library for computing macro and weighted
f1 scores in the paper https://scikit-learn.org/
stable/modules/generated/sklearn.metrics.
f1_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html


141

Technique PROCESSED DOC
Original a complaint about your disruptive behavior here

: https : / / en . wikipedia . org / wiki / wikipedia : administrators
% 27 noticeboard / incidents # disruptive users vandalizing article about spiro koleka

Custom BPE complain about your disruptive behavior here
: https : / / en . wikipedia . org / wi@@ ki / wikipedia : administrators
% 27 noticeboard / incidents # disrup@@ ti@@ ve @@ user@@ s @@
vandali@@ z@@ ing @@ article @@ about @@ spi@@ ro@@ @@ ko@@
le@@ ka

BERT token-
tization

complain about your disrupt @@ive behavior here
: https : / / en . wikipedia . org / wiki / wikipedia : administrators
% 27 notice @@board / incidents # disrupt @@ive users

van @@dal @@izing @@ article @@ about @@ sp @@iro @@ ko @@le
@@ka

Table 2: Sample document split created by BERT BPE tokenizer, Custom BPE tokenizer

Model W-ATT W-TOX
WS (Mishra et al., 2018) 84.4 85.4
CONTEXT HS + CNG (Mishra
et al., 2018)

87.4 89.3

fastText(ngrams=2) 85.2 86.8
fastText(ngrams=2, BERT BPE) 85.9 88.6
fastText(ngrams=2, BERT BPE,
PreE)

86.8 88.6

Kim2014 82.7 88.4
Kim2014 (BERT BPE) 83.4 89.3
BERT (dropout = 0.2) 89.5 90.6

Table 3: Macro F1 average on the W-TOX and W-ATT
datasets.

where ni denotes the number of samples in class
i. We have reported weighted F1 as the twitter
data we obtained had only 17 samples for racism,
with stratified CV split having only 4 samples on
average. As the results on this label could be very
random and prone to lot of variance due to very
little number of samples in the train and test set,
we choose to use weighted F1 over macro F1.
We also have observed very high variance among
performance in different CV splits, hence report
the numbers separately on each of them.

Table 1 also mentions if each of the experiment
involves using word splitting via BPE, either by pre-
trained BERT Wordpiece tokenization model, or by
training a custom BPE model on our given dataset.
We have also highlighted the individual best perfor-
mance from a modeling architecture with a ∗.

Table 2 presents the Macro F1 score on W-ATT
and W-TOX datasets. Macro F1 score is defined

as :

1

C

C∑
i=1

Fi (2)

We have picked the best performing models from
1 for macro F1 comparison. We have also com-
pared to previous approaches that have achieved
best performance on these datasets. Mishra et al.
(2018) reported Macro F1 on both validation and
test data together. From their work it is unclear if
the model is tuned on validation, and same data
was used along with test to report numbers. Hence,
we only use their number as reference. The main
conclusions of these experiments are fourfold:

1. Pretrained BPE models transfer well: Pre-
training a Wordpiece model on a large general cor-
pus like wikipedia, and using this for encoding
input text by splitting words has shown significant
improvements for all the word based models. The
fastText word model with bigrams (row 3 in table
1) trained with BERT tokenization achieves the best
performance on 1st split of the hatespeech data, and
also shows improvement over the native fastText
bigrams model on Wiki-ATT dataset. The same ob-
servation can be made with TextCNN word model
with preprocessing by pretrained BERT Wordpiece
tokenization model(row 11 in Table 1). However,
we have either noticed a slight degradation or an
insignificant improvement by applying BPE en-
coding with fastText subword based model. This
is expected as breaking the informative subwords
from BERT into much smaller units might result in
lot of noisy updates.



