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Abstract

Measuring domain relevance of data and iden-
tifying or selecting well-fit domain data for
machine translation (MT) is a well-studied
topic, but denoising is not yet. Denoising is
concerned with a different type of data qual-
ity and tries to reduce the negative impact of
data noise on MT training, in particular, neu-
ral MT (NMT) training. This paper general-
izes methods for measuring and selecting data
for domain MT and applies them to denoising
NMT training. The proposed approach uses
trusted data and a denoising curriculum real-
ized by online data selection. Intrinsic and
extrinsic evaluations of the approach show its
significant effectiveness for NMT to train on
data with severe noise.

1 Introduction

Data noise is an understudied topic in the machine
translation (MT) field. Recent research has found
that data noise has a bigger impact on neural ma-
chine translation (NMT) than on statistical ma-
chine translation (Khayrallah and Koehn, 2018),
but learning what data quality (or noise) means in
NMT and how to make NMT training robust to
data noise remains an open research question.

On the other hand, a rich body of MT data re-
search focuses on domain data relevance and se-
lection for domain adaptation purpose. As a re-
sult, effective and successful methods have been
published and shown to work for both SMT and
NMT. For example, (Axelrod et al., 2011) intro-
duce a metric for measuring the data relevance
to a domain by using n-gram language models
(LM). (van der Wees et al., 2017) employ a neural-
network version of it and propose a gradually-
refining strategy to dynamically schedule data dur-
ing NMT training. In these methods, a large
amount of in-domain data are used to help mea-
sure data domain relevance.

Data noise is a different quality that has been
shown to affect NMT performance in particular.
In MT, the use of web crawl, automatic methods
for parallel data mining, sentence alignment pro-
vide us with parallel data of variable quality from
many points of view: sentence breaking, poor sen-
tence alignments, translations, domain adequacy,
tokenization and so forth. To deal with such
data noise, a commonly used practice is (static)
data filtering with simple heuristics or classifica-
tion. The NMT community increasingly realizes
that this type of quality matters for general NMT
translation accuracy. For example, (Khayrallah
and Koehn, 2018) studies the types of data noise
and their impact on NMT; WMT 2018 introduces
a Parallel Corpus Filtering task on noisy web-
crawled data.

Unfortunately, the ingredients that made do-
main data selection methods successful have not
been studied in the NMT denoising context.
Specifically,

• How to measure noise?

• How does noise dynamically interact with the
training progress?

• How to denoise the model training with a
small, trusted parallel dataset?

In the denoising scenario, the trusted data would
be the counterpart of in-domain monolingual data
of domain data selection. Trusted data can be hu-
man translations, a small amount of which can be
easily available as a development set or validation
set from a normal MT setup.

We use the example in Table 1 to illustrate the
challenges in the NMT denoising problem, as well
as the issue of directly applying existing domain
methods as is for this purpose. Both sentences in
the example appear to be relevant to travel con-
versations, but the sentence pair is “noisy” in that,
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zh gongche zhan zai nali?
zh-gloss bus stop is where?
en Where is the bus stop? For bus 81.

Table 1: A noisy sentence pair.

a part of the English sentence does not align to
anything on the Chinese side, yet the pair con-
tains some translation and the sentences are flu-
ent. An LM-based domain-data selection method
would generally treat it as a suitable domain ex-
ample for building a travel NMT model and may
not consider this noise.

A simple data filtering method based on length
or a bilingual dictionary can easily filter it, but, in-
tuitively, the example may still be useful for train-
ing the NMT model, especially in a data-scarce
scenario – the Chinese sentence and the first half
of the English sentence are still a translation pair.
This suggests the subtlety in identifying noisy data
for MT – It is not a simple binary problem: Some
training samples may be partially useful to train-
ing a model, and their usefulness may also change
as training progresses.

An NMT model alone may be incapable of
identifying noise. Under a conditional seq2seq
NMT model that translates Chinese into English,
a word, e.g., 81, in the extra English fragment may
receive a low probability (or a high loss), but that
could as well mean that is hard but still correct
translation. Here is then where the trusted data can
play a role – It can help produce a (slightly) bet-
ter model for the first model to compare against to
be able to distinguish informative hard examples
from harmful noisy ones.

In this paper, we propose an approach to denois-
ing online NMT training. It uses a small amount
of trusted data to help models measure noise in a
sentence pair. The noise is defined based on com-
parison between a pair of a noisy NMT model and
another, slightly denoised NMT model, inspired
by the contrastive in-domain LM vs out-of-domain
LM idea. It employs online data selection to sort
sentence pairs by noise level so that the model is
trained on gradually noise-reduced data batches.
We show that language model based domain data
selection method as is does not work well whereas
the proposed approach is quite effective in denois-
ing NMT training.

