

The 13th Conference of The Association for Machine Translation

in the Americas

www.conference.amtaweb.org

TUTORIAL March 17, 2018

De-mystifying Neural MT

Presenters: Dragos Munteanu (SDL), Ling Tsou (SDL)

De-mystifying Neural MT

Dragos Munteanu Ling Tsou

AMTA 2018 Tutorial: De-mystifying Neural MT

What you will get out of this tutorial

- Learn what's behind the "magic"
- Make sense of the "buzzwords"
- Gain insights about why Neural Networks are so successful
- Better understand the limitations/difficulties in this new paradigm

Who are we

Dragos Munteanu

- Director of Research and Development
- 10+ years of experience
- Started out at Language Weaver
- Ling Tsou
 - Research Engineer
 - 5+ years of experience

Agenda

- Neural Networks
 - Basic structure of a Neural Network
 - Deep Neural Networks
 - Training

- Neural Machine Translation
 - NMT vs SMT
 - Word embeddings
 - Architectures
 - Limitations
 - Future Outlook

Rule-based vs. Statistical vs. Neural

(i) S	
(ii) NP + VP	by rule (1)
(iii) NP + Verb + NP	by rule (2)
(iv) Det + N + Verb + NP	by rule (3)
(v) Det + N + Verb + Det + N	by rule (3)
(vi) $Det + N + Aux + V + Det + N$	by rule (4)
(vii) $lhe + N + Aux + V + Det + N$	by rule (5)
(viii) $the + N + Aux + V + the + N$	by rule (5)
(ix) $the + man + Aux + V + the + N$	by rule (6)
(x) $the + man + Aux + V + the + ball$	by rule (6)
(xi) $the + man + will + V + the + ball$	by rule (7)
(xii) $the + man + will + hit + the + ball$	by rule (8)

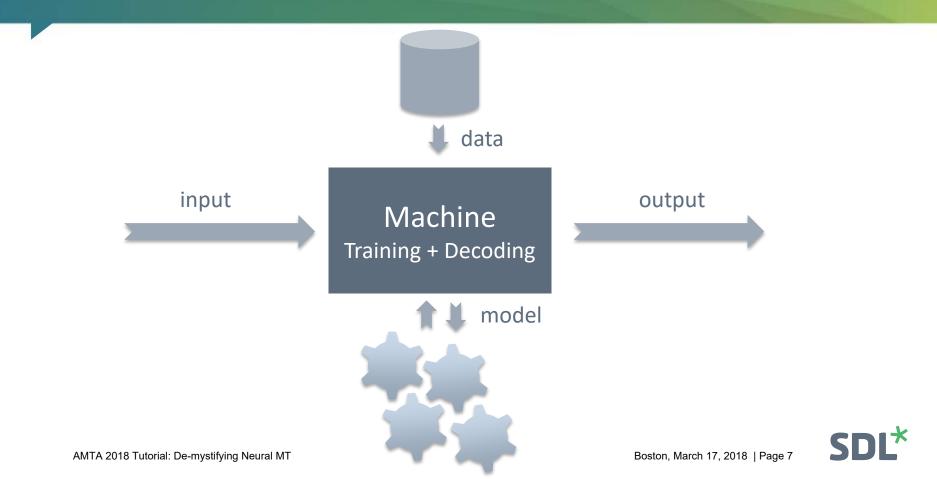
Rule-Based

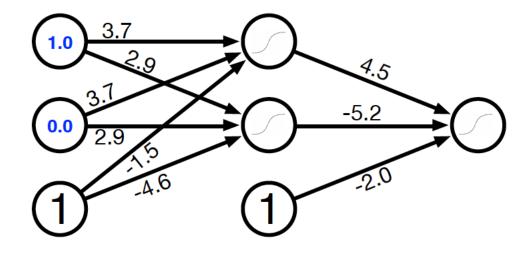
$$ilde{e} = arg \max_{e \in e^*} p(e|f)$$

