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Abstract

Historical text normalization suffers from

small datasets that exhibit high variance,

and previous work has shown that multi-

task learning can be used to leverage data

from related problems in order to obtain

more robust models. Previous work has

been limited to datasets from a specific lan-

guage and a specific historical period, and

it is not clear whether results generalize. It

therefore remains an open problem, when

historical text normalization benefits from

multi-task learning. We explore the ben-

efits of multi-task learning across 10 dif-

ferent datasets, representing different lan-

guages and periods. Our main finding—

contrary to what has been observed for

other NLP tasks—is that multi-task learn-

ing mainly works when target task data is

very scarce.

1 Introduction

Historical text normalization is the problem of

translating historical documents written in the ab-

sence of modern spelling conventions and making

them amenable to search by today’s scholars, pro-

cessable by natural language processing models,

and readable to laypeople. In other words, his-

torical text normalization is a text-to-text genera-

tion, where the input is a text written centuries ago,

and the output is a text that has the same contents,

but uses the orthography of modern-day language.

In this paper, we limit ourselves to word-by-word

normalization, ignoring the syntactic differences

between modern-day languages and their historic

predecessors.

Resources for historical text normalization are

scarce. Even for major languages like English and

German, we have very little training data for in-

ducing normalization models, and the models we

induce may be very specific to these datasets and

not scale to writings from other historic periods—

or even just writings from another monastery or by

another author.

Bollmann and Søgaard (2016) and Bollmann

et al. (2017) recently showed that we can obtain

more robust historical text normalization models

by exploiting synergies across historical text nor-

malization datasets and with related tasks. Specif-

ically, Bollmann et al. (2017) showed that multi-

task learning with German grapheme-to-phoneme

translation as an auxiliary task improves a state-

of-the-art sequence-to-sequence model for his-

torical text normalization of medieval German

manuscripts.

Contributions We study when multi-task learn-

ing leads to improvements in historical text nor-

malization. Specifically, we evaluate a state-of-

the-art approach to historical text normalization

(Bollmann et al., 2017) with and without various

auxiliary tasks, across 10 historical text normal-

ization datasets. We also include an experiment

in English historical text normalization using data

from Twitter and a grammatical error correction

corpus (FCE) as auxiliary datasets. Across the

board, we find that, unlike what has been observed

for other NLP tasks, multi-task learning only helps

when target task data is scarce.

2 Datasets

We consider 10 datasets from 8 different lan-

guages: German, using the Anselm dataset (taken

from Bollmann et al., 2017) and texts from the

RIDGES corpus (Odebrecht et al., 2016)1; En-

glish, Hungarian, Icelandic, and Swedish (from

Pettersson, 2016); two versions of Slovene using

different alphabets (Bohorič or Gaj; from Ljubešić

1
https://korpling.org/ridges/

https://korpling.org/ridges/
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Dataset/Language Time Period Tokens Source of Splits

Train Dev Test

DEA German (Anselm) 14th–16th c. 233,947 45,996 45,999 Bollmann et al. (2017)

DER German (RIDGES) 1482–1652 41,857 9,712 9,587 –

EN English 1386–1698 147,826 16,334 17,644 Pettersson (2016)

ES Spanish 15th–19th c. 97,320 11,650 12,479 –

HU Hungarian 1440–1541 134,028 16,707 16,779 Pettersson (2016)

IS Icelandic 15th c. 49,633 6,109 6,037 Pettersson (2016)

PT Portuguese 15th–19th c. 222,525 26,749 27,078 –

SLB Slovene (Bohorič) 1750–1840s 50,023 5,841 5,969 Ljubešić et al. (2016)

SLG Slovene (Gaj) 1840s–1899 161,211 20,878 21,493 Ljubešić et al. (2016)

SV Swedish 1527–1812 24,458 2,245 29,184 Pettersson (2016)

Table 1: Historical datasets used in our experiments

et al., 2016); as well as Spanish and Portuguese

texts from the Post Scriptum corpus (Vaamonde,

2017)2.

For the Anselm dataset, we concatenate the

individual training, development, and test sets

from Bollmann et al. (2017) to obtain a single

dataset. For RIDGES, we use 16 texts and ran-

domly sample 70% of all sentences from each text

for the training set, and 15% for the dev/test sets.

