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What you will get out of this tutorial

• Learn what’s behind the “magic”
• Make sense of the “buzzwords”
• Gain insights about why Neural Networks are 

so successful
• Better understand the limitations/difficulties 

in this new paradigm
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Who are we

• Dragos Munteanu
– Director of Research and Development
– 10+ years of experience
– Started out at Language Weaver

• Ling Tsou
– Research Engineer
– 5+ years of experience
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• Neural Networks
– Basic structure of a 

Neural Network
– Deep Neural Networks
– Training 

• Neural Machine 
Translation
– NMT vs SMT
– Word embeddings
– Architectures
– Limitations
– Future Outlook

Agenda
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StatisticalRule-Based Neural

Rule-based vs. Statistical vs. Neural
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Statistical Learning

Machine
Training + Decoding

data

model

input output
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A Neural Network
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A Neural Network

Activation Function

Parameters

Input

Bias

Output
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A Neural Network

.15 .78
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A Neural Network

1.0 x 3.7 + 0.0 x 3.7 + 1 x -1.5 = 2.2 1
1+𝑒𝑒−2.2 = 0.90

Sigmoid  f(x) =  
1

1 + 𝑒𝑒−𝑥𝑥

.15 .78
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14

X1

X1 X2 Target Network 
output

0 0 0 -1

0 1 0 -0.4

1 0 0 -0.4

1 1 1 0.2

X2

1

0.6

0.6

-1

X1

X2

1

1.1

1.1

-1

X1 X2 Target Network 
output

0 0 0 -1

0 1 1 0.1

1 0 1 0.1

1 1 1 0.2
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Should you go to the 
cheese festival?
Decision factors:
• Is weather good?
• Is friend coming?
• Is festival near bus 

station?

15

1

weather

friend

bus station
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Should you go to the 
cheese festival?
Decision factors:
• Is weather good?
• Is friend coming?
• Is festival near bus 

station? Going, unless weather is bad

16

1

weather

friend

bus station

6

-5

2

2
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Should you go to the 
cheese festival?
Decision factors:
• Is weather good?
• Is friend coming?
• Is festival near bus 

station? Going, unless weather is bad

17

1

weather

friend

bus station

6

-5

2

2

1

0

0

1

6+0+0-5
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Should you go to the 
cheese festival?
Decision factors:
• Is weather good?
• Is friend coming?
• Is festival near bus 

station? Going if weather is good OR 
friend+bus

18

1

weather

friend

bus station

6

-5

3

3
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Should you go to the 
cheese festival?
Decision factors:
• Is weather good?
• Is friend coming?
• Is festival near bus 

station? Going if weather is good OR 
friend+bus

19
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6
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• 255,168 unique games
– 131,184 are won by the 

first player
– 77,904 are won by the 

second player
– 46,080 are drawn

Playing games: Tic Tac Toe

Jesper Juul. “255,168 ways of playing Tic Tac Toe”
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Tic Tac Toe

1

1

1

2

9

Input Hidden Output

1

2

9

bias
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Tic Tac Toe

Input representation
• Marked by self: 1
• Marked by opponent: -1
• Empty: 0

• If computer is O, then:
[-1, 0, -1, 0, 1, 0, 0, 0, 0]

1

4

7

2

5

8

3

6

9
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Tic Tac Toe

1

1

1

2

9

Input Hidden Output
1

2

9
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0
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5 1

bias

1

4

7

2

5

8

3

6

9

AMTA 2018 Tutorial: De-mystifying Neural MT  Boston, March 17, 2018  | Page 23



Tic Tac Toe

1

4

7

2

5

8

3

6

9

• Input:
[-1, 0, -1, 0, 1, 0, 0, 0, 0]

• Output:
[0.12, 0.8, 0.05,
0.3, 0.05, 0.37,
0.41, 0.2, 0.49]

0.8
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Deep Learning & Deep Neural Networks

Deep Neural Networks
Multiple Layers

Millions of Parameters

Various Architectures
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Deep Neural Network – Image Classification
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A Deep Neural Network (convolutional)

60 million parameters

cat

dog
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Why are Deep Networks better?

• Different layers can learn different levels of 
abstraction

• Mathematically, it can represent more 
complex functions
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Deep Neural Network – how they learn

Li, Yixuan, et al. "Convergent Learning: Do different neural networks learn the same representations?."
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TRAINING
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• Each circle with 
represents an activation 
function

• Each arrow represents a 
multiplication
– input x weight

Training: what does a model consist of?

