
Proceedings of the 9th International Workshop on Health Text Mining and Information Analysis (LOUHI 2018), pages 1–11
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

1

Detecting Diabetes Risk from Social Media Activity

Dane Bell1, Egoitz Laparra2, Aditya Kousik3, Terron Ishihara3,
Mihai Surdeanu3, and Stephen Kobourov3

1Department of Linguistics, University of Arizona
2School of Information, University of Arizona

3Department of Computer Science, University of Arizona
{dane,laparra,adityak,tishihara,msurdeanu,kobourov}@email.arizona.edu

Abstract
This work explores the detection of individu-
als’ risk of type 2 diabetes mellitus (T2DM)
directly from their social media (Twitter) ac-
tivity. Our approach extends a deep learning
architecture with several contributions: fol-
lowing previous observations that language
use differs by gender, it captures and uses gen-
der information through domain adaptation; it
captures recency of posts under the hypoth-
esis that more recent posts are more repre-
sentative of an individual’s current risk status;
and, lastly, it demonstrates that in this scenario
where activity factors are sparsely represented
in the data, a bag-of-word neural network
model using custom dictionaries of food and
activity words performs better than other neu-
ral sequence models. Our best model, which
incorporates all these contributions, achieves a
risk-detection F1 of 41.9, considerably higher
than the baseline rate (36.9).

1 Introduction

The prevalence of diabetes is increasing in the US,
mounting to 30.3 million cases in 2015, of whom
7.2 million were undiagnosed (Centers for Disease
Control and Prevention, 2017). Diabetes caused
over 79 thousand US deaths in 2015, in addition to
$245 billion in economic costs in 2012 (American
Diabetes Association, 2013). Along with genetic
factors, lifestyle factors such as diet and physical
activity are one of the important drivers of risk
for Type 2 Diabetes Mellitus (T2DM), the most
common type of diabetes. At the same time, the
widespread use of social media has produced a
digital record of these factors, offering potential
insight into how these factors interact to contribute
to health risk over time. These publicly available
data present an opportunity to detect diabetes risk
and similar health risks at scale.

This work shows that the detection of individ-
uals’ diabetes risk solely from their public Twit-

ter activity is possible, demonstrating that at-risk
individuals use language differently from less at-
risk individuals. Importantly, this detection is a
first, crucial component in a larger battery of so-
cial media-based, public-health intervention tools
that will work toward disease prevention on a large
scale. Specifically, our contributions are:

(1) We introduce a process that creates a novel
dataset, which pairs individuals’ T2DM risk with
their social media activity. We measured individu-
als’ T2DM risk using a well-established, validated
questionnaire (Bang et al., 2009), and aligned the
result with the corresponding Twitter accounts. To
our knowledge, this is the first dataset that directly
links T2DM risk with social media activity.

(2) We introduce the first machine learning (ML)
approach for classifying individuals’ T2DM risk
based solely on their Twitter activity. Our deep
learning approach has several novel contributions:
(a) following previous observations that language
use differs by gender, it captures and uses gender
information through domain adaptation1 (Daumé,
2007); (b) it captures recency of posts under the
hypothesis that more recent posts are more rep-
resentative of an individual’s current risk status;
and, lastly (c) it demonstrates that in this sce-
nario where words representing real-life risk fac-
tors are sparsely represented in the data, a bag-of-
word (BOW) model that uses custom dictionaries
of food and physical activity words is a better so-
lution than recurrent neural networks (RNN). Our
best model, which incorporates all these contribu-
tions, achieves a risk-detection F1 of 41.9, consid-
erably higher than the baseline rate (36.9). In com-
parison, a realistic ceiling model based on the true
age, gender, and Body Mass Index (BMI, kg

m2 ) of
each respondent, achieves only 62.7 on this task.

1In our experiments, domain adaptation for age did not
improve performance.
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Figure 1: Histogram of respondents’ risk scores, with
labels as assigned based on Bang et al. (2009).

(3) We provide a feature analysis based on Lay-
erwise Relevance Propagation (Bach et al., 2015;
Binder et al., 2016; Arras et al., 2016, 2017), re-
vealing that relevance aligns, albeit inconsistently,
to expected food and activity values on average.

