
Proceedings of the First International Workshop on Designing Meaning Representations, pages 15–27
Florence, Italy, August 1st, 2019 c©2019 Association for Computational Linguistics

15

Thirty Musts for Meaning Banking

Johan Bos
Center for Language and Cognition

University of Groningen
johan.bos@rug.nl

Lasha Abzianidze
Center for Language and Cognition

University of Groningen
l.abzianidze@rug.nl

Abstract

Meaning banking—creating a semantically
annotated corpus for the purpose of semantic
parsing or generation—is a challenging task.
It is quite simple to come up with a com-
plex meaning representation, but it is hard to
design a simple meaning representation that
captures many nuances of meaning. This pa-
per lists some lessons learned in nearly ten
years of meaning annotation during the devel-
opment of the Groningen Meaning Bank (Bos
et al., 2017) and the Parallel Meaning Bank
(Abzianidze et al., 2017). The paper’s for-
mat is rather unconventional: there is no ex-
plicit related work, no methodology section,
no results, and no discussion (and the current
snippet is not an abstract but actually an intro-
ductory preface). Instead, its structure is in-
spired by work of Traum (2000) and Bender
(2013). The list starts with a brief overview
of the existing meaning banks (Section 1) and
the rest of the items are roughly divided into
three groups: corpus collection (Section 2 and
3, annotation methods (Section 4–11), and de-
sign of meaning representations (Section 12–
30). We hope this overview will give inspira-
tion and guidance in creating improved mean-
ing banks in the future.

1 Look at other meaning banks

Other semantic annotation projects can be inspir-
ing, help you to find solutions to hard annota-
tion problems, or to find out where improvements
to the state of the art are still needed (Abend
and Rappoport, 2017). Good starting points are
the English Resource Grammar (Flickinger, 2000,
2011), the Groningen Meaning Bank (GMB, Bos
et al. 2017), the AMR Bank (Banarescu et al.,
2013), the Parallel Meaning Bank (PMB, Abzian-
idze et al. 2017), Scope Control Theory (But-
ler and Yoshimoto, 2012), UCCA (Abend and
Rappoport, 2013), Prague Semantic Dependencies

(Hajič et al., 2017) and the ULF Corpus based on
Episodic Logic (Kim and Schubert, 2019). The
largest differences between these approaches can
be found in the expressive power of the mean-
ing representations used. The simplest represen-
tations correspond to graphs (Banarescu et al.,
2013; Abend and Rappoport, 2013); slightly more
expressive ones correspond to first-order logic
(Oepen et al., 2016; Bos et al., 2017; Abzianidze
et al., 2017; Butler and Yoshimoto, 2012), whereas
others go beyond this (Kim and Schubert, 2019).
Generally, an increase of expressive power causes
a decrease of efficient reasoning (Blackburn and
Bos, 2005). Semantic formalisms based on graphs
are attractive because of their simplicity, but will
face issues when dealing with negation in infer-
ence tasks (Section 21). The choice might depend
on the application (e.g., if you are not interested
in detecting contradictions, coping with negation
is less important), but arguably, an open-domain
meaning bank ought to be independent of a spe-
cific application.

2 Select public domain corpora

Any text could be protected by copyright law and
it is not always easy to find suitable corpora that
are free from copyright issues. Indeed, the rela-
tionship between copyright of texts and their use in
natural language processing is complex (Eckart de
Castilho et al., 2018). Nonetheless, it pays off to
make some effort by searching for corpora that are
free or in the public domain (Ide et al., 2010). This
makes it easier for other researchers to work with
it, in particular those that are employed by insti-
tutes with lesser financial means. The GMB only
includes corpora from the public domain (Basile
et al., 2012b). Free parallel corpora are also avail-
able via OPUS (Skadiņš et al., 2014). Other re-
searchers take advantage of vague legislation and
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distribute corpora quoting the right of fair use
(Postma et al., 2018). Recently, crowd sourc-
ing platforms such as Figure Eight make datasets
available, too (“Data For Everyone”), under ap-
propriate licensing. While targeting the public do-
main corpora, one might need to bear in mind the
coverage of the corpora depending on the objec-
tives of semantic annotation.

3 Freeze the corpus before you start

Once you start your annotation efforts, it is a good
idea to freeze the corpora that will comprise your
meaning bank.1 In the GMB project (Basile et al.,
2012b), the developers were less strict in maintain-
ing this principle. During the project they came
across new corpora, but after adding them to the
GMB they were forced to fix and validate annota-
tions on many levels to get the newly added corpus
up to date and in sync with the rest. This problems
manifests itself especially for corpora that are con-
structed via a phenomenon-driven annotation ap-
proach (Section 24).