Parameters to train
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Training

• What does training actually do?
– Determine parameter values by minimizing error
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• 9 input nodes
• 1 hidden layer: 2 nodes
• 9 output nodes
• Number of parameters

= (9 + 1) * 2 + (2 + 1) * 9 
= 47

Training: parameters

1

1

1

2

9

Input Hidden Output

1

2

9

bias
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Training

• Steps:
1. Compute current model output (forward pass) 

for each training example
2. Compute cost
3. Update parameters (backpropagation)
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Training: 1. Forward pass

1

4

7

2

5

8

3

6

9

An example of 
training data

Expected output Model output

[0, 1, 0,
0, 0, 0,
0, 0, 0]

[.2, .13, .56,
.8, .3, .49,
.52, .23, .01]

Input

[-1, 0, -1,
0, 1, 0,
0, 0, 0]
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Training: 2. Compute cost

• Cost = error between expected 
and model output

• Example of a cost function:

Expected output Model output

[0, 1, 0,
0, 0, 0,
0, 0, 0]

[.2, .13, .56,
.8, .3, .49,
.52, .23, .01]

Input

[-1, 0, -1,
0, 1, 0,
0, 0, 0]

Cost = 1
9

( 0 − .2 2 + 1 − .13 2 + ⋯ )
= 0.2671
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Training: 3. Backpropagation

• Update weights

1

1

1

2

9

Input Hidden Output

1

2

9

bias

Total 
Error
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Training: 3. Backpropagation

• Update weights: proportional to activation

1
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Training: 3. Backpropagation

• Update weights: proportional to activation

1
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Training: 3. Backpropagation

• Update weights: proportional to activation
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Visualize Neural Network training

• http://www.emergentmind.com/neural-network
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Difficulties

• If you just take some data and run backprop,
you won’t get a good network
– Especially a deep network

• Some of the problems are:
– Overfitting
– Exploding/vanishing gradient
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Training tricks: drop-out

Input Hidden Output

1

1
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Training tricks: synthetic data

• Increase the amount of data
• Add noise

Oravec, Milos, et al. "Efficiency of recognition methods for single sample per person based face 
recognition." Reviews, Refinements and New Ideas in Face Recognition. InTech, 2011.
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MACHINE 
TRANSLATION
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Machine Translation

1949

1966

1970s

1993

2001

2008

2017

ALPAC
Report

SMT

RBMT SMT Phrase-Based

SMT Syntax-Based

Adaptive MT
Neural MT
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Statistical Machine Translation

Language
Model

Translation
Model Distortion

Alignment

Part of
Speech

Reordering

Lexicalized
Reordering

Syntax
Model

Morphology Smoothing Preordering

Capitalization Transliteration Word 
Deletion
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Neural Machine Translation

ENCODER DECODER

-0.2
-0.1
0.1
0.4

-0.3
1.1
4.3
-0.2
0.5
0.9
1.3
3.4
-5.3
-6.2
4.8
9.3
3.4
…

2.6
4.9
0.1
2.6
8.3
-7.3
5.1
1.5
0.6
9.3
-6.2
2.9
1.4
-1.3

Input
Text

Output
Text
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The Machine Translation pyramid
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NMT: Word Representations

Some NN model

“My name is Dragos” “Je m'appelle Dragos"
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NMT: Word Representations – one hot

Vocab 1 2 3 4 5 6 7 8 9 10

a 1 0 0 0 0 0 0 0 0 0

burger 0 1 0 0 0 0 0 0 0 0

dragos 0 0 1 0 0 0 0 0 0 0

for 0 0 0 1 0 0 0 0 0 0

had 0 0 0 0 1 0 0 0 0 0

i 0 0 0 0 0 1 0 0 0 0

is 0 0 0 0 0 0 1 0 0 0

lunch 0 0 0 0 0 0 0 1 0 0

my 0 0 0 0 0 0 0 0 1 0

name 0 0 0 0 0 0 0 0 0 1
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NMT: Word Representations – one hot

• “my name is dragos”
Index: [9, 10, 7, 3]
One-hot:
– “my” (9): [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
– “name” (10): [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
– “is” (7): [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
– “dragos” (3): [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
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NMT: Word Representations – one hot

• Problem with this method:
– Large number of vocab => curse of dimensionality
– Hard to capture the relationships between words
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Word representations

Sparse
All words are equally different

Dense
Similar words have similar vectors
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NMT: Word Representations and Word Embedding

XKing – XMan + XWoman = XQueen
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BREAK
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StatisticalRule-Based Neural

Rule-based vs. Statistical vs. Neural
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Statistical Machine Translation

Language
Model

Translation
Model Distortion

Alignment

Part of
Speech

Reordering

Lexicalized
Reordering

Syntax
Model

Morphology Smoothing Preordering

Capitalization Transliteration Word 
Deletion
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Neural Machine Translation

ENCODER DECODER

-0.2
-0.1
0.1
0.4

-0.3
1.1
4.3
-0.2
0.5
0.9
1.3
3.4
-5.3
-6.2
4.8
9.3
3.4
…

2.6
4.9
0.1
2.6
8.3
-7.3
5.1
1.5
0.6
9.3
-6.2
2.9
1.4
-1.3

Input
Text

Output
Text
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Encoder Decoder

Encoder

Source sentence

Source sentence
representation

Decoder

Target sentence

“My name is Dragos.”