2 Data

We collected the dataset used in this work on a vol-
untary basis through a Qualtrics survey.2 Partici-
pants self-selected by following an URL in an in-
vitation tweet, and after consenting to participate,
provided their Twitter handles, demographic infor-
mation, and answers to an established question-
naire that estimates T2DM risk (Bang et al., 2009).
The questionnaire provides an easy-to-understand
measure of diabetes risk from data such as age and
physical activity level, ranging from 0 to 10, with
a score of 5 or higher representing elevated risk.
Each participant received a risk assessment, in-
cluding a summary of the sources of their risk, an
explanation of how to get diagnosed (i.e., through
a blood test), and a link to further information.

Of the 3,612 respondents who completed sur-
veys, 736 (20.4%) supplied a Twitter handle. After
removing respondents who provided no handle, an
obviously false handle,3 or a handle with no pub-
lic tweets, 604 (16.7%) respondents with handles
remained. The relatively modest dataset size is a
natural consequence of the complexity of the data
and the sensitivity of its collection. The distribu-
tion of risk scores among respondents is summa-
rized in Fig. 1.

The complex relationship between height,
weight, and risk score is illustrated in Fig. 2. Al-

2The collection and analysis was approved by an institu-
tional research board (IRB).

3These were inspected manually. Some examples of
excluded handles are @jack (the example handle given),
@realdonaldtrump, and @no.

less-risk at-risk

accounts 467 137
tweets (mean) 893 K (1,912) 282 K (2,059)
tokens (mean) 15.2 M (32.5 K) 5.1 M (37.0 K)
# women (%) 312 (67%) 73 (53%)
mean age 36.4 51.1
mean BMI 25.6 34.8

Table 1: A summary of the size and qualities of the less-risk
and at-risk accounts in the dataset collected for this work.
BMI: Body Mass Index, kg

m2 .

though BMI is a major risk factor for diabetes, the
existence of other factors means that there is con-
siderable risk variation within BMI categories, and
the discretization of BMI into categories necessar-
ily obscures variation within categories. Many re-
spondents would change BMI categories if an inch
were added to or subtracted from their height, for
example.

We used the Twitter API to collect the tweet
and profile text for each handle. The tweets and
profile descriptions were tokenized and part-of-
speech tagged using ARK Tweet NLP (Owoputi
et al., 2013). Each account was labeled at-risk
if the owner’s questionnaire risk score was 5 or
greater, or less-risk otherwise. A summary of ac-
count statistics is shown in Table 1.

3 Approach

We predict individual-level T2DM risk from
individual-level data (i.e., individual Twitter ac-
counts), as opposed to transferring from commu-
nity level statistics (e.g., county diabetes rate as
dependent variable; all tweets in that region as in-
put). Intuitively, using a community-level model
should be a viable strategy: much more data is
available for training; previous work has shown
that exploring this data leads to good community-
level estimations (Fried et al., 2014). However,
our initial experiments showed that individual
variation within communities was considerable,
overshadowing the variation across communities
and limiting the effectiveness of such methods. In
our preliminary experiments the community-level
model did not perform better than chance for esti-
mating individual risk.

As a result of this initial analysis, in this work
we focus on predicting T2DM risk from individual
Twitter accounts. To this end, we propose a neu-
ral network (NN) architecture tailored to T2DM
risk estimation, which relies on the following re-
sources.
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Figure 2: An illustration of the relationship between height, weight, BMI, and risk score for respondents who pro-
vided a valid Twitter handle. The BMI categories (underweight, healthy, overweight, etc.) are assigned according
to boundaries set by the World Health Organization. The marginal histograms denote the distribution of height
(top) and weight (right) in the sample. This figure is best viewed in color.