2 Related Research

One line of research that is related to our work
is data selection for machine translation. It has
been mostly studied in the domain adaptation con-
text. Under this context, a popular metric to mea-
sure domain relevance of data is based on cross
entropy difference (CED) between an in-domain
and an out-of-domain language models. For ex-
ample, (Moore and Lewis, 2010) selects LM train-
ing data with CED according to an in-domain LM
and a generic LM. (Axelrod et al., 2011) propose
the contrastive data selection idea to select par-
allel domain data. It ranks data by the bilingual
CED that is computed, for each language, with a
generic n-gram LM and a domain one. Even more
recently, (van der Wees et al., 2017) employ a
neural-network version of it along with a dynamic
data selection idea and achieve better domain data
selection outcome. (Mansour et al., 2011) com-
pute the CED using IBM translation Model 1 and
achieve the best domain data selection/filtering ef-
fect for SMT combined with LM selection; The
case of partial or misalignments with a bilingual
scoring mechanism rather than LMs is also dis-
cussed.

Another effective method to distinguish domain
relevance is to build a classifier. A small amount
of trusted parallel data is used in classifier training.
For example, (Chen and Huang, 2016) use semi-
supervised convolutional neural networks (CNNs)
as LMs to select domain data. Trusted data is used
to adapt the classifier/selector. (Chen et al., 2016)
introduce a bilingual data selection method that
uses CNNs on bitokens; The method uses parallel
trusted data and is targeted at selecting data to im-
prove SMT; In addition to domain relevance, the
work also examines its noise-screening capability;
The method is tried on NMT and does not seem to
improve.

Previous work on domain data selection has
shown that the order in which data are scheduled
matters a lot for NMT training, a research that
is relevant to curriculum learning (Bengio et al.,
2009) in machine learning literature. (van der
Wees et al., 2017) show the effectiveness of a nice
“gradually-refining” dynamic data schedule. (Saj-
jad et al., 2017) find the usefulness of a simi-
lar idea, called model stacking for NMT domain
adaptation. Data ordering could be viewed as a
way of data weighting, which can be also done
by example weighting/mixing, e.g., (Wang et al.,
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2017; Britz et al., 2017; Matsoukas et al., 2009).
In the context of denoising, the quality that the or-
dering uses would be the amount of noise in a sen-
tence pair, not (only) how much the data fits the
domain of interest.

SMT models tend to be fairly robust to data
noise and denoising in SMT seems to have been
a lightly studied topic. For example, (Mediani,
2017) uses a small, clean seed corpus and designs
classifier filter to identify noisy data with lexical
features; and also there is a nice list of works ac-
cumulated over years, compiled on the SMT Re-
search Survey Wiki1.

The importance of NMT denoising has been
increasingly realized. (Khayrallah and Koehn,
2018) study the impact of five types of artificial
noise in parallel data on NMT training and find
that NMT is less robust to data noise. (Vyas et al.,
2018) select well-translated examples by identify-
ing semantic divergences in parallel data. (Lample
et al., 2017) bootstrap backtranslations with a de-
noising loss term, in an unsupervised NMT con-
text. Label noise is also a generally studied topic,
e.g., (Natarajan et al., 2013).

In a sense, our approach is an application of ac-
tive learning (Settles, 2010). Active learning is
usually employed for the model to interactively
choose novel examples to obtain labels for fur-
ther training a given model. In our case we use
the idea to select the already labeled data that the
model finds useful at a given point during training.
The usefulness signal is guided by a small trusted
dataset.

3 Online NMT Training

We usually train NMT models with online opti-
mization, e.g., stochastic gradient descent. At a
time step t, we have an NMT model p(y|x; θt)
translating from sentence x to y with parame-
terization θt. The model choice could be, for
example, RNN-based (Wu et al., 2016), CNN-
based (Gehring et al., 2017), Transformer model
(Vaswani et al., 2017) or RNMT+ (Chen et al.,
2018). To move p(y|x; θt) to next step, t + 1, a
random data batch bt is normally used to compute
the cross entropy loss. The prediction accuracy of
p(y|x; θt) does not depend on the data of this batch
alone, but on all data the model has seen so far.

1http://www.statmt.org/survey/Topic/
CorpusCleaning

4 The Denoising Problem

The problem we address in the paper is as follows.
We have a large, noisy, mixed-domain dataset D̃
whose size is on the order of hundreds of millions
of sentence pairs or larger. An NMT model trained
on this noisy data may suffer from low transla-
tion accuracy or severe translation errors. We also
have a small trusted dataset D̂ consisting of sev-
eral thousand sentence pairs or even less. We ad-
dress the denoising scenario where the trust frac-
tion |D̂|/|D̃| � 1 (|D̂| being the size of D̂).