The Spanish and Portuguese datasets consist of

manually normalized subsets of the Post Scrip-

tum corpus; here, we randomly sample 80% (train)

and 10% (dev/test) of all sentences per century

represented in the corpus. Dataset splits for the

other languages are taken from Pettersson (2016)

and Ljubešić et al. (2016).

We preprocessed all datasets to remove punctua-

tion, perform Unicode normalization, replace dig-

its that do not require normalization with a dummy

symbol, and lowercase all tokens.

Table 1 gives an overview of all historical

datasets, the approximate time period of histori-

cal texts that they cover, as well as the size of

the dataset splits. Note that, to the best of our

knowledge, the Spanish, Portuguese, and Ger-

man RIDGES datasets have not been used in the

context of automatic historical text normalization

before.

Table 2 additionally gives some examples of his-

torical word forms and their gold-standard normal-

izations from each of these datasets.3

2
http://ps.clul.ul.pt

3Note that normalization guidelines differ between the
datasets, and normalizations do not always constitute a mod-
ern word form—e.g. in the case of extinct lexemes—or the
correct inflected form in the given context.

3 Experimental setup

Model We use the same encoder–decoder archi-

tecture with attention as described in Bollmann

et al. (2017).4 This is a fairly standard model con-

sisting of one bidirectional LSTM unit in the en-

coder and one (unidirectional) LSTM unit in the

decoder. The input for the encoder is a single his-

torical word form represented as a sequence of

characters and padded with word boundary sym-

bols; i.e., we only input single tokens in isola-

tion, not full sentences. The decoder attends over

the encoder’s outputs and generates the normalized

output characters.

Hyperparameters We use the same hyperpa-

rameters across all our experiments: The dimen-

sionality of the embedding layer is 60, the size of

the LSTM layers is set to 300, and we use a dropout

rate of 0.2. We use the Adam optimizer (Kingma

and Ba, 2014) with a character-wise cross-entropy

loss. Training is done on mini-batches of 50 sam-

ples with early stopping based on validation on

the individual development sets. The hyperparam-

eters were set on a randomly selected subset of

50,000 tokens from each of the following datasets:

English, German (Anselm), Hungarian, Icelandic,

and Slovene (Gaj).

Multi-task learning Bollmann et al. (2017) also

describe a multi-task learning (MTL) scenario

where the encoder–decoder model is trained on

two datasets in parallel. We perform similar exper-

iments on pairwise combinations of our datasets.

4The implementation is taken from: https:

//bitbucket.org/mbollmann/acl2017

http://ps.clul.ul.pt
https://bitbucket.org/mbollmann/acl2017
https://bitbucket.org/mbollmann/acl2017
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DEA deſe
diese