3.1 Resources

Custom dictionaries: In early experiments, we
observed that no model that trained on the posts’
entire content outperformed a simple baseline. We
explain this result by the fact that indicators of risk
factors (e.g., diet or activity words) are sparsely
represented in this data, and the models cannot
reliably identify them. To mitigate this prob-
lem, we created domain-specific dictionaries of
words and hashtags indicating foods (pizza), exer-
cise (#5k), chain restaurant names (#mcdonalds),
and hashtags related to being overweight (#fatguy-
problems). The food words were derived from
a domain-specific Spanish-English glossary4 and
food vocabulary set5, following Fried et al. (2014).
Exercise words and restaurant names were adapted

4
www.lingolex.com/spanishfood/a-b.htm

5
www.enchantedlearning.com/wordlist/food.shtml

from Wikipedia lists of sports6 and restaurants7.
The smaller list of 13 overweight-related terms
were hand-chosen based on Twitter searches.

To adapt the food dictionary to Twitter, we au-
tomatically expanded it using semantic vectors.
We trained the word2vec algorithm (Mikolov
et al., 2013) over an independent dataset of 12.3 M
food-related tweets8, creating 200-dimension vec-
tors for each word. From each existing dictio-
nary term, we found the 5 closest candidate words,
as measured by cosine distance. Each candidate
could appear in multiple lists (e.g. #breakfastbur-
rito is similar to both burrito and taco), so we cal-
culated the softmax of the distances for each can-
didate. We then expanded our dictionary with the
top 500 candidates, which included words such as

6
en.wikipedia.org/wiki/List_of_sports

7
en.wikipedia.org/wiki/List_of_the_largest_fast_

food_restaurant_chains
8Collected automatically using a set of seven diet-related

hashtags such as #breakfast and #lunch.

www.lingolex.com/spanishfood/a-b.htm
www.enchantedlearning.com/wordlist/food.shtml
en.wikipedia.org/wiki/List_of_sports
en.wikipedia.org/wiki/List_of_the_largest_fast_food_restaurant_chains
en.wikipedia.org/wiki/List_of_the_largest_fast_food_restaurant_chains
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halloumi, muesli, and sriracha. After these addi-
tions, there was a total of 2,871 features.

Gender: It is well established that language use
differs by gender (Rao et al., 2010; Burger et al.,
2011; Volkova et al., 2013; Johannsen et al., 2015).
On the hypothesis that conditioning classifica-
tion on these secondary variables would maxi-
mize the informativeness of other features9, we
automatically annotated each account for gender.
We predicted gender using a SVM model trained
on a separate corpus of 1,000 Twitter accounts
hand-annotated with gender information (man or
woman).10 This gender classifier used solely uni-
gram features extracted from the account descrip-
tion and its tweets. The macro-averaged F1 of this
model is 75.79 on the T2DM dataset (c.f. human
annotators, who averaged 71% accuracy on a sim-
ilar task (Nguyen et al., 2014)).

3.2 Neural network architecture
We propose a feedforward neural network with
one hidden layer, which captures both post re-
cency (by weighing each input word by the re-
cency of the corresponding post) and gender in-
formation (captured through domain adaptation).
The proposed architecture is depicted and summa-
rized in Fig. 3. This network uses pre-trained word
embeddings of 200 dimensions generated using
word2vec (Mikolov et al., 2013) on the above cor-
pus of food-related tweets. The tanh layer has 128
neurons, and was trained under a 40% dropout.
Importantly, this network uses only account words
that matched entries in the above custom dictio-
naries.11

Recency weighting: Our preliminary analysis
indicated that more recent tweets are more rele-
vant for classification. We attribute the effect of
recency to transitions from high to low risk or vice
versa due to lifestyle changes, in which case more
recent tweets are more representative. To capture
recency, we introduce a simple attention mecha-
nism where each word is weighted by its recency,
defined as normalized tweet position in the cor-
responding account. More formally, the recency

9We additionally tested this hypothesis, classifying par-
ticipants’ ages into 5 classes (0-20, 21-30, 31-40, 51-60,
61+). Although the age classifier itself performed better than
chance, initial experiments showed that age provided no ben-
efit in classifying diabetes risk, and so the influence of age
was left to future work.