Trusted data can be human translations or any
other source of parallel data of higher quality
than the translations produced by our model. The
trusted data we use in experiments contains noise,
too. We think that, for the trusted data to improve,
it needs to be stronger than the translation quality
from the model we are improving, and as we will
show, we define the noise level of a sentence pair
relative to a model.

We are concerned with a method for select-
ing noise-reduced data batches to train the NMT
model using online training. The trusted data is
used to help measure data noise in a sentence pair.
Training data is digested by training in terms of
(cross entropy) loss, thus selecting noise-reduced
sentence pairs to train on would be equivalent to
denoising the training loss term (thus the training
process).

5 Our Approach

We first define how to measure noise with the help
of the small trusted dataset. Then we use it to con-
trol the schedule of the data batches to train the
NMT model.

5.1 Incremental denoising with trusted data
Given a model p(y|x; θ̃) trained on noisy data D̃,
a practical way to denoise it with a small amount
of trusted data D̂ would be to simply fine-tune the
model on the trusted data, considering that a small
trusted dataset alone is not enough to reliably train
an NMT model from scratch. Fine-tuning has
been used in NMT domain adaptation to adapt
an existing NMT model on a small amount of in-
domain data, for example, in (van der Wees et al.,
2017). We hypothesize that it would be effective
for denoising, too, which will be verified by our
experiments.

To facilitate the introduction of our denoising
method, we introduce a denoise function that de-
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noises a model, p(y|x; θ̃), on the trusted data D̂ by
fune-tuning:

p(y|x; θ̂) = denoise
(
p(y|x; θ̃), D̂

)
(1)

Eq 1 represents that model p(y|x; θ̃) with initial
parameterization θ̃ is fine-tuned on the trusted data
D̂ to yield a denoised model, p(y|x; θ̂). With a
small trusted dataset, the fine-tuning may take a
small number of training steps.

5.2 Definition of data noise
MT training samples can be noisy in many ways,
and different types of noise might have different
impact on NMT. Furthermore, human’s definition
of data noise may not be completely consistent
with NMT model’s perspective. Therefore, in-
stead of defining noise in these aspects, we sim-
ply use model probabilities and rely on the quality
of the trusted data. After all, data needs to be in-
gested by model training via (cross-entropy) loss.

Supposed we are given a noisy model, p(y|x, θ̃),
that has been trained on noisy data and a denoised
model, p(y|x, θ̂), obtained by Eq 1, with the de-
noised model being a slightly more accurate prob-
ability distribution than the noisy version. For a
sentence pair (x, y) of a source sentence x and its
target translation y, we can compute its “noisy log-
prob” under the noisy model:

L
p(y|x,θ̃) = log p(y|x, θ̃) (2)

We can also compute its “denoised logprob” under
the denoised model:

L
p(y|x,θ̂) = log p(y|x, θ̂) (3)

We then define the noise level of a sentence pair
(x, y) as the difference of a noisy model score over
a denoised model score:

noise(x, y; θ̃, θ̂) = L
p(y|x;θ̃t) − Lp(y|x;θ̂t) (4)

The noise level of a sentence pair is the sum of
the per-word noise over all the target words (under
conditional translation models). Noise(x, y; θ̃, θ̂)
could also be normalized by the length of sen-
tence y empirically. The bigger noise(x, y; θ̃, θ̂)
is, the higher noise level the sentence pair has. A
negative value of noise(x, y; θ̃, θ̂) means that the
sentence pair has more information to learn from
(cleaner).

The noise in a sentence pair is defined in terms
of the comparison between two models: the noisy
model, θ̃, and the denoised model, θ̂. Under
this definition, noise is relative – A sentence pair
could have negative noise(x, y; θ̃, θ̂) (not noise)
for weeker models (i.e., an earlier checkpoint of
θ̃ in an NMT training), but could become noisy
(positive value) for stronger models (i.e., a later
checkpoint of θ̃). This would address one of the
issues we illustrated in Section 1 with the example
in Table 1.

Notice that this definition of noise is a gener-
alization of the bilingual cross-entropy difference
(CED) defined and used in (Axelrod et al., 2011;
van der Wees et al., 2017) to measure domain rel-
evance of a sentence pair. We use seq2seq NMT
models to directly model a sentence pair, while
previous works use language models to model
monolingual sentences independently. A language
model corresponds just to the decoder compo-
nent of a translation model and thus cannot model
the translation quality. The lack of the encoder
component (thus translation) makes the LM-based
method unsuitable for denoising, as we show in
experiments. Additionally, we use a small, bilin-
gual trusted dataset (semi-supervision) rather than
lots of in-domain data (heavier supervision).