4 Work with raw texts in your corpus

Keep the original texts as foundation for annota-
tion. Never ever carry out any semantic annota-
tion on tokenised texts, but use stand-off annota-
tion on character offsets (Section 5). Tokenisa-
tion can be done in many different ways, and the
atoms of meaning certainly do not correspond di-
rectly to words. Most of the current conventions
in tokenisation are based on what has been used in
(English) syntax-oriented computational linguis-
tics and can be misleading when other languages
are taken into consideration (Section 29). More-
over, if you use an off-the-shelf tokeniser, you will
find out soon that it makes mistakes—and correct-
ing those would break any annotations done at the
word token level. More likely, during your anno-
tation project, you will find the need to change
the tokenisation guidelines to deal properly with
multi-word expressions (Section 22). In addition,
punctuation and spacing carry information that
could be useful for deep learning approaches, and
their original appearance should therefore in one
way or another should be preserved. An exam-
ple: a “New York-based” company could be a new

1Freezing the corpora already fixes certain data statements
for your meaning bank, like curation rationale, language vari-
ety, and text characteristics. Communicating these data state-
ments is important from an application point of view (Bender
and Friedman, 2018).

company based in York, but the other interpreta-
tion is more likely. In an NLP-processing pipeline,
it is too late for syntax to fix this in a compositional
way—the tokenisation needs to be improved.

5 Use stand-off annotation

Stand-off annotation is a no-brainer as it offers a
lot more flexibility. It enables keeping annotations
separate from the original raw text, where ideally
each annotation layer has its own file (Ide and Ro-
mary, 2006; Pustejovsky and Stubbs, 2012). It
is best executed with respect to the character off-
sets of the raw texts in the corpus (Section 4). A
JSON or XML-based annotation file can always be
generated from this, should the demand be there.
Stand-off annotation is in particular advantageous
in a setting where several layers of annotation in-
teract with each other (typically in a pipeline ar-
chitecture). This was extremely helpful in the
GMB (Bos et al., 2017) where the document seg-
mentation (sentence and word boundaries) got im-
proved several times during the project, without
having any negative effect on annotation occurring
later in the semantic processing pipeline (such as
part-of-speech tagging and named entity recogni-
tion).

6 Consider manual annotation

Several meaning banks are created with the
help of a grammar. The best example here
is the sophisticated English Resource Grammar
(Flickinger, 2000, 2011) used to produce the tree-
banks, Redwoods (Oepen et al., 2004) and Deep-
Bank (Flickinger et al., 2012), annotated with En-
glish Resource Semantics (ERS) in a composi-
tional way, by letting the annotator pick the correct
or most plausible analysis. Similarly, the meaning
representations in the GMB are system-produced
and partially hand-corrected (Bos et al., 2017), us-
ing a CCG parser (Clark and Curran, 2004). Like-
wise, the meaning representations in the PMB are
system-produced with the help of a CCG parser
(Lewis and Steedman, 2014) and some of it is
completely hand-corrected. In contrast, the mean-
ing representations of the AMR Bank are com-
pletely manually manufactured—without the aid
of a grammar—with the help of an annotation in-
terface and an extensive manual (Banarescu et al.,
2013). Bender et al. (2015) argue that grammar-
based meaning banking requires less annotation
guidelines, that it provides more consistent anal-
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yses, and that it is more scalable. The downside
of grammar-based annotation is that several com-
pound expressions are not always compositional
(negative and modal concord, postnominal geni-
tives (“of John’s”), odd punctuation conventions,
idioms), and that grammars with high recall and
precision are costly to produce (the impressive En-
glish Resource Grammar took about several years
to develop, but it is restricted to just one language).

7 Make a friendly annotation interface

Annotation can be fun (especially if gamification
is applied, see Section 9), but it can also be te-
dious. A good interface helps the annotator to
make high-quality annotations, to work efficiently,
and to be able to focus on particular linguistic phe-
nomena. An annotation interface should be web-
based (i.e., any browser should support it), sim-
ple to use, and personalised.2 The latter grants
control over annotations of particular users. The
“Explorer” (Basile et al., 2012a) introduced in the
GMB and later further developed in the PMB, has
various search abilities (searches for phrases, reg-
ular expressions, and annotation labels), a statis-
tics page, a newsfeed, and a user-friendly way to
classify annotations as “gold standard”. The in-
clusion of a “sanity checker” helps to identify an-
notation mistakes, in particular if there are several
annotation layers with dependencies. It is also a
good idea to hook the annotation interface up with
a professional issue reporting system.