10Non-binary individuals represented< 1% of our dataset.
11Implemented in PyTorch: http://pytorch.org/.

weight (ri) of a word wi is defined as:

ri =
position of tweet containing wi

#tweets in account

where the newest tweet in an account has the high-
est position. The average embedding (x) is calcu-
lated as:

xi = wiri, x =
∑n

i=1 xi∑n
i=1 ri

Domain adaptation: We capture gender infor-
mation using the domain adaptation method of
Daumé (2007), adapted to neural networks. As
shown in Figure 3, we replicate the output of
the tanh layer 〈t〉 to have a domain-independent
version, and one version specific to each domain
modeled. For example, the concatenated vector
for a female account is 〈t, t, 0〉, where 0 is the zero
vector corresponding to the male-account domain.
This routing process is automatically implemented
using the gender classifier described in the pre-
vious subsection. All in all, this allows the top
sigmoid layer to detect information that general-
izes across all domains, in which case the domain-
independent vector (tg) receives a larger update
during backpropagation, or is specific to a domain,
in which case the corresponding domain-specific
vector (td1 or td2) is updated more.

3.3 Baselines
We implemented three baselines:

(1) All at risk: This baseline assumes all individu-
als are at risk, i.e., they have a score 5 or higher.

(2) Support vector machines (SVM): This base-
line model uses a linear SVM with unigram fea-
tures from words and hashtags that match our cus-
tom dictionaries.12 Similarly, following the do-
main adaption method of Daumé (2007), we in-
corporate gender information by prepending each
feature name with the account’s gender annota-
tion (in addition to keeping the original feature).
For example, an account annotated as a woman
who used the word coffee 16 times would yield
an unigram feature coffee in all models, and
additionally a feature gender:woman coffee,
both with a feature value of 16. (The accounts fea-
ture gender:man coffee would have a value
of 0.) This allows these models to discover the
best generalization for this task, e.g., if coffee is
an important classification word for women only,
the models will put the greatest weight on the gen-
der:woman coffee feature; conversely, if coffee is

12Other kernels, larger n-grams, and using all words did
not improve performance.

http://pytorch.org/
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w1 w2 wn

r1 r2 rn
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Figure 3: An illustration of the proprosed NN architecture. The bag of words from a user’s account matching our custom
dictionaries is translated into a set of word embeddings w1, w2, ..., wn. The embeddings are multiplied by recency weights
r1, r2, ..., rn. The resulting vectors are averaged (x) and passed to the tanh hidden layer. The output of this layer is replicated,
producing copies for the general domain, tg , and for each of the domains, td1 and td2, e.g., d1 = female, and d2 = male. If an
account belongs to domain d1, the copy td2 is set to the zero vector, and vice versa. The copies are then concatenated and fed
to the top sigmoid (σ) layer.

always important, the generic unigram feature cof-
fee will be assigned greater weight.

(3) Convolutional neural networks (CNN): For this
baseline, we apply a CNN layer to the sequence of
embeddings of dictionary words that occur in the
corresponding account, followed by a rectified lin-
ear operator (ReLU). We implement domain adap-
tation for gender by augmenting the output of the
ReLU layer, similarly to the tanh layer in Figure
3. The resulting vector feeds a top sigmoid layer
that makes the prediction.13

3.4 Ceiling models

We also developed two ceiling models against
which to compare our text-based approaches. The
first model (Ceiling) is an SVM trained with all
the risk assessment variables collected in the sur-
vey mentioned in Section 2. This dataset is maxi-
mally informative, because these are precisely the
variables that determine the risk score (Bang et al.,
2009). However, it is not realistic, because most
of these features are not available in social me-
dia, neither directly nor through machine learn-
ing techniques. For this reason, we also imple-
mented an alternative and more realistic version of
the ceiling system (Realistic Ceiling) that incorpo-

13We also experimented with gated recurrent units,
and with using all words instead of just dictionary
words/hashtags. None outperformed this CNN configuration.

Realistic
Feature Type Ceiling Ceiling

age Integer X X
gender Boolean X X
BMI Float X X

diabetic relatives Boolean X
high blood pressure Boolean X
little physical activity Boolean X
gestational diabetes Boolean X

Table 2: Features available to each ceiling system.

rates only those features that have previously been
predicted by automatic systems through social me-
dia text or images (see Section 5). The features are
summarized in Table 2.