5.3 Denoising by online data selection

5.3.1 The idea

Our main idea for online denoising of NMT train-
ing is to train an NMT model on a progressively-
denoised curriculum (data batches). As a re-
sult, the entire training becomes a continuous
fine-tuning. We realize the denoising curriculum
through dynamic data selection to “anneal” the
noise level in data batches over training steps.
Therefore, our method tries to control the way
how noise dynamically interacts with training loss
by data selection, instead of directly altering per-
example loss. The assumption is that D̃ contains
good examples to select, which is usally true with
a big enough training dataset D̃.

More concretely, at each step with an initial (po-
tentially still noisy) model, p(y|x; θ̃t), the method
denoises it (by Eq 1) with the trusted data D̂ into a
slightly better model p(y|x; θ̂t) for that step. With
this pair of noisy and denoised models, we then
compute noise scores for examples in a buffer
B̃random
t that is randomly drawn from D̃ per step

and maintained during training. We sort the noise

136



Algorithm 1: Denoising NMT training
with trusted data and online data selection.

1: Input: Noisy data D̃, trusted data D̂
2: Output: A denoised, better model
3: t = 0; Randomly initialize θ̃0.
4: while t < T do
5: p(y|x; θ̂t)← denoise(p(y|x; θ̃t), D̂).
6: Randomly draw B̃random

t from D̃.
7: Compute noise for examples in B̃random

t by
Eq 4.

8: Sort B̃random
t by noise scores.

9: Sample bt from top rt of above sorted
buffer.

10: Train p(y|x; θ̃t) on bt to produce new
model p(y|x; θ̃t+1).

11: Discard the denoised model p(y|x; θ̂t).
12: t← t+ 1.
13: end while

scores. The final, actual data batch bt is then ran-
domly sampled from the top rt portion of Brandom

t

based on the sorted scores, where rt, called se-
lection ratio, is increasingly tightened. Averaged
noise level of examples in the top rt portion ex-
pects to become less over time. As a result, the
data batches bt’s that are actually fed to train the
final model are gradually denoised. Algorithm 1
summarizes the idea. It is worth pointing out that
this denoising method is realized by a bootstrap-
ping process, in which, θ̃t and θ̂t iteratively boot-
strap each other by interacting with the trusted
data and selected denoised data.

We choose to use the following exponential de-
caying function for selection ratio, rt, to anneal
data noise by data selection2:

rt = 0.5t/H (5)

It keeps decreasing/tightening over time t. The en-
tire training thus becomes a continuous fine-tuning
process, in a self-paced learning (Kumar et al.,
2010) fashion.

In Equation 5, H is a hyper-parameter control-
ling the decaying pace: It halves rt every H steps.
For instance, H = 106 means that, at step 1 mil-
lion, data batch bt will be drawn from the top-50%
out of sorted buffer.

2We simply use one of the ways to anneal learning rate as the
decaying function to anneal training data selection.

In practice, it may be desirable to set a floor
value for rt (e.g., 0.2) to avoid potential selection
bias. Brandom

t needs also to be big enough such
that there are enough examples in the top rt range
to select from to form the final training batch bt,
which is usally a constant size – It needs to con-
tain at least |bt|/rfloor examples.

The noise annealing is inspired by (van der
Wees et al., 2017), but we anneal data quality
at per step to make the approach more friendly
to NMT online optimization, instead of per data
epoch. Compared to static selection, the noise
annealing idea also makes every training exam-
ple useful, by digesting noisy examples earlier and
fine-tuning on good-quality examples later on.

Note that there are two reasons that this process
does not overfit on the trusted data, even though
it is kept being used to denoise the initial model
at every step. First, the noisy model, p(y|x; θ̃)
being trained over steps is never trained on the
trusted data – It is the denoised model, p(y|x; θ̂),
that is trained on it and then gets discarded at the
end of that step. Second, the online data selection
progressively anneals from noisy examples to less
noisy ones, instead of greedily keeping selecting
out of the least noisy examples.

5.3.2 Data selection per-step overhead
Compared to normal NMT training, there is a per-
step data selection overhead in Algorithm 1. The
overhead includes (1) training the denoised model
on a small trusted dataset, which requires a small
number of training steps; and (2) scoring all ex-
amples in the random buffer Brandom

t with both
the noisy model and the denoised model. Both
cases will in general depend on model size, but
will probably depend even more on model type
and configuration.

5.3.3 Lightweight implementation
We make Algorithm 1 more lightweight by decou-
pling model training from example noise scoring:
We score all examples in D̃ offline and use scores
for online data selection.