8 Include an issue reporting system

Annotators will sooner or later raise issues, have
questions about the annotation scheme, or find
bugs in the processing pipeline. This is valuable
information for the annotation project and should
not get lost. The proper way to deal with this
is to include a sophisticated bug reporting sys-
tem in the annotation interface. For the GMB
(Bos et al., 2017) and the PMB (Abzianidze et al.,
2017), the Mantis Bug Tracker3 was incorporated
inside the Explorer (Basile et al., 2012a). Be-
sides Mantis there are many other free and open
source web-based bug tracking systems available.
A bug tracker enables one to categorize issues, as-
sign them to team members, have dedicated dis-
cussion thread for each issue, and keep track of all

2For more details about web-based collaborative annota-
tion tools we refer to Biemann et al. (2017).

3https://www.mantisbt.org/

improvements made in a certain time span (useful
for the documentation in data releases).

9 Be careful with the crowd

Following the idea of Phrase Detectives (Cham-
berlain et al., 2008), in the GMB (Bos et al., 2017)
a game with a purpose (GWAP) was introduced to
annotate parts of speech, antecedents of pronouns,
noun compound relations (Bos and Nissim, 2015),
and word senses (Venhuizen et al., 2013). The
quality of annotations harvested from gamification
was generally high, but the amount of annotations
relatively low—it would literally take years to an-
notate the entire GMB corpus. An additional prob-
lem with GWAPs is recruiting new players: most
players play the game only once, and attempts to
make the game addictive could be irresponsible
(Andrade F.R.H., 2016). The alternative, engaging
people by financially awarding them via crowd-
sourcing platforms such as Mechanical Turk or
Figure Eight, solves the quantity problem (Puste-
jovsky and Stubbs, 2012), but introduces other is-
sues including the question what a proper wage
would be (Fort et al., 2011) and dealing with trick-
sters and cheaters (Buchholz and Latorre, 2011).

10 Profit from lexicalised grammars

A lexicalised grammar gives an advantage in an-
notating syntactic structure. In case of the com-
positional semantics, this also leads to automatic
construction of the phrasal semantics. This is be-
cause, in a lexicalised grammar, most of the gram-
mar work is done in the lexicon (there is only a
dozen general grammar rules), and annotation is
just a matter of giving the right information to a
word (rather than selecting the correct interpreta-
tion from a possibly large set of parse trees). In the
PMB a lexicalised grammar is used: Combinatory
Categorial Grammar (CCG, Steedman 2001), and
the core annotation layers for each word token are
a CCG category, a semantic tag (Abzianidze and
Bos, 2017), a lemma, and a word sense. Anno-
tating thematic roles (Section 18) is also conve-
nient in a lexicalised grammar environment (Bos
et al., 2012). Finally, a lexicalised grammar cou-
pled with compositional semantics facilitates an-
notation projection for meaning preserving trans-
lations and opens the door to multilingual mean-
ing banking (Section 29). Projection of meaning
representation from one sentence to another is re-
duced to word alignment and word-level annota-

https://www.mantisbt.org/
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tion transfer. This type of projection is underlying
the idea of moving from the monolingual GMB to
the multilingual PMB.

11 Try to use language-neutral tools

Whenever possible, in machine-assisted annota-
tion, get language technology components that
are not tailored to specific languages, because
this increases portability of meaning processing
components to other languages (Section 29). The
statistical tokeniser (for word and sentence seg-
mentation) used in the PMB is Elephant (Evang
et al., 2013). The current efforts in multi-lingual
POS-tagging, semantic tagging (Abzianidze and
Bos, 2017) and dependency parsing are promis-
ing (White et al., 2016). In the PMB a categorial
grammar is used to cover four languages (English,
Dutch, German, and Italian), using the same parser
and grammar, but with language-specific statisti-
cal models trained for the EasyCCG parser (Lewis
and Steedman, 2014). Related are grammatical
frameworks designed for parallel grammar writing
(Ranta, 2011; Bender et al., 2010).