4 Results

We used 10-fold cross-validation to train and eval-
uate each model on the binary classes at-risk and
less-risk (see Section 2), using the same folds
across all models. For each of the 10 runs, we
reserve one fold for development, to tune hy-
perparameters such as classifier confidence cut-
off, one fold for testing, and the rest for train-
ing. Table 3 summarizes the results of the pro-
posed models, compared against the baselines de-
scribed in Section 3. In the table, -R marks mod-
els that have recency information (models with-
out recency used uniform ri weights), -GG marks
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models that used the gold gender information col-
lected during the questionnaire, and -PG marks
models that used predicted gender information.
The SVM-U is an SVM model using all available
words except a stoplist of closed-class words.

The table underlines several observations:

(1) The proposed NN models outperform all base-
lines, demonstrating that our NNs generalize bet-
ter on this task dominated by sparse signals. Im-
portantly, most of the strong baselines we include
are below the performance of the simple “all at
risk” baseline, highlighting again the difficulty of
the task. The only baseline that outperformed “all
at risk” is CNN-GG, which uses gold gender in-
formation, which would not be available in real-
world deployments. Interestingly, our approach,
which essentially relies on a (recency-weighted)
bag-of-word model outperforms all the baselines
that rely on sequence models. Similar observa-
tions about bag-of-word models outperforming se-
quence models on complex NLP tasks have been
made in the past (Iyyer et al., 2015; Wang and
Manning, 2012, inter alia).

(2) Both recency and gender information help.
Our best model includes both, validating our orig-
inal hypotheses. Surprisingly, models using pre-
dicted gender performed slightly better than mod-
els using gold gender information, but this differ-
ence was not statistically significant.

(3) This bag-of-word NN that uses only
words/hashtags from relevant dictionaries
outperforms considerably other complex NN
sequence models that had access to the entire
account texts (CNN-all). This highlights the
importance of task-specific information (food and
activity dictionaries in our case), which, in turn,
emphasizes the need of collaboration between
NLP researchers and domain (i.e., nutritional
science and health care) experts.

(4) Even the Ceiling and Realistic Ceiling clas-
sifiers have considerably less than perfect perfor-
mance at 68.1 and 62.7, respectively. Better per-
formance would be likely with a larger dataset,
which would likely also improve the performance
of the proposed classifiers.

4.1 Feature analysis
To understand the influence of individual features
(tokens) to the classification of an account by the
best-performing neural net (using predicted gen-
der and recency-weighted averaging), we adapted

Model P R F1

All at-risk baseline 22.59 100.00 36.86
Ceiling 67.14 69.12 68.12**
Realistic Ceiling 62.96 62.50 62.73**

SVM-U 32.82 31.62 32.21
SVM 28.90 36.77 32.36
SVM-GG 27.95 33.09 30.30
SVM-PG 30.91 37.50 33.89

CNN-GG 26.67 76.47 39.54
CNN-PG 24.17 75.00 36.56

NN 28.10 63.24 38.91
NN-R 30.94 60.29 40.90
NN-GG-R 29.39 71.32 41.63*
NN-PG-R 29.38 72.79 41.86**

Table 3: The precision, recall, and F1 score of each model
in predicting the at-risk label. See Section 3 for a descrip-
tion of the models. The ∗s indicate that the difference in F1

score between the corresponding model and the best baseline
is statistically significant (∗ indicates p < 0.05, and ∗∗ in-
dicates p < 0.01). All significance values were determined
through a one-tailed bootstrap resampling test with 100,000
iterations.

the Layerwise Relevance Propagation (Bach et al.,
2015; Binder et al., 2016; Arras et al., 2016, 2017)
technique. LRP has the advantage of maintain-
ing both positive and negative relevances, repre-
senting in this case contribution to the at-risk and
less-risk class scores, respectively. In contrast, the
commonly used Sensitivity Analysis (Dimopoulos
et al., 1995; Gevrey et al., 2003; Simonyan et al.,
2013; Li et al., 2015) measures relevance to the de-
cision, rather than to a given class’s score, and is
therefore always non-negative. LRP assigns rele-
vance to each neuron (including input values) as a
function of how much they contribute to the final
layer’s values, as a share of its layer’s contribu-
tion. To accomplish this, the neuron’s activation
must be divided by the sum of whole layer’s acti-
vation, which can lead to unbounded values when
a layer’s activations sum to near zero. For this rea-
son, we employ Bach et al. (2015)’s equation 58,
which applies a small smoothing constant to the
layer’s summed activation to the avoid this value
explosion.