Algorithm 2 shows the details of this idea. To
enable offline scoring, we train the noisy model
and the denoised model prior to the final, target
training, on the noisy data D̃ and the trusted data
D̂, respectively. We then use this pair of models to
score all examples in D̃ and save the scores. In tar-
get model training, the example are retrieved into
the buffer with scores, without the need of com-
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Algorithm 2: Lightweight implementa-
tion of Algorithm 1. Actually used in ex-
periments.

1: Input: Noisy data D̃, trusted data D̂
2: Output: A denoised, better model with

learned parameters Θ.
3: Train p(y|x; θ̃) with small θ̃ on D̃.
4: p(y|x; θ̂)← denoise

(
p(y|x; θ̃); D̂

)
.

5: Score D̃ with θ̃ and θ̂ by Eq 4.
6: t = 0; Randomly initialize Θ̃0.
7: while t < T do
8: Randomly sample B̃random

t from D̃.
9: Sort B̃random

t by offline-computed noise
scores.

10: Sample bt from top rt of above sorted
buffer.

11: Train p(y|x; Θ̃t) on bt to produce new
model p(y|x; Θ̃t+1).

12: t← t+ 1.
13: end while

puting on the fly. Then the remaining is similar
to Algorithm 1. This effectively turns the per-step
data selection overhead in Algorithm 1 into con-
stant overhead.

We can also use smaller parameterization for
the noisy model and denoised model than the
target model. This may not affect their noise-
discerning capability as long as they are still
seq2seq models, the same as the target model.
This is because we define the noise score in terms
of logprob difference and use the scores for rank-
ing/selection (e.g., via top rt),

In summary, here is the lightweight method
that we eventually use to denoise NMT train-
ing with trusted data and online data selection:
Train p(y|x; θ̃) on noisy data D̃ with a small
parametrization. Denoise p(y|x; θ̃) on trusted data
D̂ to produce denoised model p(y|x; θ̂) (Eq 1).
Score the entire noisy data D̃ with the above two
models by Eq 4. Train the target model with the
above online, dynamic data selection. Algorithm 2
describes the idea.

We are going to use this implementation in ex-
periments. Note, however, that we find that the
general method in Algorithm 1 is very useful in
understanding the nature of the denoising problem
and thus cannot be ignored in the context. For ex-
ample, it makes us realize the denoising problem

is about how to (actively) meet what the model
needs, i.e., not standalone filtering. And also, the
bootstrapping behavior in Algorithm 1 further mo-
tivates the use of the noise-annealing online data
selection strategy and helps refine the lightweight
implementation.

6 Experiments

6.1 Setup

We carry out experiments for en/fr with two train-
ing datasets (D̃), respectively. Paracrawl3 en/fr
training raw data has 4 billion sentence pairs. Af-
ter removing identities and empty source/target,
about 300 million (M) sentence pairs are left.
WMT 2014 en/fr training data has about 36M sen-
tence pairs, with provided sentence alignment.

WMT newstest 2012-2013 is used as the de-
velopment set for early stopping of training. We
use three test sets: WMT (n)ewstest 2014 (n2014),
news (d)iscussion test 2015 (d2015), and a 2000-
line patent test set (patent)4. More test sets
than just n2014 are used in order to confirm that
the gain obtained is not only from news domain
adaptation but cross-domain, general accuracy im-
provement.

The WMT newstest 2010-2011 is used as the
trusted data. It contains 5500 sentence pairs. We
acknowledge that ideal trusted data would proba-
bly be both well-translated and domain-matched,
but we leave the study of trusted data properties to
future research.

We compute the detokenized and mixed-cased
BLEU scores against the original references (per
(Post, 2018)) with an in-house implementation of
script mteval-v14.pl.

We use an RNN-based NMT architecture sim-
ilar to (Wu et al., 2016). Our final model has 8
layers of encoder/decoder, 1024 dimensions with
512-dimension attention. The smaller selector
(noisy and denoised) models (in Algorithm 2) are
of 3 layers and 512 dimensions.5

Denoising a model on the small trusted dataset
is done by fine-tuning on it by SGD. The train-
ing is terminated with early stopping by checking
the perplexity on the development set. It is a tiny
dataset, but as we will show, its denoising impact
is quite impressive and surprising. Training on

3http://statmt.org/paracrawl
4Obtained from https://www.epo.org.
5Even smaller models like 2-layer x 256-dimension works,
too, when we examined on an internal dataset.
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such a small data can easily overfit, we thus use
a very small learning rate 5e-5 so that the training
progresses slow enough for us to reliably catch a
good checkpoint before training stops.