12 Apply normalisation to symbols

Normalising the format of non-logical symbols
(the predicates and individual constants, as op-
posed to logical symbols such as negation and con-
junction) in meaning representations decreases the
need for awkward background knowledge rules
that would otherwise be needed to predict cor-
rect entailments. Normalisation (van der Goot,
2019) can be applied to date expressions (e.g.,
the 24th of February 2010 vs. 24-02-2010 or
dozens of variations on these), time expressions
(2pm, 14:00, two o’clock), and numerical ex-
pressions (twenty-four, 24, vierundzwanzig; three
thousand, 3,000, 3000, 3 000). Compositional
attempts to any of the above mentioned classes
of expressions are highly ambitious and not rec-
ommended. Take, for instance, the Dutch clock
time expression “twee voor half vier”, which de-
notes 03:28 (or 15:28)—how would you derive
this compositionally in a computational straight-
forward way? Other normalisations for consider-
ation are expansion of abbreviations to their full
forms, lowercasing proper names, units of mea-
surement, and scores of sports games. To promote
inter-operability between annotated corpora, it is a
good idea to check whether any standards are pro-
posed for normalisation (Pustejovsky and Stubbs,

2012).

13 Limit underspecification

Underspecification is a technique with the aim to
free the semantic interpretation component from a
disambiguation burden (Reyle, 1993; Bos, 1996;
Copestake et al., 2005). In syntactic treebanks,
however, the driving force has been to assign the
most plausible parse tree to a sentence. This
makes sense for the task of statistical (syntac-
tic) parsing. The same applies to (statistical) se-
mantic parsing: a corpus with the most likely
interpretation for sentences is required. More-
over, it is not straightforward to draw correct in-
ferences with underspecified meaning representa-
tions (Reyle, 1995). So it makes sense, at least
from the perspective of semantic annotation, to
produce the most plausible interpretation for a
given sentence. Consider the following examples.
A “sleeping bag” could be a bag that is asleep,
but it is very unlikely (even in a Harry Potter set-
ting), so should be annotated as a bag designed
to be slept in. In the sentence “Tom kissed his
mother”, the possessive pronoun could refer to a
third party, but by far the most likely interpreta-
tion is that Tom’s mother is kissed by Tom, and
that reading should be reflected in the annotation.
Genuine scope ambiguities are relatively rare in
ordinary text, and it is questionable whether the
representational overhead of underspecified scope
is worth the effort given the low frequency of the
phenomenon. Nonetheless, resolving ambiguities
is sometimes hard, in particular for sentences in
isolation. What is plausible for one annotator is
implausible for another. Finally, one needs to be
careful, as annotation guidelines that give prefer-
ence for one particular reading (based on statistical
plausbility) have the danger of introducing or even
amplifying bias.

14 Beware of annotation bias

Assigning the most likely interpretation to a sen-
tence can also give an unfair balance to stereo-
types. In the PMB, gender of personal proper
names are annotated. In many cases this is a
straightforward exercise. But there are sometimes
cases where the gender of a person is not known.
The disturbing distribution of male versus female
pronouns (or titles) strongly suggests that a female
is the least likely choice (Webster et al., 2018). But
following this statistical suggestion only causes
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greater divide. The PMB annotation guidelines for
choosing word senses (Secion 15) are such that
when it is unclear what sense to pick, the higher
sense (thus, the most frequent one), must be se-
lected. This is bad, because systems for word
sense disambiguation already show a tendency to-
wards assigning the most frequent sense (Postma
et al., 2016). More efforts are needed to reduce
bias (Zhao et al., 2017).

15 Use existing resources for word senses

The predicate symbols that one finds in mean-
ing representation are usually based on word lem-
mas. But words have no interpretation, and a
link to concepts in an existing ontology (Lenat,
1995; Navigli and Ponzetto, 2012) is something
that is needed to make the non-logical sym-
bols in meaning representations interpretable. In
the AMR Bank, verbs are disambiguated by
OntoNotes senses (Banarescu et al., 2013). In
the PMB, nouns, verbs, adjectives and adverbs
are labelled with the senses of (English) Word-
Net (Fellbaum, 1998). Picking the right sense
is sometimes hard for annotators, sometimes be-
cause there is too little context, but also be-
cause the definitions of fine-grained senses are
sometimes hard to distinguish from each other
(Lopez de Lacalle and Agirre, 2015). Annotation
guidelines are needed for ambiguous cases where
syntax doesn’t help to disambiguate: “Swimm-
ming is great fun.” (swimming.n.01 or perhaps
swim.v.01?), “Her words were emphasized.”
(emphasized.a.01 or emphasize.v.02?).
WordNet’s coverage is impressive and substantial,
but obviously not all words are listed (example:
names of products used as nouns) and sometimes
it is inconsistent (for instance, “apple juice” is in
WordNet, but “cherry juice” is not). Many Word-
Nets exists for languages other than English (Nav-
igli and Ponzetto, 2012; Bond and Foster, 2013).