“Je m'appelle Dragos”[.34, .02, .194, …]
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Sequence-to-sequence learning: Encoder

Source
word 1

Source
word 2

Source
word 3

Embedding Embedding Embedding

Representation of source sentence
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Sequence-to-sequence learning: Decoder

Representation of source sentence

Target
word 1

Target
word 2

Target
word 3

Projection Projection Projection
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Let’s use a simple NN for machine translation

my

name

is

dragos

Je

m'appelle

dragos

<eos>
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Sequence-to-sequence learning

• Example sentences
– “My name is Dragos.”
– “Machine translation, sometimes referred to by the abbreviation MT

(not to be confused with computer-aided translation, machine-aided
human translation (MAHT) or interactive translation) is a sub-field of
computational linguistics that investigates the use of software to
translate text or speech from one language to another.” [Wikipedia]
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Vanilla Recurrent Network

Source
word 1

Embedding

Representation of 
source word 1 

Source
word 2

Embedding

Representation of 
source word 1 & 2

Source
word 3

Embedding

Representation of 
source sentence
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Recurrent Neural Network

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Different RNN units

Vanilla GRU LSTM

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

AMTA 2018 Tutorial: De-mystifying Neural MT Boston, March 17, 2018  | Page 67



Encoder Decoder unrolled

My name is Dragos

Je m'appelle Dragos <eos>

[.34, .02, .194, …]

<GO>

Encoder Decoder
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Encoder Decoder with Attention

My name is Dragos

Je

[.34, .02, .194, …]

<GO>

Encoder Decoder

Attention
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Encoder Decoder with Attention

My name is Dragos Je

m'appelle

[.34, .02, .194, …]

<GO>

Encoder Decoder

Attention
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Encoder Decoder with Attention

My name is Dragos Je

[.34, .02, .194, …]

<GO>

Encoder Decoder

Attention

m'appelle

Dragos
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Encoder Decoder with Attention

My name is Dragos Je

[.34, .02, .194, …]

<GO>

Encoder Decoder

Attention

m'appelle

<eos>

Dragos
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Convolutional Model for Machine Translation

Kalchbrenner, Nal, et al. "Neural machine translation in linear time." arXiv
preprint arXiv:1610.10099 (2016).AMTA 2018 Tutorial: De-mystifying Neural MT Boston, March 17, 2018  | Page 73



• No recurrence
• No convolution
• More parallelizable
• Use self-attention

Transformer Model

Vaswani, Ashish, et al. "Attention is all you need." 
Advances in Neural Information Processing Systems. 
2017.
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Winograd schema sentences

He didn’t put the trophy in the suitcase because it was too small.
He didn’t put the trophy in the suitcase because it was too big.

The cow ate the hay because it was delicious.
The cow ate the hay because it was hungry.

The councilmen refused the demonstrators a permit because they advocated violence.
The councilmen refused the demonstrators a permit because they feared violence.

The animal didn’t cross the street because it was too tired.
The animal didn’t cross the street because it was too wide.
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Self-Attention for coreference resolution
Th

e 
an

im
al

di
dn

’t
cr

os
s

th
e

st
re

et
be

ca
us

e
it w

as
to

o 
tir

ed

Th
e

an
im

al
 

di
dn

’t
cr

os
s 

th
e

st
re

et
 

be
ca

us
e 

it w
as

 
to

o 
w

id
e

Th
e 

an
im

al
di

dn
’t

cr
os

s
th

e
st

re
et

be
ca

us
e

it w
as

to
o 

tir
ed

Th
e

an
im

al
 

di
dn

’t
cr

os
s 

th
e

st
re

et
 

be
ca

us
e 

it w
as

 
to

o 
w

id
e

AMTA 2018 Tutorial: De-mystifying Neural MT Boston, March 17, 2018  | Page 76



Limitations of NMT

• Unseen words
– Sentence: “I had a hamburger for lunch”
– The model: “I had a UNK for lunch”
– Sentence: "I don't like rollercoasters"
– The model: "I don't like UNK"

• Solutions
– Subword
– Dictionary  Not so simple
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Limitations of NMT

• Subword
– "ham"+"burger" => "hamburger"
– "roll" + "er" + "coast" + ers" => "rollercoasters"
– "d" + "r" + "a" + "g" + "o" + "s" => "Dragos"
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Limitations of NMT

• Resource requirements
– Large amount of data
– GPU

• User constraints: names, numbers, terminology
• Coverage

– Dropping translation
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Limitations of NMT

• Neurobabble
– "if you do not have any questions , please do not

have any questions"
– "in the middle of the middle of the river , the river

flows into the south of the river"
– "… confronting the history of the history of the

history of the history"
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Advantages of NMT

• Example:
– "因此，要改善机器翻译的结果，人为的介入仍显相当重要。"
– Literal: "Therefore, to improve machine translation results, human

intervention is still very important“

– SMT: "Therefore, it is necessary to improve machine translation
results, human intervention is still the video was important."

– NMT: "Therefore, human intervention is still significant in order to
improve the results of machine translation."
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Future Outlook

• Adaptation
• Low-resource languages
• Multi-lingual models
• Multi-modal models (speech, image, etc.)
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ANSWERS&

QUESTIONS
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