In Paracrawl trainings, we train for 3M steps
using SGD with learning rate 0.5 and start to an-
neal/reduce the learning rate at step 2M by halving
it every 200k steps. In WMT training, we train for
2M steps with learning rate 0.5 but start to anneal
learning rate at step 1.2M with the same pace. We
use dropout 0.2 for the WMT training. We did not
use dropout for Paracrawl training due to its large
training data amount.

To dynamically anneal the data batch quality
(Eq 5), we set hyper-parameter H to step 1.1M.
0.2 is used as the floor selection ratio, rt. The ra-
tionale for the choice ofH is so that when learning
rate annealing happens, rt is close to its minimum
value to ensure the training is indeed trained on the
desired, best selected data.

6.2 Training data cleanness
To measure how noisy the datasets are, we ran-
domly sample 2000 sentence pairs from the WMT
dataset. Human raters were asked to label each
sentence pair with scales in Table 2.

These ratings generally reflect how well-
translated a sentence pair is, however, a rating 4
does not necessarily mean that is exactly the type
of data a model needs – Model’s perspective on
good data may not completely consistent with hu-
man, because these ratings are not necessarily con-
nected to data loss of a model. We use these rat-
ings mainly to assess if our noise definition corre-
lates to these ratings to some extent, but the noise
definition could do more. The rater agreement on
good (>= 3) or bad (< 3) is 70% and we find
the averaged rating is very reliable and stable to
measure a small sentence pair sample.

Table 3 shows that WMT 2014 data is relatively
clean: it has 40% rated as perfect; its averaged
rating is 3.0 (4 being perfect). Noise introduced
by sentence alignment accounts for part of the low
ratings. We did not rate a Paracrawl sample, since
just eyeballing a sample of the data reveals that it
was noisy consisting of many boilerplates, wrong
language identification, wrong translations.

6.3 Noise score vs human rating
We expect the noise definition (Eq 4) to correlate
with the averaged cleanness of selected data and
the dynamic scheduling method schedules data
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Figure 1: Noise-discerning capability of different noise
scoring models. Curves are drawn by selecting, ac-
cording to Eq 4, top x% (x-axis) out of a rated sample
of 2000 random sentence pairs from the WMT en/fr
dataset. WMT: noise scoring models trained on WMT
training data, and trusted data. Paracrawl: noise scor-
ing models trained on Paracrawl data, and trusted data.
NNLM: neural net based LM selection models trained
on Paracrawl data, and trusted data. Trusted data are
the same dataset.

from noisy to clean. We verify this on the sam-
ple with human ratings.

We carry out steps 1 and 2 of the practical im-
plementation in Section 5.3.3 to produce the small
noisy model and its denoised model. Recall that
they are used to compute the noise in each sen-
tence pair by Eq 4. We repeat this on the Paracrawl
data and the WMT data, respectively, and thus we
have two pairs of models, one for each dataset.

We apply each pair of models to score the rated
WMT sample, sort the sentence pairs by noise
scores. We then select x% least noisy sentence
pairs. Each x% corresponds to a subset and we
compute the averaged human rating for that sub-
set. In Figure 1, x-axis shows x%, the percentage
out of the entire sample; y-axis shows the averaged
human rating for the x% selection subset. Going
from right to left, data indeed becomes cleaner as
selection becomes tighter for the scoring models
in our proposed method: WMT is noise scoring
models trained on WMT training data, and trusted
data. Paracrawl is the noise scoring models trained
on Paracrawl data, and trusted data. Trusted data
are the same dataset. We explain the dot-dashed
line in a later experiment (Section 6.6).

Ranking capability of the Paracrawl selector
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Rating scale Explanation
4 (Perfect) Almost all information (90-100%) in the sentences is conveyed in each other.
3 (Good) Most information (70-90%) in the sentences is conveyed.
2 (Not good) Some (30-70%) information in the sentences is conveyed, but some is not.
1 (Bad) (10-30%) A large amount of information in the sentences is lost or misinterpreted.
0 (Poor) (0-10%) The two sentences are nearly or completely unrelated, or in wrong languages.

Table 2: Scales for human rating sentence pairs. Percentage ranges refer to the amount of words well translated
across sentences in a pair.

Rating scale 4 3 2 1 0
WMT 47% 31% 10% 3% 9%

Table 3: Rating stats on an en/fr WMT training data
sample of 2000 sentence pairs.