16 Apply symbol grounding

Symbol grounding helps to connect abstract rep-
resentations of meaning with objects in the real
world or to unambiguous descriptions of concepts
or entities. This happens on the conceptual level
with mapping words to WordNet synsets or to
a well-defined inventory of relations. Princeton
WordNet (Fellbaum, 1998) lists several instances
of famous persons but obviously the list is incom-
plete. The AMR Bank includes links from named

entities to wikipedia pages, but obviously not ev-
ery named entity has a wikipedia entry. To our
knowledge, no other meaning banks apply wiki-
fication. Other interesting applications for sym-
bol grounding are GPS coordinates for toponyms
(Leidner, 2008), visualisation of concepts or ac-
tions (Navigli and Ponzetto, 2012), or creating
timelines (Bamman and Smith, 2014).

17 Adopt neo-Davidsonian events

It seems that in most (if not all) semantically anno-
tated corpora a neo-Davidsonian event semantics
is adopted. This means that every event introduces
its own entity as a variable, and this variable can be
used to connect the event to its thematic roles. In
the original Davidsonian approach, an event vari-
able was simply added to the predicate introduced
by the verb (Davidson, 1967; Kamp and Reyle,
1993) as a way to add modifiers (e.g., moving from
eat(x,y) to eat(e,x,y) for a transitive use
of to eat). In most modern meaning representa-
tions thematic roles are introduced to reduce the
number of arguments of verbal predicates to one,
also known as the neo-Davidsonian tradition (Par-
sons, 1990) (e.g., moving from eat(e,x,y) to
eat(e) AGENT(e,x) PATIENT(e,y)). A
direct consequence of a neo-Davidsonion design
is the need for an inventory of thematic roles.
But there is also an alternative, which is given
a fixed arity to event predicates, of which some
of them may be unused (Hobbs, 1991) when the
context does not provide this information (e.g.,
for the intransive usage of to eat, still maintain
eat(e,x,y) where y is left unspecified).

18 Use existing role labelling inventories

A neo-Davidsonian approach presupposes a dic-
tionary of thematic (or semantic) role names.
There are three popular sets available: PropBank,
VerbNet, and FrameNet. PropBank (Palmer et al.,
2005) proposes a set of just six summarising
roles: ARG0 (Agent), ARG1 (Patient), ARG2 (In-
strument, Benefactive, Attribute), ARG3 (Start-
ing Point), ARG4 (Ending Point), ARGM (Modi-
fier). The interpretation of these roles are in many
cases specific to the event in which they partic-
ipate. The AMR Bank adopts these PropBank
roles (Banarescu et al., 2013). VerbNet has a set
of about 25 thematic roles independently defined
from the verb classes (Kipper et al., 2008). A
few examples are: Agent, Patient, Theme, Instru-



20

ment, Experiencer, Stimulus, Attribute, Value, Lo-
cation, Destination, Source, Result, and Material.
The PMB adopts the thematic roles of VerbNet.
FrameNet is organised quite differently. Its start-
ing point is not rooted in linguistics, but rather in
real-world situations, classified as frames (Baker
et al., 1998). Frames have frame elements that can
be realised by linguistic expressions, and they cor-
respond to the PropBank and VerbNet roles. There
are more than a thousand different frames, and
each frame has its own specific role set (frame ele-
ments). For instance, the Buy-Commerce frame
has roles Buyer, Goods, Seller, Money, and so
on. There are also recent proposals for compre-
hensive inventories for roles introduced by prepo-
sitional and possessive constructions (Schneider
et al., 2018). In the PMB, we employ a unified
inventory of thematic roles (an extension of the
VerbNet roles) that is applicable to verbs, adjec-
tives, prepositions, possessives or noun modifiers.