142

Predicted
Label

Technique Text

not attack Original believe that he was the greatest mother-fucker in the world
attack∗ BPE believe that he was the greatest mother## -## fuck## er in the

world
not attack Original many thanks for your leaving all edits alone in future with such

idiotic diatribes
attack∗ BPE many thanks for your leaving all edit## s alone in future with such

idiot## ic## dia## tri## bes

Table 4: Qualitative samples from original text, and BERT Wordpiece model text. Actual label is marked with an
asterisk. We can observe that BERT BPE model can effectively mine informative subwords as observed in general
domain wikipedia

2. Fine tuning pretrained language models:
We observe that fine-tuning large pretrained lan-
guage models achieve best performance on tox-
icity dataset. BERT with dropout=0.2 achieves
the best performance on most of the datasets and
splits. It achieves better or at par performance over
any word based model. Only fastText subwords
and textCNN/fastText word based model trained
on BERT Wordpiece tokenization preprocessing
achieve higher performance compared to BERT
finetuning. The gains from BERT Wordpiece tok-
enization model encoding to fastText word model
outperforms performance of BERT model itself.
We leave it as future work to further investigate the
contribution from BPE Wordpiece tokenization to
other classification tasks.

3. End to End Char models arent as effective
as subword or word + char models: Adding
character based embedding to aid word embedding
based models, and subword models enhance the
performance over their pure word based modeling
baselines. This proves the hyptohesis of modeling
at subword level definitely is beneficial for detect-
ing abusive language. Interestingly, end to end
character models arent as effective, which demon-
strates the basic fact knowledge of word leads
to a powerful representation, and word boundary
information is still informative in noisy settings.

4. State-of-the-art performance on W-TOX
and W-ATT with BERT finetuning: Table 3
shows the results for Macro F1 score of our mod-
els in comparison to previous approaches that
have achieved best performance on these datasets.
Mishra et al. (2018) reported Macro F1 on both
validation and test data together. From their work
it is unclear if the model is tuned on validation, and

same data was used along with test to report num-
bers. Hence, we only use their number as reference.
We have also observed better numbers with their ap-
proach. We have achieved state of the art macro F1
score on W-ATT and W-TOX datasets with BERT
finetuning. We have also added performance of
BERT Wordpiece tokenized text with word based
models for comparison, with their numbers running
really close to those of BERT.

5. Effect of custom BPE model trained on
the dataset: We have noticed significant perfor-
mance degaradation as reported in Table 1, by tok-
enizing the text with custom BPE model trained on
the W-ATT and W-TOX corpus, in comparison to
using the original text or the BERT BPE encoded
text. It’s interesting to notice the text tokenized by
BERT yields very informative subwords, that can
help the word based model in comparison to sub-
words yielded by custom BPE model, even though
the vocabulary size of both the models is very sim-
ilar. Table 4 presents a qualitative example on how
the BERT BPE mines informative subwords com-
pared to the custom BPE model. One can note that
BERT BPE model clearly splits the text on under-
scores extracts stem of the word in few cases.

7 Qualitative Analysis

Table 4 represents couple of examples from W-
ATT dataset, where the pure word based model has
failed to detect abusive language, but the model
trained and tested on BERT Wordpiece tokenized
text is able to detect the attack. As we can see,
Wordpiece model trained on large wikipedia text
with 30k operations(BERT) doesnt merge or create
relatively uncommon word like idiotic from idiot
and ic. This helps the model to just learn about
idiot clearly from training set, and later use this



143

for clear demarcation.

8 Acknowledgements

We would like to thank Kasturi Bhattacharjee and
Faisal Ladhak for the time they spent in reviewing
our work, and their valuable feedback and com-
ments.

9 Conclusion and Future Work

Existing literature has shown the importance of us-
ing finer units such as character or subword units
to learn better models and robust representations
for identifying abusive language in social media.
In this work, we explore various combinations of
such word decomposition techniques and present
experiments that bring new insights and/or con-
firm previous findings. Additionally, we study the
effectiveness of large pretrained language models
trained on standard text in understanding noisy user
generated text. We further investigate the effective-
ness of subword units (“wordpieces”) learned for
unsupervised language modeling can improve the
performance of bag-of-words based text classifi-
cation models such as fastText. We evaluate our
models on Twitter hatespeeech, Wikipedia toxicity
and attack datasets.