wort
wort

ſpricht
spricht

vnſer
unser

liber
lieber

here
herr

iheſus
jesus

criſtus
christus

czu
zu

eyme
einem

iczlychen
ieteslichen

menſchen
menschen

DER ſeind
sind

ſÿ
sie

doch
doch

alle
alle

auſz
aus

den
den

vier
vier

elementen
elementen

gemiſchet
gemischt

vnd
und

eins
eins

feüchter
feuchter

deñ
denn

das
das

ander
andere

EN whan
when

your
your

graciouse
gracious

erthely
earthly

persoune
person

from
from

your
your

inward
inward

spirit
spirit

ys
is

dessolued
dissolved

ES anque
aunque

tomeys
toméis

mui
muy

mucho
mucho

travajo
trabajo

tengola
téngola

guardada
guardada

pa
para

quando
cuando

dios
dios

sea
sea

servido
servido

HU o
ő

zauoc
szavuk

ėſmė
ismét

felèmèluē
felemelvén

kèzdėnc̣
kezdének

ſirńoc
sírniuk

èlmēnèc
elmenjek

èzèkèt
ezeket

tolga
toldja

ez
ez

a
a

noemi
noémi

azeꝛt
azért

iouo
jöve

IS þá
þá

sem
sem

hanz
hans

gödverk
góðverk

voru
voru

i
í
og
og

þá
þá

vrdu
urðu

hanns
hans

gödverk
góðverk

miklu
miklu

þýngre
þyngri

enn
en

ill
ill

PT cõ
com

a
a

poenetencia
penitência

que
que

lhe
lhe

derão
deram

pera
para

avisar
avisar

aos
aos

snres
senhores

do
do

sancto
santo

oficio
ofício

SLB ter
ter

ne
ne

bodi
bodi

nevéren
neveren

zhe
če

ſe
se

zherna
črna

perſt
prst

premozhi
premoči

tezhe
teče

od
od

nje
nje

rjav
rjav

mòk
mok

SLG in
in

privéže
priveže

na
na

vsak
vsak

konec
konec

niti
niti

drobtino
drobtino

kruha
kruha

in
in

verže
vrže

vse
vse

kokóšem
kokošim

breskevno
breskvino

vkuhanje
vkuhanje

lovre
lovre

SV blef
blev

av
av

rätten
rätten

afsagdt
avsagt

det
det

en
en

syyn
syn

och
och

rådhgångh
rådgång

nu
nu

nästkommande
nästkommande

wårdagh
vårdag

hållas
hållas

Table 2: Examples of input tokens (first line) and reference normalization (second line) for each of the

historical datasets.

The question we ask here is whether training on

pairs of datasets can improve over training on

datasets individually, which pairings yield the best

results, and what properties of the datasets are most

predictive of this. In other words, we are interested

in when multi-task learning works.

In the multi-task learning setting, the two

datasets—or “tasks”—share all parts of the

encoder–decoder model except for the final

prediction layer, which is specific to each dataset.

This way, most parts of the model are forced to

learn language-independent representations. This

is different from Luong et al. (2015) and related

work in machine translation, where typically only

the encoder or the decoder is shared. We do not

explore these alternatives here.

During training, we iterate over both our

datasets in parallel in a random order, with each

parameter update now being based on 50 samples

from each dataset. Since datasets are of differ-

ent sizes, we define an epoch to be a fixed size

of 50,000 samples. Validation is performed for

both datasets after each epoch, and model states

are saved independently for each one if its vali-

dation accuracy improved. This means that even

if the ideal number of epochs is different for the

datasets, only the best state for each dataset will

be used in the end. Training ends only after the

validation accuracy for each dataset has stopped

improving.

Sparse data scenario The training sets in our

experiments range from ca. 25,000 to 230,000 to-

kens. Generally, historical text normalization suf-

fers from scarce resources, and our biggest datasets

are considered huge compared to what scholars

typically have access to. Creating gold-standard

normalizations is cumbersome and expensive, and

for many languages and historic periods, it is not

feasible to obtain big datasets. Therefore, we also

present experiments on reduced datasets; instead

of taking the full training sets, we only use the first

5,000 tokens from each one.

In this case, for multi-task learning, we com-

bine the small target datasets with the full auxil-

iary datasets. This procedure mimics a realistic

scenario: If a researcher is interested in normal-

izing a language for which no manually normal-

ized resource exists, they could conceivably cre-

ate a small batch of manual normalizations for this

language and then leverage an existing corpus in

another language using multi-task learning.
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Dataset Full Sparse

Single MTL Single MTL

DEA 88.00 87.78 65.99 71.93

DER 86.05 87.81 70.04 74.25

EN 93.95 93.46 75.43 81.02

ES 94.41 94.32 82.50 86.59

HU 89.43 88.56 49.21 54.86

IS 84.83 86.67 69.52 72.73

PT 93.45 93.36 78.61 81.97

SLB 90.12 91.81 82.39 86.35

SLG 94.79 94.53 89.54 91.03

SV 88.48 89.90 79.24 82.14

Table 3: Normalization accuracy (in percent) us-

ing the full or sparse training sets, both for the

single-task setup and the best-performing multi-

task (MTL) setup.

4 Results

We evaluate our models using normalization ac-

curacy, i.e., the percentage of correctly normal-

ized word forms. Table 3 compares the accuracy

scores of our single-task baseline models and for

multi-task learning, in both the full and the sparse

data scenario. For multi-task learning, we report

the test set performance of the best target-auxiliary

task pair combination, as evaluated on develop-

ment data. Figure 1 visualizes the results for

all pairwise combinations of the multi-task mod-

els; here, we show the error reduction of multi-

task learning over our single-task baseline to better

highlight by how much the MTL setup changes the

performance.