Examples of accounts’ most recent words
marked with their relevances according to the NN-
PG-R model are shown in Table 4. As the table
shows, the health value of words broadly aligns
to relevance scores. However, because of the
recency weighting of this model, making older
tweets’ words progressively less relevant, and be-
cause of variance in the training of different cross-
validation folds, these relevance scores are highly
variable. The result is that sometimes a given
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Figure 4: Precision and recall in the NN-PG-R ensem-
ble model, as a function of classifier confidence. The
dots mark a threshold of 0.55, at which precision is
100%, and recall is 1.47%. Note that no accounts meet
the highest confidence thresholds, leading to a preci-
sion and recall of 0, which explains the steep drop of
precision for high confidence thresholds.

token is counted as relevant to one classification
(e.g., at-risk), and other times another (e.g., less-
risk). This is likely due to both the modest dataset
size and to the indirectness of the connection be-
tween language use and health.

4.2 Real-world deployment using a
high-precision model

The practical application of this risk detection sys-
tem would involve pointing high-risk individuals
toward the Bang et al. (2009) survey, and, if at-
risk, to further medical diabetes screening (Rains
et al., 2018). To mitigate the drawbacks of false
positives (i.e., unnecessary and stressful medical
testing), it is likely that in real-world deployments
of this technology a high-precision variant of the
learned model would be used.

In Figure 4, we show the classification perfor-
mance at different thresholds for the classifier con-
fidence. In this experiment, in order to increase
stability, we have built an ensemble of models
through bagging (Breiman, 1996): we generated
50 different versions of the training set by re-
sampling it with replacement, and we trained a dif-
ferent model of the NN-PG-R architecture on each
sampled training set. The final predictions are ob-
tained averaging the outputs of the resulting mod-
els. As shown in Fig. 4, a threshold of 0.55, for
example, yields a precision of 100% and a recall
of 1.47%.

Despite the modest recall of such a high-

precision model, this classifier would detect a
large number of individuals at risk, if applied to
the all of Twitter. Assuming the 28.2% predia-
betes rate of (Rowley et al., 2017), and the 11%
prediabetes diagnosis rate of Li et al. (2013), there
are approximately 62 million undiagnosed predia-
betic individuals in the US. If we further assume
a lower-than-average Twitter adoption of 15%—
compared to (Pew Research Center, 2018)’s es-
timate of approximately 25%—there are roughly
9.2 million Americans who use Twitter and have
undiagnosed prediabetes. A similar application to
the estimated 7.2 million Americans with undiag-
nosed diabetes (National Center for Health Statis-
tics, 2017) produces an estimate of 1.1 million un-
knowingly diabetic Americans on Twitter. There-
fore, the successful application of this classfier
would identify an estimated 16,000 diabetic and
140,000 prediabetic Americans. Of course, ex-
panding to other English-using Twitter users, and
other languages14 further increases this estimate.

5 Related work

Analysis of social media content for health has
been a topic of wide interest (Aramaki et al., 2011;
Bian et al., 2012; Prier et al., 2011; Culotta, 2014;
Nguyen et al., 2017). Similarly, the literature on
detecting user attributes and the effects of those
attributes on language use is extensive.

Rao et al. (2010) predict individuals’ demo-
graphic characteristics of gender, age, and politi-
cal affiliation based on their tweets. Burger et al.
(2011) construct a multilingual dataset of over
100K Twitter accounts, and classify gender better
than human annotators, based on account text. Jo-
hannsen et al. (2015) study cross-linguistic varia-
tion in syntax (part-of-speech and dependency pat-
terns) according to age and gender in online re-
views (chosen over tweets for ease of parsing and
richer metadata).