19 Treat agent nouns differently

Agent and recipient nouns (nouns that denote per-
sons performing or receiving some action, such as
employee, victim, teacher, mother, cyclist, victim)
are intrinsically relational (Booij, 1986). Mod-
elling them like ordinary nouns, i.e., as one-place
predicates, can give rise to contradictions for any
individual that has been assigned more than one
role, because while you want to be able to state
that a violin player is not the same thing as a
mother, a person could perfectly be a mother and
a violin player at the same time. Moreover, a fast
cyclist could be a slow driver. Incorrect modeling
can furthermore lead to over-generation of some
unmanifested relations (for instance, if Butch is
Vincent’s boss and Mia’s husband, a too simple
model would predict that Butch is also Vincent’s
husband and Mia’s boss. In the AMR Bank (Ba-
narescu et al., 2013) agent nouns are decomposed
(e.g., an “investor” is a person that invests). In the
PMB agent nouns introduce a mirror entity (e.g.
an “investor” is a person with the role of investor).

20 Beware of geopolitical entities

Names used to refer to geopolitical entities (GPEs)
are a real pain in the neck for semantic annotators.
How many times did we change the annotation
guidelines for these annoying names! The prob-
lem is that expressions like “New York”, “Italy”,
or “Africa” can refer to locations, their govern-

ments, sport squads that represent them, or the
people that live there (and in some case to multi-
ple aspects at the same time, as in “Italy produces
better wine than France”). This instance of sys-
tematic polysemy manifests itself for all classes
of GPE, including continents, countries, states,
provinces, cities, and so on. Detailed instructions
for annotating GPEs can be found in the ACE an-
notation guidelines (Doddington et al., 2004).

21 Give scope to negation

Sentence meaning is about assigning truth condi-
tions to propositions (Section 23). Negation plays
a crucial role here—in fact, the core of seman-
tics is about negation, identifying whether a state-
ment is true of false. Negation is a semantic phe-
nomenon that requires scope, in other words, it
cannot be modelled by simply applying it as a
property of an entity. It should be clear—explicit
or implicit—what the scope of any negation oper-
ator is, i.e. the parts of the meaning representa-
tion that are negated. The GMB, PMB and Deep-
Bank (Flickinger et al., 2012) assign proper scope
to negation (the latter with the help of underspeci-
fication). In AMR Bank negation is modelled with
the help of a relation, and this doesn’t always get
the required interpretation (Bos, 2016). Negation
can be tricky: negation affixes (Section 23) require
special care, negative concord (Section 6) and neg
raising (Liu et al., 2018) are challenges for com-
positional approaches to meaning construction.

22 Pay attention to compound words

In the GMB (Bos et al., 2017) we largely ig-
nored multi-word expressions (MWEs), believing
that compositionality would eventually do away
with it. Except it doesn’t. MWEs come in var-
ious forms, and require various treatments (Sag
et al., 2002). Think about proper names (names of
persons, companies, locations, events), titles and
labels (of people, of books, chapters, of songs),
compounds, phrasal verbs, particle verbs, fixed
phrases, and idioms. Consider for instance “North
and South Dakota”, it is quite a challenge to de-
rive the representation state(x) & name(x,’North-
Dakota’) in a compositional way. And many
compounds are not compositional (“peanut but-
ter” is not butter, and “athlete’s foot” is not a
body part but a nasty infection). It is hard to de-
cide where to draw the line between a composi-
tional and non-compositional approach to multi-
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word expressions. Even though “red wine” is
written in English with two words, in German
it is written in one word (“rotwein”). WordNet
(Fellbaum, 1998) lists many multi-word expres-
sions and could be used as a resource to decide
whether a compounds is analysed compositionally
or not. In the PMB, titles of songs or other artistic
works are treated as a single token (because they
are proper names), which works fine for “Jingle
Bells” but becomes a bit awkward and uncomfort-
able with longer titles such as Lennon and Mc-
Cartney’s “Lucy in the Sky with Diamonds”, or
Pink Floyds’s “Several Species of Small Furry An-
imals Gathered Together in a Cave and Groov-
ing With A Pict”. It is quite unfair and unrealis-
tic to expect the tokeniser to recognise this as a
multi-word expression. The alternative, applying
some reinterpretation after having first carried out
a compositional analysis, puts a heavier burden on
the syntax-semantics interface. The bottom line
is that MWEs form a wild bunch of expressions
for which a general modelling strategy covering
all types does not seem to exist. There also seems
to be a connection with quotation (Maier, 2014).