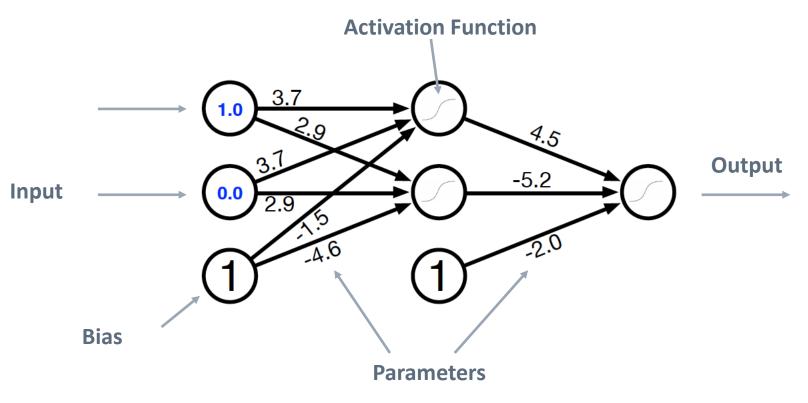
Statistical

AMTA 2018 Tutorial: De-mystifying Neural MT

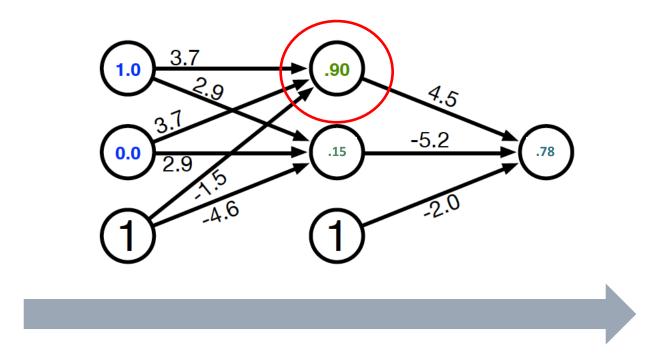
Statistical Learning



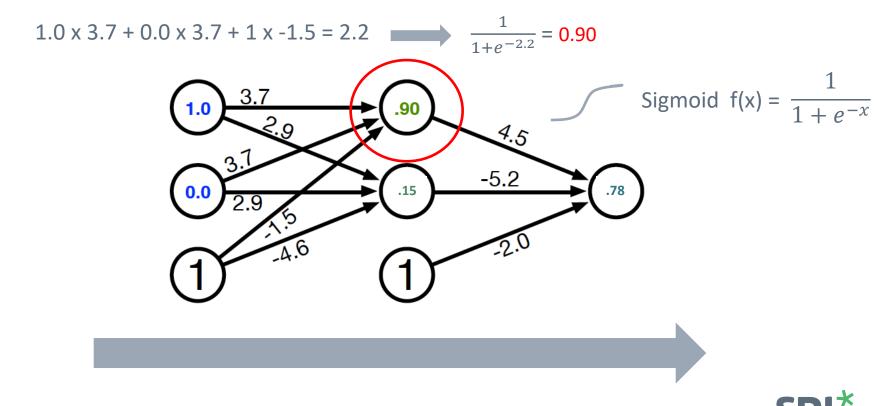




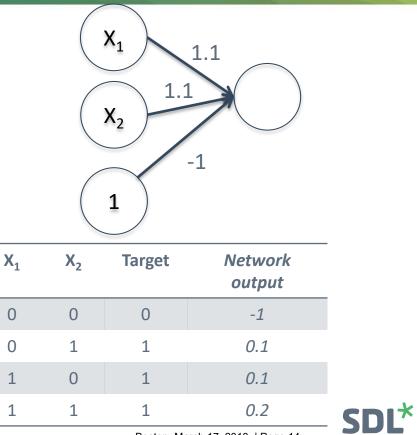
DL*



AMTA 2018 Tutorial: De-mystifying Neural MT



		0.6 (2)	0.6
X ₁	X ₂	Target	Network output
0	0	0	-1
0	1	0	-0.4
1	0	0	-0.4
1	1	1	0.2

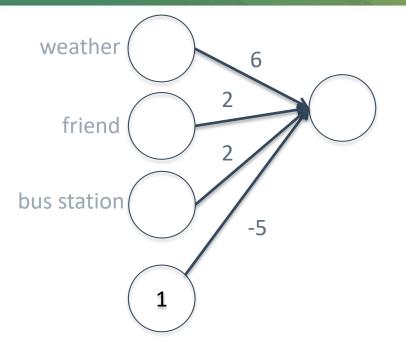


14 AMTA 2018 Tutorial: De-mystifying Neural MT

- Is weather good?
- Is friend coming?
- Is festival near bus station?

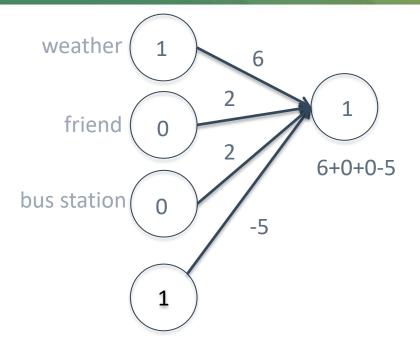
weather
friend
bus station
1

- Is weather good?
- Is friend coming?
- Is festival near bus station?