Full datasets We make two observations about

the results for the full data scenario (the left side

of Fig. 1): (i) the usefulness of multi-task learning

depends more on the dataset that is being evalu-

ated than the one it is trained together with; and

(ii) for most datasets, multi-task learning is detri-

mental rather than beneficial.

One hypothesis about multi-task learning is that

its usefulness correlates with either synergistic or

complementary properties of the datasets. In other

words, it is conceivable that the performance on

one dataset improves most with an MTL setup

when it is paired with another dataset that is ei-

ther (i) very similar, or (ii) provides an additional

signal that is useful for, but not covered in, the

first dataset. The results in Figure 1 show that

Auxiliary data Accuracy

None 75.43

Best above 81.02

Twitter 81.72

FCE 78.53

Table 4: Normalization accuracy for English

(sparse): Single and MTL from Table 3; and with

non-historical auxiliary datasets (Twitter & FCE).

there can indeed be considerable variation depend-

ing on the exact dataset combination; e.g., the error

reduction on Slovene (Bohorič) ranges from 5%

(when paired with the Gaj dataset) to 33.2% (when

paired with Swedish). At the same time, the ques-

tion whether multi-task learning helps at all seems

to depend mostly on the dataset being evaluated.

With few exceptions, for most datasets, the error

rate either always improves or always worsens, in-

dependently of the auxiliary task.

Considering the dataset statistics in Table 1,

it appears that the size of the training corpus is

the most important factor for these results. The

four corpora that consistently benefit from MTL—

German (RIDGES), Icelandic, Slovene (Bohorič),

and Swedish—also have the smallest training

sets, with about 50,000 tokens or less. For

other tasks, different patterns have been observed

(MartínezAlonso and Plank, 2017; Bingel and Sø-

gaard, 2017); see Sec. 5.

Sparse datasets In the sparse data scenario

where only 5,000 tokens are used for training (right

side of Fig. 1), MTL almost always leads to im-

provements over the single-task training setup.

This further confirms the hypothesis that multi-

task learning is beneficial for historical text nor-

malization when the target task dataset is small.

English with non-historical auxiliary data We

also conduct a follow-up experiment on the

(sparse) English dataset using a Twitter normaliza-

tion dataset (Han and Baldwin, 2011) and a gram-

matical error corpus (Yannakoudakis et al., 2011)

as auxiliary data. The results are presented in Ta-

ble 4. Surprisingly, the Twitter dataset is actually

more helpful than the best historical dataset; but of

course, it is also in-language, unlike the historical

datasets.
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D E A D E R E N E S H U I S P T S L B S L G S V

D E A

D E R

E N

E S

H U

I S

P T

S L B

S L G

S V

+ 1 . 8 + 5 . 4 + 6 . 5 + 4 . 8 + 4 . 5 + 4 . 7 + 8 . 3 + 5 . 6 + 6 . 5

- 6 . 4 - 1 8 . 5 - 1 4 . 4 - 1 0 . 9 - 1 4 . 0 - 1 4 . 1 - 1 4 . 4 - 1 7 . 1 - 1 4 . 2

+ 7 . 5 + 2 3 . 6 + 0 . 7 - 5 . 1 + 1 . 3 - 0 . 5 + 0 . 0 + 1 . 4 + 6 . 4

+ 1 0 . 2 + 8 . 9 + 1 7 . 5 + 1 3 . 2 + 1 7 . 8 + 1 . 7 + 5 . 3 + 3 . 1 + 5 . 2

+ 1 7 . 6 + 4 2 . 1 + 2 0 . 8 + 5 . 2 + 2 . 2 + 0 . 4 + 5 . 3 + 7 . 6 + 1 5 . 6

- 1 2 . 0 - 9 . 7 - 6 . 3 - 1 0 . 9 - 5 . 9 - 1 3 . 8 - 1 0 . 2 - 1 0 . 9 - 7 . 4