Age and gender, while much studied, are not
the only available latent characteristics. Mow-
ery et al. (2016) and Vedula and Parthasarathy
(2017), for example, predict depressive symptoms
in tweet text, a long-term health-variable detec-
tion task similar to ours. Similarly, De Choudhury
et al. (2013) predict postpartum depression from
tweets and Twitter social network structure. Shuai
et al. (2016) gather a rich, multi-network feature

14
https://www.npr.org/sections/goatsandsoda/2017/04/05/

522038318/how-diabetes-got-to-be-the-no-1-killer-in-mexico

https://www.npr.org/sections/goatsandsoda/2017/04/05/522038318/how-diabetes-got-to-be-the-no-1-killer-in-mexico
https://www.npr.org/sections/goatsandsoda/2017/04/05/522038318/how-diabetes-got-to-be-the-no-1-killer-in-mexico
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Correct Label Predicted Label Relevance

less-risk less-risk . . .

less-risk at-risk . . .

at-risk less-risk . . .

at-risk at-risk . . .

Table 4: Examples of relevance displays for words used to assess accounts (most recent tweets first). The red words
are relevant to the less-risk category, and the blue words to the at-risk category, with greater saturation indicating
greater relevance.

set to detect social network mental disorders with
symptoms such as excessive use of social network
sites, measured against gold-data questionnaires.
Likewise, Schwartz et al. (2013) predict not only
age and gender from the text of Facebook mes-
sages, but also the Big Five personality traits (ex-
traversion, emotional stability, agreeableness, con-
scientiousness, and openness to experience) (Dig-
man, 1990). Moreover, these sometimes-latent
user characteristics can inform other classifica-
tion tasks. For example, Volkova et al. (2013)
demonstrate an improvement in the sentiment
classification of tweets in a language-independent
rule-based model when sentiment vocabulary is
adapted for gender-dependent language. Our work
continues this direction: here we show that gender
information, even when predicted automatically,
considerably improves the accuracy of T2DM risk
detection.

Much of the previous work on diabetes and
weight detection on social media has been at the
level of communities. Fried et al. (2014) pre-
dict population characteristics such as diabetes
and overweight prevalence using location-tagged,
food-related tweets. Abbar et al. (2015) analyze
correlations between county-level obesity preva-
lence and food mentions. Again the focus is on
predicting dietary choices on a large scale. Relat-
edly, Eichstaedt et al. (2015) detect heart disease
mortality at the county level from tweet text.

There is no known work on detecting individ-
ual diabetes risk from social media text. How-
ever, Farseev and Chua (2017) capitalize on mul-
tiple social media inputs (e.g., a workout tracker)
to predict individuals’ Body Mass Index category.
Wen and Guo (2013) and Kocabey et al. (2017)
predict body mass index from images similar to
profile pictures, the former from booking pho-
tographs and the latter from an internet forum for
sharing fitness progress. Of these, only Farseev

and Chua (2017) classify solely from text, which
is often the only data available from a social me-
dia account. Their classification’s F1 is low (17.8)
–understandable given the difficulty of this task–
which limits its use for realistic T2DM risk predic-
tion. In contrast, our approach obtains a F1 score
that is over 2 times higher, on a task that is ar-
guably more complex.

6 Conclusions

We introduced an approach to the detection of in-
dividuals’ diabetes risk from their Twitter posts.
To this end, we collected a novel dataset linking
Twitter activity to a validated, survey-based mea-
sure of T2DM risk (Bang et al., 2009). Using this
dataset, we proposed the first machine learning
approach to predict the T2DM risk of a Twitter
account holder using only her tweets. This task
is challenging because the data tends to be very
sparse, and there are many latent contributing vari-
ables (such as genetic predisposition). Our analy-
sis indicates that reducing noise with relevant dic-
tionaries, modeling gender, and modeling posts’
temporal recency are valuable in predicting T2DM
risk. All in all, our best model achieves an F1 of
41.9 (vs. the 36.9 “all at risk” baseline and 39.5 of
a strong sequence model).

We estimate that if a high-precision variant of
this approach were to be deployed at large, e.g., on
the public posts of all American Twitter users, it
would identify 16,000 diabetic and 140,000 predi-
abetic Americans that are currently not diagnosed.

Continuing this work, we envision a larger bat-
tery of social media-based tools for public-health
intervention that focus on the early identification
of multiple health risks such as heart disease and
various cancers at scale.
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7 Release

The system is available as open-source soft-
ware at github.com/clulab/releases/tree/

master/louhi2018-t2dmrisk.
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