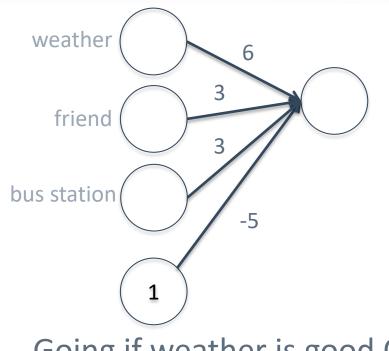
Going, unless weather is bad

- Is weather good?
- Is friend coming?
- Is festival near bus station?



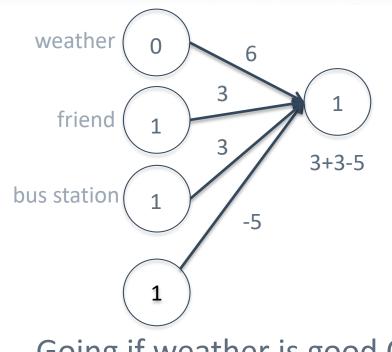
Going, unless weather is bad

- Is weather good?
- Is friend coming?
- Is festival near bus station?



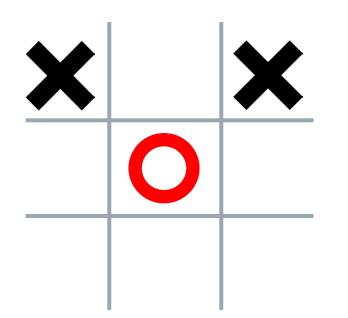
Going if weather is good OR friend+bus

- Is weather good?
- Is friend coming?
- Is festival near bus station?



Going if weather is good OR friend+bus

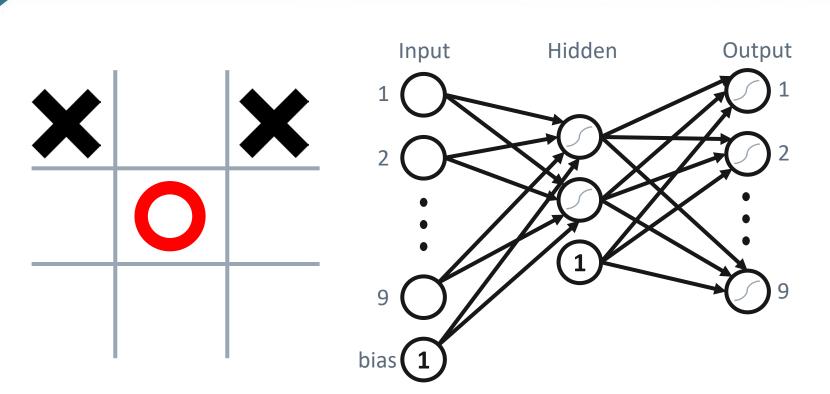
Playing games: Tic Tac Toe

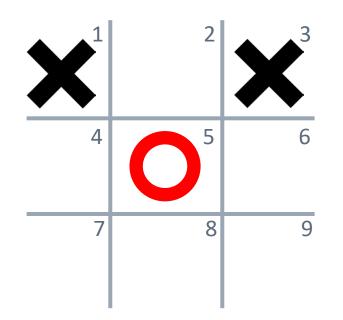


• 255,168 unique games

- 131,184 are won by the first player
- 77,904 are won by the second player
- 46,080 are drawn

Jesper Juul. "255,168 ways of playing Tic Tac Toe"