+ 2 0 . 7 + 2 9 . 2 + 1 6 . 6 + 1 . 4 + 1 2 . 3 + 1 3 . 8 + 5 . 3 + 6 . 8 + 1 7 . 3

- 1 6 . 4 - 2 6 . 1 - 1 3 . 2 - 1 5 . 0 - 1 7 . 5 - 2 0 . 9 - 2 0 . 7 - 5 . 0 - 3 3 . 2

+ 4 . 8 + 1 1 . 2 + 1 3 . 1 + 1 6 . 7 + 8 . 1 + 1 6 . 2 + 2 4 . 0 + 0 . 8 + 1 1 . 5

- 1 6 . 5 - 1 2 . 7 - 1 4 . 0 - 1 6 . 4 - 1 6 . 7 - 1 3 . 5 + 1 . 5 - 1 6 . 0 - 1 6 . 3

D E A D E R E N E S H U I S P T S L B S L G S V

D E A

D E R

E N

E S

H U

I S

P T

S L B

S L G

S V

- 2 1 . 1 - 1 0 . 8 - 4 . 9 - 1 1 . 3 - 5 . 6 - 1 0 . 1 - 3 . 0 - 1 . 3 - 6 . 7

- 1 2 . 9 - 1 0 . 4 - 6 . 5 - 1 1 . 6 - 1 0 . 2 - 6 . 2 - 1 0 . 8 - 1 3 . 8 - 1 6 . 3

- 1 8 . 5 - 2 3 . 6 - 2 2 . 9 - 2 7 . 0 - 1 9 . 7 - 2 8 . 6 - 2 5 . 1 - 2 9 . 5 - 2 3 . 2

- 1 0 . 2 - 1 3 . 8 - 1 8 . 2 - 2 2 . 0 - 1 7 . 0 - 3 0 . 5 - 1 8 . 0 - 1 9 . 1 - 1 6 . 8

- 1 2 . 1 - 1 2 . 5 - 4 . 8 - 8 . 0 - 6 . 7 - 5 . 2 + 0 . 7 - 2 . 4 - 8 . 4

- 6 . 5 - 7 . 7 - 1 2 . 1 - 1 0 . 2 - 1 1 . 5 - 7 . 7 - 7 . 7 - 8 . 5 - 1 1 . 8

- 8 . 8 - 7 . 7 - 7 . 5 - 1 8 . 6 - 1 3 . 3 - 1 0 . 8 - 1 0 . 6 - 9 . 8 - 5 . 6

- 1 1 . 9 - 1 7 . 0 - 1 3 . 3 - 1 3 . 3 - 1 6 . 9 - 1 9 . 8 - 1 4 . 7 - 2 9 . 0 - 1 3 . 4

+ 2 . 1 - 8 . 0 - 8 . 3 - 7 . 1 - 4 . 8 - 5 . 6 - 6 . 3 - 1 6 . 6 - 4 . 1

+ 7 . 7 - 9 . 8 - 1 6 . 2 - 1 5 . 0 - 8 . 3 - 1 4 . 1 - 2 . 9 - 1 2 . 4 - 7 . 3

Figure 1: Percentage change of error of MTLover single-task models; rows are targets, columns auxiliary

data. Left: full data; right: sparse data. Blue scores are improvements, reds increases in error.

5 Related work and conclusion

There has been considerable work on multi-

task sequence-to-sequence models for other tasks

(Dong et al., 2015; Luong et al., 2015; Elliott

and Kádár, 2017). There is a wide range of de-

sign questions and sharing strategies that we ig-

nore here, focusing instead on under what circum-

stances the approach advocated in (Bollmann et al.,

2017) works.

Our main observation—that the size of the tar-

get dataset is most predictive of multi-task learning

gains—runs counter previous findings for other

NLP tasks (MartínezAlonso and Plank, 2017; Bin-

gel and Søgaard, 2017). Martínez Alonso and

Plank (2017) find that the label entropy of the aux-

iliary dataset is more predictive; Bingel and Sø-

gaard (2017) find that the relative differences in

the steepness of the two single-task loss curves is

more predictive. Both papers consider sequence

tagging problems with a small number of labels;

and it is probably not a surprise that their findings

do not seem to scale to the case of historical text

normalization.
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