23 Use inference tests in design

The driving force to motivate how to shape or what
to include in a meaning representation should be
textual entailment or contradiction checks (this is
a practice borrowed from formal semantics). For
instance, when designing a meaning representa-
tion for adjectives, the meaning for “ten-year-old
boy” should not imply that the boy in question is
old. Likewise, the meaning representation for “un-
happy” should not be the same as that for “not
happy”, because the meanings of these expres-
sions are not equivalent (as “Bob is not happy”
doesn’t entail “Bob’s unhappy”—Bob can be both
not happy and not unhappy—even though the en-
tailment holds in the reverse direction: if Bob is
unhappy, he is not happy). Similarly, the meaning
representation for “Bologna is the cultural capi-
tal of Italy” should not lead to the incorrect in-
ference that “Bologna is the capital of Italy”. In
addition, or as alternative to inference checks, is
applying the method of model-theoretic interpre-
tation (Blackburn and Bos, 2005) when designing
meaning representations. It should be clear what a
representation actually means, in other words, un-
der which conditions it is true or false. A formal
way of defining this is via models of situation, and

a satisfaction definition that tells us, given a certain
situation, whether a statement holds or doesn’t.
This method was introduced by the logician Tarski
(Tarski and Vaught, 1956). It bears similarities
with posing a query to a relational database. The
method forces you to make a strict distinction be-
tween logical (negation, disjunction, equality) and
non-logical symbols (the predicates and individual
constants in your meaning representation).

24 Divide and conquer

Do not try to do model all semantic phenomena
the first time around. There are just too many.
Some good candidates to put on hold are plu-
rals, tense, aspect, focus, presupposition (see Sec-
tion 25), and generics (more in Section 27), be-
cause a proper treatment of these phenomena re-
quires a lot more than a basic predicate-argument
structure. A strict formalisation of plurals quickly
leads to complicated representations (Kamp and
Reyle, 1993), leading to compromising approxi-
mations in the AMR Bank (Banarescu et al., 2013)
or PMB (Abzianidze et al., 2017). In the GMB
(Bos et al., 2017) and the AMR Bank tense is sim-
ply ignored. Annotating aspect is complex—for
instance, the use of the perfect differs enormously
even between closely related languages such as
English, Dutch, and Italian (van der Klis et al.,
2017). These complications lead to a simple an-
notation model in the PMB where tense is reduced
to a manageable set of three tenses: past, present
and future. There are, therefore, a lot of interest-
ing problems left for the second round of semantic
annotation!

25 Put complex presuppositions on hold

Presuppositions are propositions that are taken for
granted. Several natural language expressions in-
troduce presuppositions. These expressions are
called presuppositions triggers. (For instance,
“Mary left, too.” presupposes that someone else
besides Mary left. Here “too” is the trigger of this
presupposition.) There are many different kinds of
triggers, and many do not contribute to the mean-
ing of the sentence, but rather put constraints on
the context. The question, then, is what to do with
them in a meaning banking project. Some classes
of presupposition triggers, referring expressions
including proper names, possessive phrases, and
definite descriptions, can be treated in a similar
way as pronouns, as is done in the GMB and
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the PMB, following Bos (2003). Yet there are
other classes of triggers that are notoriously hard
to represent, because they require some ”copying”
of large pieces of meaning representation, inter-
act with focus, and require non-trivial semantic
composition methods. To these belong implica-
tive verbs (manage), focusing adverbs (only, just),
and repetition particles (again, still, yet, another).
For instance, although in the PMB a sentence like
“The crowd applauded again.” is the presuppo-
sition trigger, “again” is semantically tagged as a
repetition trigger, for now it doesn’t perform any
costly operations on the actual meaning represen-
tation. The first alternative, a meaning represen-
tation with two different applauding events that
are temporally related, is complicated to construct.
The second alternative, introducing “again” as a
predicate, doesn’t make sense semantically (what
is the meaning of “again”?), or as an operator
(again, how will it be defined logically?) isn’t at-
tractive either. There are, currently no good ways
to deal with complex presupposition triggers, and
more research is needed here turning formal ideas
(Kamp and Rossdeutscher, 2009) into practical so-
lutions.

26 Respect elliptical expressions

They are invisible, but omnipresent: elliptical ex-
pressions. Comparative ellipsis is present in many
languages (“My hair is longer than Tom’s”). In
English, verb phrase ellipsis occurs (“Tom eats as-
paragus, but his brother doesn’t.”), which is well
studied (Dalrymple et al., 1991), and annotated
corpora exist as well (Bos and Spenader, 2011).
Dutch and German exhibit a large variety of gap-
ping cases (“Tom isst Spargel, aber sein Bruder
nicht.”). Italian is a language with pro-drop (“Ho
fame”, i.e., (I) am hungry). Ellipsis requires a ded-
icated component in a pipeline architecture. In the
PMB the inclusion of an ellipsis layer has been
postponed for the benefit of other components,
features, and efforts. As a consequence, a growing
number of documents cannot be added to the gold
set because there isn’t an adequate way of deal-
ing with a missing pronoun, an odd comparison
expression, or an elided verb phrase.