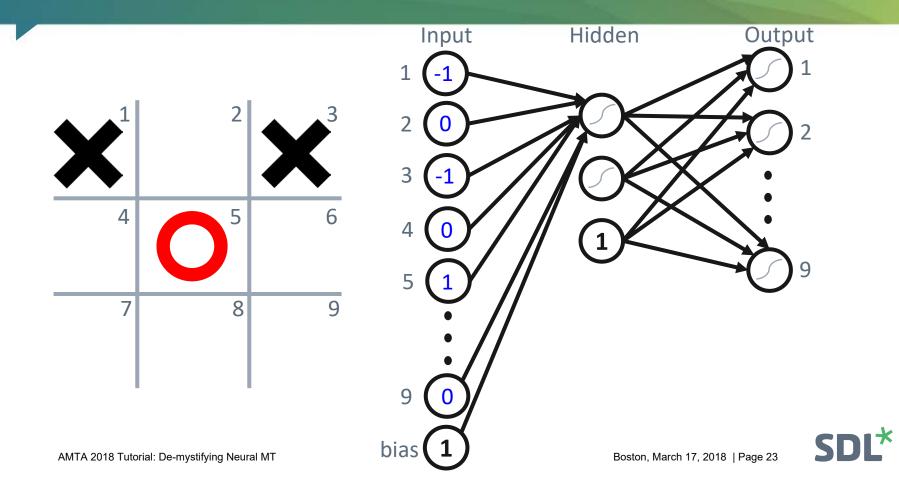


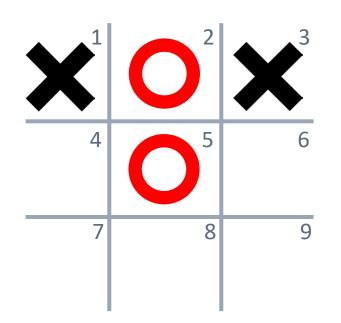


Input representation

- Marked by self: 1
- Marked by opponent: -1
- Empty: 0

If computer is O, then:
 [-1, 0, -1, 0, 1, 0, 0, 0, 0]





Input:
[-1, 0, -1, 0, 1, 0, 0, 0, 0]

- Output:
 - [0.12, **0.8**, 0.05,

0.3, 0.05, 0.37,

0.41, 0.2, 0.49]

Deep Learning & Deep Neural Networks

Deep Neural Networks

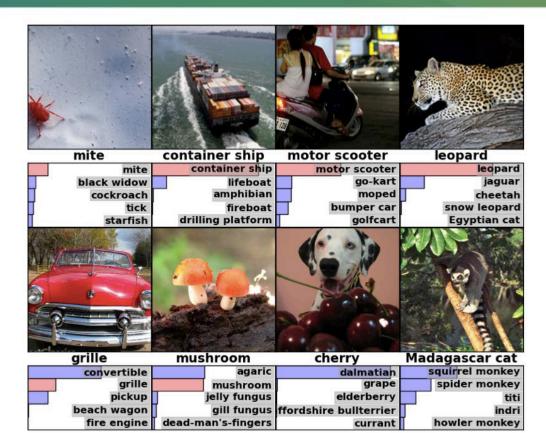
Multiple Layers

Millions of Parameters

Various Architectures

AMTA 2018 Tutorial: De-mystifying Neural MT

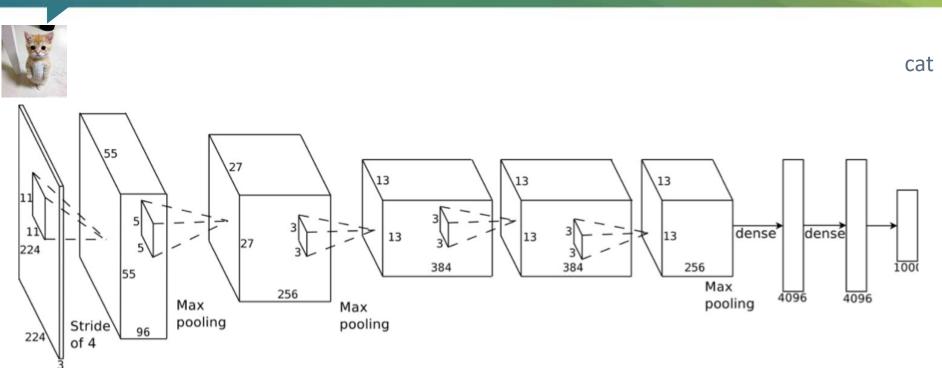
Deep Neural Network – Image Classification



Boston, March 17, 2018 | Page 26

AMTA 2018 Tutorial: De-mystifying Neural MT

A Deep Neural Network (convolutional)