Our experiments demonstrate that encoding
noisy text via BERT wordpiece tokenization model
before passing it through word-based models (fast-
Text and TextCNN) can boost the performance of
word-based models and achieve state-of-the-art per-
formance. Based on our experiments, we conclude
that subword models perform competitively with
character-based models and occasionally outper-
form them. We observe that adding character em-
beddings to TextCNN model can slightly boost the
performance compared to word-CNN models.

Our experiments on fine-tuning BERT show im-
provements on both Wikipedia toxicity and at-
tack datasets. We observe that BERT can effec-
tively transfer pretrained information to classifying
tweets and user comments despite the domain shift
of pre-training on BookCorpus, Wikipedia Text .
Future work in this direction could include pre-
training BERT on huge collection of social media
text, which might further enhance the performance
of identifying abusive language on social media
text. Recent work by Wiegand et al. (2019) high-
lights that most of the datasets that study abusive
language are prone to data sampling bias and abu-
sive language identification on realistic scenario

is much harder with higher percentage of implicit
content. A potential future direction would be to ex-
plore how pretrained models on generic text could
incorporate or handle implicit abuse.

References
Miguel Á Álvarez-Carmona, Estefanıa Guzmán-

Falcón, Manuel Montes-y Gómez, Hugo Jair Es-
calante, Luis Villasenor-Pineda, Verónica Reyes-
Meza, and Antonio Rico-Sulayes. 2018. Overview
of mex-a3t at ibereval 2018: Authorship and ag-
gressiveness analysis in mexican spanish tweets. In
Notebook Papers of 3rd SEPLN Workshop on Evalu-
ation of Human Language Technologies for Iberian
Languages (IBEREVAL), Seville, Spain, volume 6.

Segun Taofeek Aroyehun and Alexander Gelbukh.
2018. Aggression detection in social media: Us-
ing deep neural networks, data augmentation, and
pseudo labeling. In Proceedings of the First Work-
shop on Trolling, Aggression and Cyberbullying
(TRAC-2018), pages 90–97.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Cristina Bosco, Dell’Orletta Felice, Fabio Poletto,
Manuela Sanguinetti, and Tesconi Maurizio. 2018.
Overview of the evalita 2018 hate speech detection
task. In EVALITA 2018-Sixth Evaluation Campaign
of Natural Language Processing and Speech Tools
for Italian, volume 2263, pages 1–9. CEUR.

Justin Cheng, Cristian Danescu-Niculescu-Mizil, and
Jure Leskovec. 2015. Antisocial behavior in on-
line discussion communities. In Ninth International
AAAI Conference on Web and Social Media.

Alexis Conneau, Holger Schwenk, Yann LeCun, and
Loı̈c Barrault. 2017. Very deep convolutional net-
works for text classification. In Proceedings of the
15th Conference of the European Chapter of the
Association for Computational Linguistics, EACL
2017, Valencia, Spain, April 3-7, 2017, Volume 1:
Long Papers, pages 1107–1116.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
Eleventh International AAAI Conference on Web and
Social Media.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Maeve Duggan. 2017. Online harassment 2017.



144

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statis-
tics, pages 249–256.

Edouard Grave, Tomas Mikolov, Armand Joulin, and
Piotr Bojanowski. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics, EACL 2017, Valen-
cia, Spain, April 3-7, 2017, Volume 2: Short Papers,
pages 427–431.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Ritesh Kumar, Atul Kr Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking aggression
identification in social media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC-2018), pages 1–11.

Irene Kwok and Yuzhou Wang. 2013. Locate the hate:
Detecting tweets against blacks. In Twenty-seventh
AAAI conference on artificial intelligence.

Pushkar Mishra, Helen Yannakoudakis, and Ekaterina
Shutova. 2018. Neural character-based composition
models for abuse detection.