System n2014 d2015 patent
Paracrawl dataset
P1 Paracrawl baseline 31.6 30.7 37.2
P2 Incr-denoise P1 34.0 33.7 44.7
P3 Online denoised 35.2 35.6 46.9
WMT dataset
W1 WMT baseline 36.2 35.8 45.7
W2 Incr-denoise W1 36.2 35.8 45.7
W3 Online denoised 36.9 36.4 46.1

Table 4: BLEU scores of Denoising experiments with
en/fr Paracrawl data and WMT data. “Incr-denoise
P1” refers to applying the incremental denoising on the
noisy baseline P1 with method in Section 5.1. Similarly
for “incr-denoise W1”. Under paired bootstrapped test
at p < 0.05, P3 is significantly better than P2, P3 than
P1, P2 than P1, on all test sets. W3 is significantly bet-
ter than W1 on n2014.

seems slightly better than the WMT one in dis-
cerning noisier sentence pairs. We speculate this
is because the noisy Paracrawl data “amplifies” the
contrastive effect of the pair of models.

6.4 BLEU scores
BLEU scores in Table 4 show the impact of de-
noising. For each training dataset, we have three
experiments: baseline, noisy training with random
data batch selection (P1 and W1); Denoising base-
line with trusted data by fine-tuning the baseline
on it (Eq 1) (P2 and W2); Training a model from
scratch with online training by dynamic, gradually
noise-reduced data selection (P3 and W3).

First of all, P1 vs P2, it is impressive that just
fine-tuning a noisy baseline on a small trusted
dataset yiels a big impact. P2 improves P1 by
+2.4 BLEU on n2014, +3 BLEU on d2015 and

+7.5 BLEU on patent. The Paracrawl experiments
and the above rating ranking curves (Figure 1) in-
dicate the power of simple incremental denoising
on trusted data (Section 5.1) when the background
data is very noisy. In NMT domain adaptation
literature (e.g., (van der Wees et al., 2017)), it is
known that fine-tuning on domain data improves
domain test sets, but it is also known that it may
hurt test sets that are out of domain (forgetting).
We think our experiments are the first to report
the incremental denoising power of fine-tuning on
a tiny trusted data. Notice incremental denoising
does not improve on WMT data (W1 vs W2) prob-
ably because WMT data is relatively cleaner. This,
however, would indicate that the gain for P1 vs P2
is less likely a domain adaptation effect.

P2 vs P3 shows that the online denoising ap-
proach reduced the training noise further more and
gains +1.2 n2014 BLEU, +1.9 d2015 BLEU and
+2.2 patent BLEU, on top of incremental denois-
ing on trusted data. On the WMT dataset, W2 vs
W3 shows that, even though the trusted data does
not directly help, the online denoising helps by
+0.7 n2014 BLEU, +0.6 d2015 BLEU and +0.4
patent BLEU. We carried out paired bootstrapped
statistical significance test (Koehn, 2004) between
systems, at p < 0.05, P3 is significantly better
than P2, P3 than P1, P2 than P1, across all test
sets; W3 is significantly better than W1 only on
n2014.

We also would like to note the strength of the
WMT baseline system (W1). Its n2014 BLEU is
36.2, detokenized, case-sensitive. Published lit-
eratures tend to report tokenized, case-sensitive
BLEU scores, for which W1 BLEU becomes 40.2
on the same test set. This is a strong score with a
standard LSTM RNN network, compared to pub-
lished results for this task.
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System n2014 d2015 patent
Paracrawl dataset
P1 Random order 31.6 30.7 37.2
P3 Online denoised 35.2 35.6 46.9
P4 Reverse order of P3 32.6 31.1 40.9

Table 5: Online denoising: NMT trained on data sorted
according to noisiness level. P3 is trained on noisier to
cleaner data order. Reversely, P4 is trained on cleaner
to noisier data order.

.

6.5 Data order

Our online denoising method dynamically selects
data batches whose noise is gradually reduced to
train the target model. We carry out two sets of
experiments to prove that this is necessary for de-
noising.

In the first experiment, we compare P3 (in pro-
posed data order) to the “reverse” of P3, where
data batches are dynamically scheduled in a re-
verse, noise gradually increasing order such that
the model is trained on cleaner data earlier and
then noisier data later (i.e., by simply flipping the
sign of Eq 4) – The entire training then becomes a
continuous reverse fine-tuning. Table 5 shows that
the reverse order (P4) clearly does not work as ef-
fective for denoising, even though P4 still slightly
improves the baseline with random data selection
(P1 in Table 4).

In another experiment, we select 3 data subsets
based on the amount of noise in each sentence pair,
each subset being noise-reduced to different de-
gree. For example, we select top 80% least noisy
sentence pairs (denoted as S80%) out the entire
Paracrawl data. Then we select the top half of
S80% which is essentially 40% of the Paracrawl
data. We denote it as S40%, similarly, S20%, there-
fore S80% ⊃ S40% ⊃ S20%. And we expect the
averaged noise in the smaller percentage would be
less according to Figure 1. Then we fine-tune P1
(noisy baseline) on S80% with early stopping on
devset, followed by the fine-tuning on S40% and
then S20%. Table 6 shows that each stricter subset
is able to boost the previous training across all test
sets, by further denoising. This also confirms the
importance of the right data order in denoising.