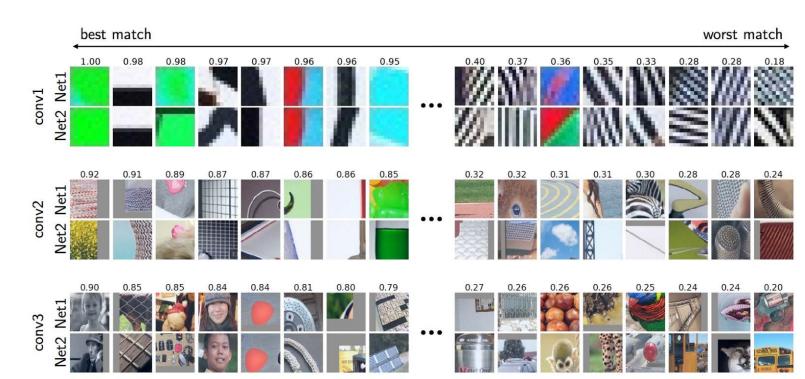
60 million parameters

AMTA 2018 Tutorial: De-mystifying Neural MT

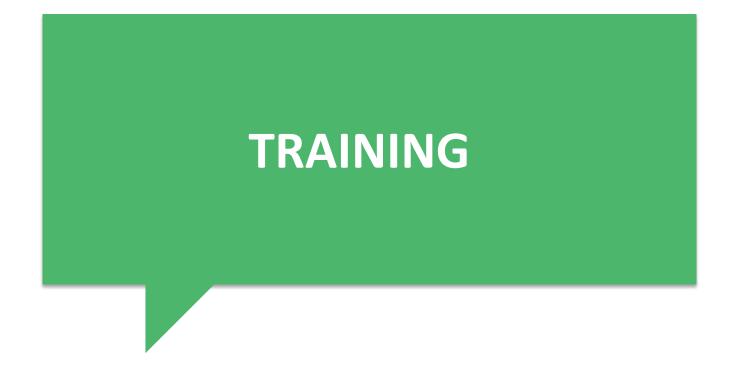
Why are Deep Networks better?

- Different layers can learn different levels of abstraction
- Mathematically, it can represent more complex functions

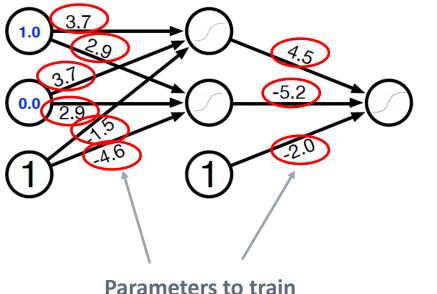
Deep Neural Network – how they learn



Li, Yixuan, et al. "Convergent Learning: Do different neural networks learn the same representations?."



Training: what does a model consist of?



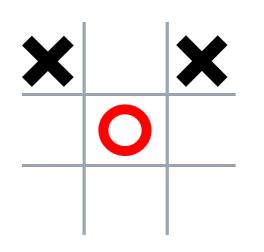
 Each circle with represents an activation function

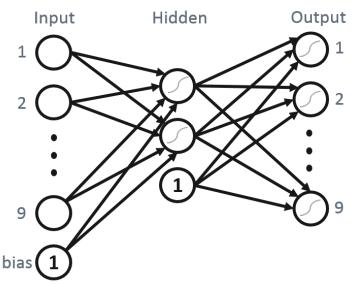
 Each arrow represents a multiplication

– input x weight

AMTA 2018 Tutorial: De-mystifying Neural MT

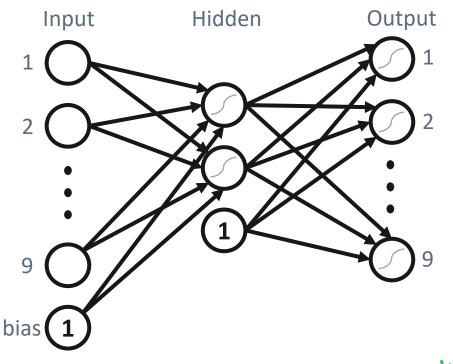
- What does training actually do?
 - Determine parameter values by minimizing error





Training: parameters

- 9 input nodes
- 1 hidden layer: 2 nodes
- 9 output nodes
- Number of parameters
 - = (9 + 1) * 2 + (2 + 1) * 9 = 47

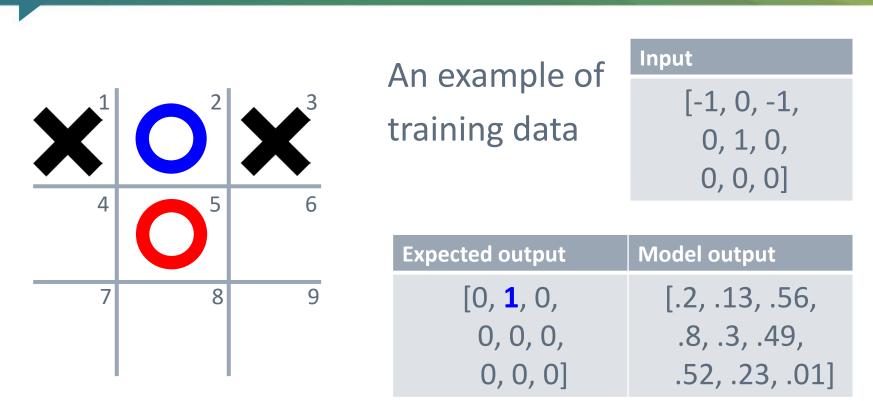


Training

• Steps:

- 1. Compute current model output (forward pass) for each training example
- 2. Compute cost
- 3. Update parameters (backpropagation)

Training: 1. Forward pass



Training: 2. Compute cost

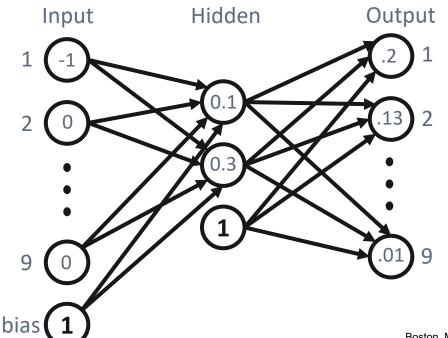
- Cost = error between expected and model output
- Example of a cost function:

n

1

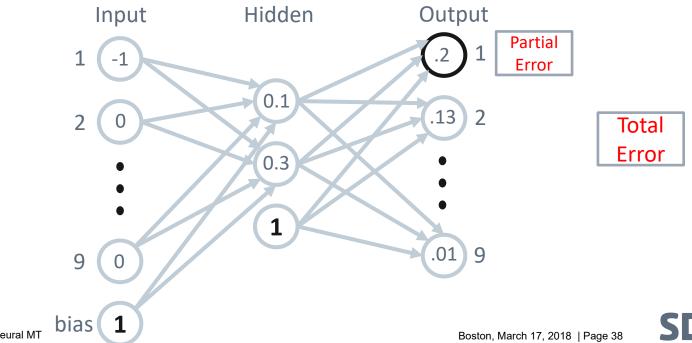
[-1, 0, -1, 0, 1, 0, 0, 0, 0]

• Update weights

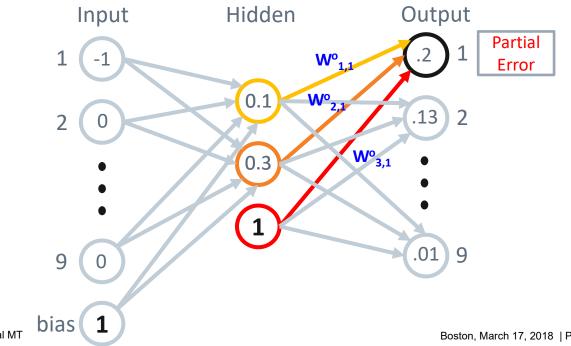


AMTA 2018 Tutorial: De-mystifying Neural MT

• Update weights: proportional to activation

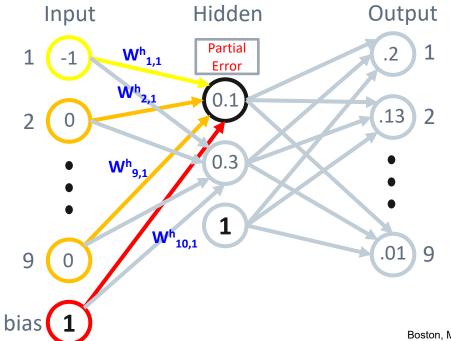


• Update weights: proportional to activation



AMTA 2018 Tutorial: De-mystifying Neural MT

• Update weights: proportional to activation



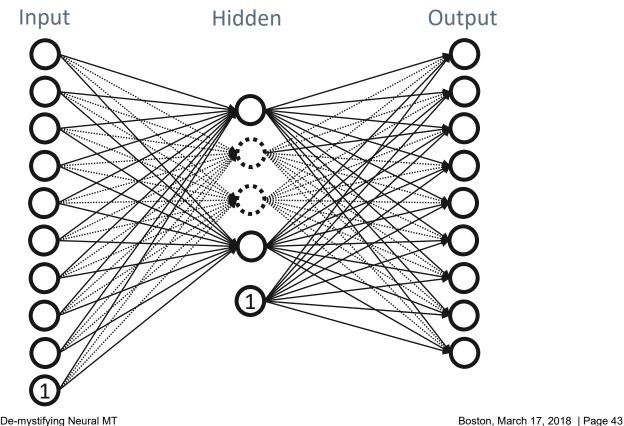
Visualize Neural Network training

http://www.emergentmind.com/neural-network

Difficulties

- If you just take some data and run backprop, you won't get a good network
 - Especially a deep network
- Some of the problems are:
 - Overfitting
 - Exploding/vanishing gradient