Sandip Modha, Prasenjit Majumder, and Thomas
Mandl. 2018. Filtering aggression from multilin-
gual social media feed. In Proceedings of the First
Workshop on Trolling, Aggression and Cyberbully-
ing (TRAC–1), Santa Fe, USA.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th international conference on world
wide web, pages 145–153. International World Wide
Web Conferences Steering Committee.

John Pavlopoulos, Prodromos Malakasiotis, and Ion
Androutsopoulos. 2017. Deep learning for user com-
ment moderation. arXiv preprint arXiv:1705.09993.

Matthew Peters, Sebastian Ruder, and Noah A Smith.
2019. To tune or not to tune? adapting pretrained
representations to diverse tasks. arXiv preprint
arXiv:1903.05987.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wo-
jatzki. 2016. Measuring the Reliability of Hate
Speech Annotations: The Case of the European
Refugee Crisis. In Proceedings of NLP4CMC III:
3rd Workshop on Natural Language Processing for
Computer-Mediated Communication, volume 17 of
Bochumer Linguistische Arbeitsberichte, pages 6–9.

Magnus Sahlgren, Tim Isbister, and Fredrik Olsson.
2018. Learning representations for detecting abu-
sive language. In Proceedings of the 2nd Workshop
on Abusive Language Online (ALW2), pages 115–
123.

Haji Mohammad Saleem, Kelly P. Dillon, Susan Be-
nesch, and Derek Ruths. 2017. A web of hate: Tack-
ling hateful speech in online social spaces. CoRR,
abs/1709.10159.

Andrew Schrock and Danah Boyd. 2011. Problematic
youth interaction online: Solicitation, harassment,
and cyberbullying. Computer-mediated communica-
tion in personal relationships, pages 368–398.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Ger-
many, Volume 1: Long Papers.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Robert S Tokunaga. 2010. Following you home from
school: A critical review and synthesis of research
on cyberbullying victimization. Computers in hu-
man behavior, 26(3):277–287.

Fabio Del Vigna, Andrea Cimino, Felice Dell’Orletta,
Marinella Petrocchi, and Maurizio Tesconi. 2017.
Hate me, hate me not: Hate speech detection on
facebook. In Proceedings of the First Italian Con-
ference on Cybersecurity (ITASEC17), Venice, Italy,
January 17-20, 2017., pages 86–95.

William Warner and Julia Hirschberg. 2012. Detect-
ing hate speech on the world wide web. In Proceed-
ings of the Second Workshop on Language in Social
Media, pages 19–26. Association for Computational
Linguistics.

Zeerak Waseem. 2016. Are you a racist or am i seeing
things? annotator influence on hate speech detection
on twitter. In Proceedings of the first workshop on
NLP and computational social science, pages 138–
142.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Michael Wiegand, Josef Ruppenhofer, and Thomas
Kleinbauer. 2019. Detection of Abusive Language:
the Problem of Biased Datasets. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 602–608.



145

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018. Overview of the germeval 2018 shared
task on the identification of offensive language.

Nancy E Willard. 2007. Cyberbullying and cy-
berthreats: Responding to the challenge of online
social aggression, threats, and distress. Research
press.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon. 2017.
Ex machina: Personal attacks seen at scale. In Pro-
ceedings of the 26th International Conference on
World Wide Web, pages 1391–1399. International
World Wide Web Conferences Steering Committee.

Dawei Yin, Zhenzhen Xue, Liangjie Hong, Brian D
Davison, April Kontostathis, and Lynne Edwards.
2009. Detection of harassment on web 2.0. Pro-
ceedings of the Content Analysis in the WEB, 2:1–7.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Semeval-2019 task 6: Identifying and cate-
gorizing offensive language in social media (offen-
seval). arXiv preprint arXiv:1903.08983.

Jian Zhu, Zuoyu Tian, and Sandra Kübler. 2019. Um-
iu@ ling at semeval-2019 task 6: Identifying of-
fensive tweets using bert and svms. arXiv preprint
arXiv:1904.03450.