P3 vs P4 seems to confirm the spirit of Curricu-
lum Learning (Bengio et al., 2009) – CL promotes
ordering data to gradually focus on those most im-
portant examples, and here the training has a better

Subset n2014 d2015 patent
P1 31.6 30.7 37.2
P5 S80% 33.1 32.3 44.3
P6 S40% 33.9 34.4 45.1
P7 S20% 34.4 34.6 45.6

Table 6: Nested datasets: Data order is important for
denoising. S80% ⊃ S40% ⊃ S20% with stricter/smaller
set less noisy.

outcome (P3) by training on progressively noised-
reduced data.

6.6 Language model selection
The proposed method uses seq2seq NMT models
for online data selection. We can replace them
with neural network language models (NNLM)
with everything else the same, to confirm that the
LM based method that is popular for domain data
selection is not designed for denoising.

We first check if the NNLM selection scores
correlate with human ratings. As shown by the
dot-dashed line (red) in Figure 1, it does not seem
to – As we tighten the selection percentage (from
right to left), the averaged rating of sentence pairs
falling into that percentage does not increase, but
the method that employs the seq2seq models to
compute noise scores (Eq 4) does.

We also compare the BLEU scores of the
NNLM selection and the NMT selection. To that
end, we select top 20% data and use it to fine-tune
the noisy Paracrawl baseline (P1), for the NNLM
method and the proposed method, respectively.

We had to resolve an issue in the NNLM se-
lection experiment. Recall that the trusted data
we use is from WMT newstest 2010-2011 and the
development set we use for stopping the training
is WMT newstest 2012-2013. WMT newstests
across years do not seem to be in the same do-
main, as a result, the perplexity on devset never
drops in training with trusted data. This would be
additional evidence that improvements from our
proposed denoising approach is unlikely from do-
main adaptation. In the end, we had to extract ran-
domly 1000 lines out of the trusted data as the de-
vset for early stopping and use the remaining as
the trusted data when training the denoised model
θ̂ that is used to compute the noise scores (or data
relevance in the NNLM case) by Eq 4.

The BLEU scores in Table 7 show the clear
difference. The NNLM method does not dis-
cern noise and thus the top selection would be
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System n2014 d2015 patent
P1 Paracrawl baseline 31.6 30.7 37.2
P8 P1+NMT 20% 34.3 34.7 45.8
P9 P1+NNLM 20% 31.8 30.5 35.4

Table 7: LM method does not denoise, but NMT
method (proposed) does; and a denoised model has im-
proved general translation accuracy. P1+NMT 20%:
fine-tune P1 with top 20% selection by NMT method.
P1+NNLM 20%: fine-tune P1 with top 20% selection
by NNLM method.

as noisy as the baseline data. As a result, fine-
tuning the noisy baseline (P1) would not improve.
As a matter of fact, the patent BLEU drops over
baseline, probably indicating that domain data se-
lection causes data bias. The proposed method,
on the other hand, performs clearly better (P8),
for example, compared to P9, +2.5 BLEU on
n2014, +3.8 BLEU on d2015 and +10.4 BLEU
on patent. These prove the effectiveness of the
proposed method in producing better systems on
noisy data.

6.7 Discussion
The research in (van der Wees et al., 2017) that
selects data with neural language models show
that dynamically selected parallel data for domain
adaptation improves domain test sets, but it can
hurt test sets that are out of domain. It also shows
that the dynamic online selection still underper-
forms the fine-tuning on domain parallel data. In
our denoising results, the online denoising (e.g.,
P3) can significantly outperform the simple fine-
tuning (e.g., P2).

We clarify that our method could potentially
work with other data filtering methods. For exam-
ple, if the underlying noisy data has already been
filtered, applying online denoising with trusted
data could potentially bring even further improve-
ment than no pre-filtering.

7 Conclusion and Future Research

Domain data selection and domain adaptation for
machine translation is a well-studied topic, but de-
noising training data or MT training is not yet, es-
pecially for NMT training. In this paper, we gener-
alize the recipes of effective domain data research
to address a different and important data quality
for NMT – data noise. We define how to mea-
sure noise and how to select noise-reduced data
batches to train NMT models online. We show that

the noise we define correlates with human ratings
and that the proposed approach yields significantly
better NMT models.

The method probably can be tried to denoising
for other seq2seq tasks like parsing, image label-
ing. It seems interesting to study and understand
the properties that trusted data should have. It also
sounds an interesting research to discover better
data orders.
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