Training tricks: drop-out



SDL*

AMTA 2018 Tutorial: De-mystifying Neural MT

Training tricks: synthetic data

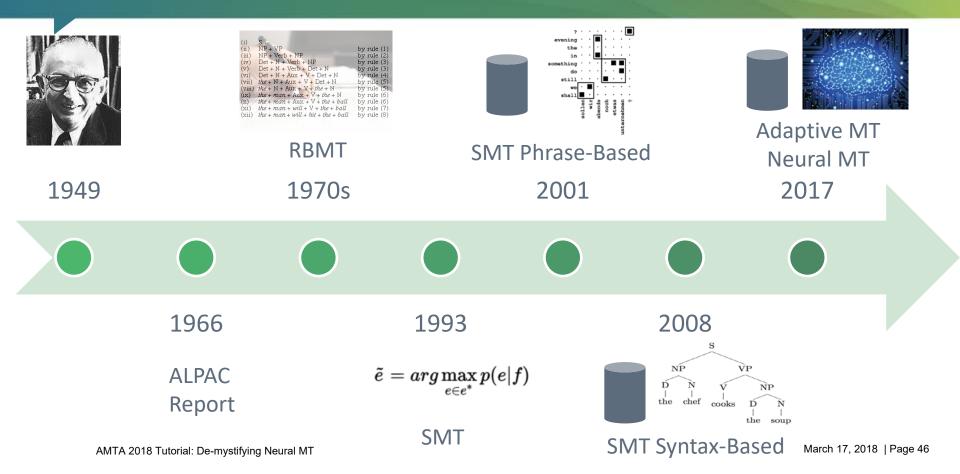
Increase the amount of data

Add noise

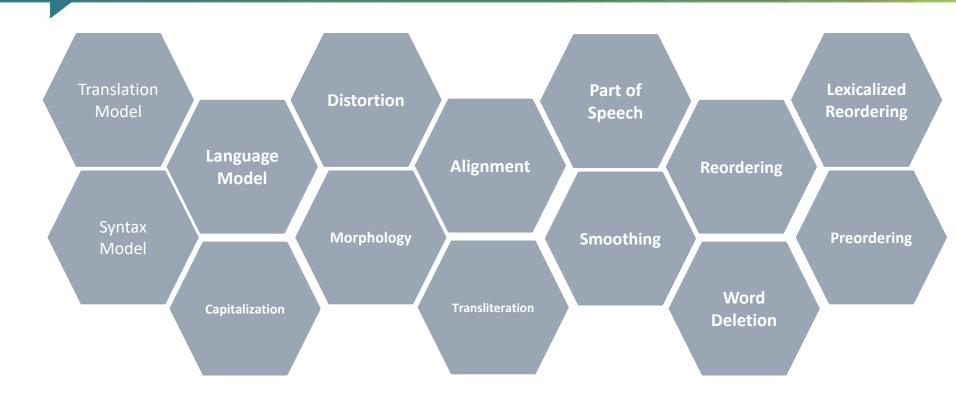
Oravec, Milos, et al. "Efficiency of recognition methods for single sample per person based face recognition." *Reviews, Refinements and New Ideas in Face Recognition*. InTech, 2011.

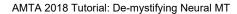
MACHINE TRANSLATION

Machine Translation



Statistical Machine Translation



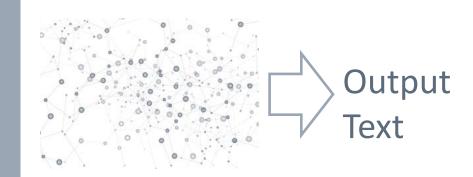


SDL*

Neural Machine Translation

ENCODER

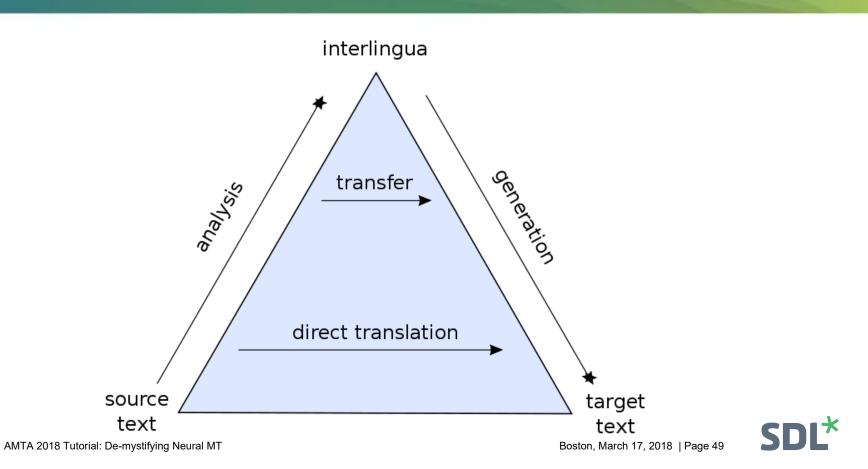
AMTA 2018 Tutorial: De-mystifying Neural MT