27 Think about generics

Generic statements and habituals are hard to
model straightforwardly in first-order logic (Carl-
son, 1977). The sentence “a lion is strong” or “a

dog has four legs” is not about a particular lion or
dog, nor is it about all dogs or lions. The inventor
of “the typewriter” was not the inventor of a par-
ticular typewriter, but of the typewriter concept in
general. Such generic concepts are also known as
kinds in the literature (Reiter and Frank, 2010). It
is not impossible to approximate this in first-order
logic, but it requires an ontological distinction be-
tween entities denoting individuals and entities de-
noting concepts (kinds). A further question is how
tense should be annotated in habitual sentences, as
in “Jane used to swim every day” (in some period
in the past, Jane swam every day) or “Jane swims
every day” (in the current period, Jane swims ev-
ery day). To our knowledge, none of the exist-
ing meaning banks have a satisfactory treatment of
generics, even though techniques have been pro-
posed to detect generics (Reiter and Frank, 2010;
Friedrich and Pinkal, 2015). Recent proposals try
to change this situation (Donatelli et al., 2018).

28 Don’t try to be clever

The English verb “to be” (and its counterpart in
other Germanic languages) is a semantic nuisance.
When used as an auxiliary verb—including pred-
icative usages of adjectives—there isn’t much to
worry about it, as it only semantically contributes
tense information. However, when used as a cop-
ula it can express identity, locative information,
or predications involving nouns. From a logical
perspective, it might seem attractive to use equal-
ity in these cases and interpret “to be” logically
rather than lexically, (Blackburn and Bos, 2005),
but this makes it impossible to include tense infor-
mation, unless equality is (non-standardly) viewed
as a three-place relation. There are various senses
for “be” in WordNet, and it makes pragmatically
sense to use these: “This is a good idea” (sense 1),
“John is the teacher” (sense 2), “the book is on the
table” (sense 3), and so on. A similar story can be
told for “to have” in expressions like “Mary has a
son”, where the first attempt in the PMB was to
analyse “to have” in such possessive constructions
as logical, i.e. only introducing tense information,
and coerce the relational noun “son” into a posses-
sive interpretation. This was soon abandoned due
to complications in composition.

29 Don’t focus on just one language

Most meaning banks consider just one language,
and usually this is English. This is understand-
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able, as English is the current scientific language,
but it is also risky, because when designing mean-
ing representation decisions could be made that
work for English but not for other languages.
Phenomena such as definite descriptions, ellipsis,
possessives, aspect, and gender, behave even in
closely related languages quite differently from
each other. Dealing with multiple languages is,
without any doubt, harder, but if one takes sev-
eral languages into account at the same time the
result is more likely to be more language-neutral
meaning representations. And that’s what mean-
ings should be, they are abstract objects, indepen-
dent of the language used to expressed them. Of
course, there are concepts that can be expressed in
certain languages with a single word that other lan-
guages are not capable of, but the core of meaning
representations should be agnostic to the source
language. A good starting point is to work with
typologically-related languages. An efficient an-
notation technique to cover multiple languages is
annotation projection (Evang and Bos, 2016; Liu
et al., 2018). This requires a parallel corpus and
automatic word alignment, and existing semantic
annotations for at least one language.

30 Measure meaning discrepancies

A large part of the users of semantically annotated
corpora are from the semantic parsing area, and
they need to be able to measure and quantify their
output with respect to gold standard meanings.
The currently accepted methods are based on pre-
cision and recall on the components of the mean-
ing representation by converting them to triples
or clauses (Allen et al., 2008; Dridan and Oepen,
2011; Cai and Knight, 2013; Van Noord et al.,
2018; Kim and Schubert, 2019). In a parallel cor-
pus setting, such evaluation measures can also be
used to compare the meaning representation of a
source text and its translation (Saphra and Lopez,
2015). This is done in the PMB, where a non-
perfect meaning match between source and tar-
get helps the annotator to identify possible cul-
prits. It is important to note that most of these
matching techniques check for syntactic equiva-
lence, and don’t take semantic equivalence into
account—the same meaning could be expressed
by syntactically different representations. The ap-
proach by Van Noord et al. (2018) applies normal-
isation steps for word senses to make matching
more semantic.
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