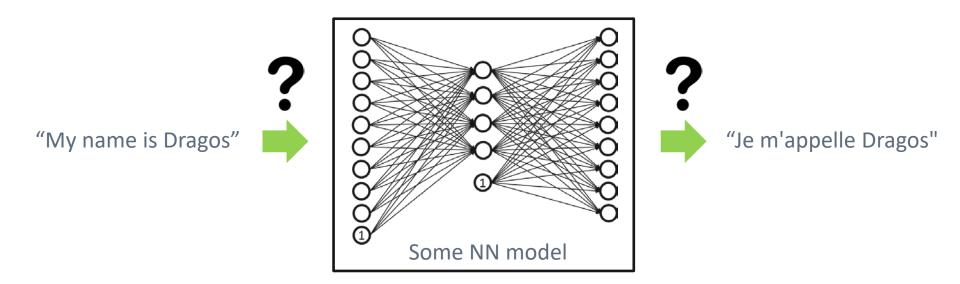
DECODER

Boston, March 17, 2018 | Page 48

The Machine Translation pyramid



NMT: Word Representations



NMT: Word Representations – one hot

Vocab	1	2	3	4	5	6	7	8	9	10
а	1	0	0	0	0	0	0	0	0	0
burger	0	1	0	0	0	0	0	0	0	0
dragos	0	0	1	0	0	0	0	0	0	0
for	0	0	0	1	0	0	0	0	0	0
had	0	0	0	0	1	0	0	0	0	0
i	0	0	0	0	0	1	0	0	0	0
is	0	0	0	0	0	0	1	0	0	0
lunch	0	0	0	0	0	0	0	1	0	0
my	0	0	0	0	0	0	0	0	1	0
name AMTA 2018 Tutorial:	0 De-mystifying I	0 Neural MT	0	0	0	0	0	O Boston,	0 , March 17, 20	1 018 Page 51

NMT: Word Representations – one hot

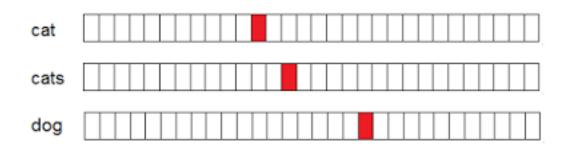
- "my name is dragos"
 Index: [9, 10, 7, 3]
 One-hot:
 - "my" (9): [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
 "name" (10): [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 "is" (7): [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
 "dragos" (3): [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

NMT: Word Representations – one hot

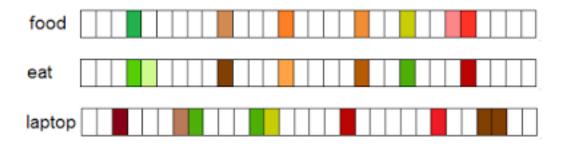
- Problem with this method:
 - Large number of vocab => curse of dimensionality
 - Hard to capture the relationships between words

Word representations

Sparse All words are equally different

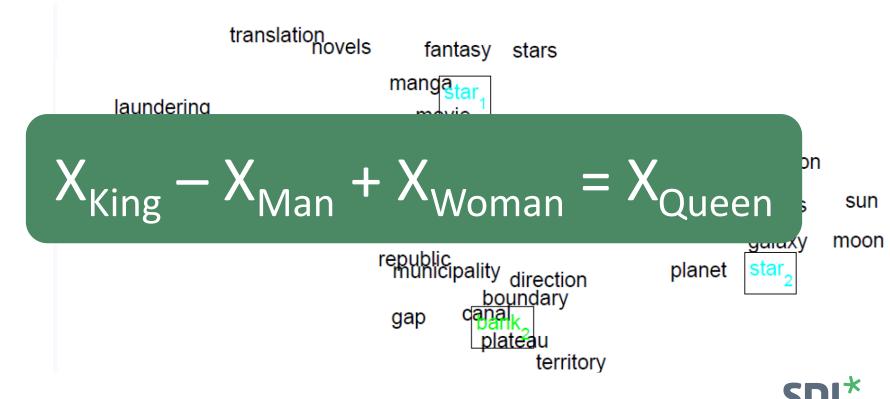


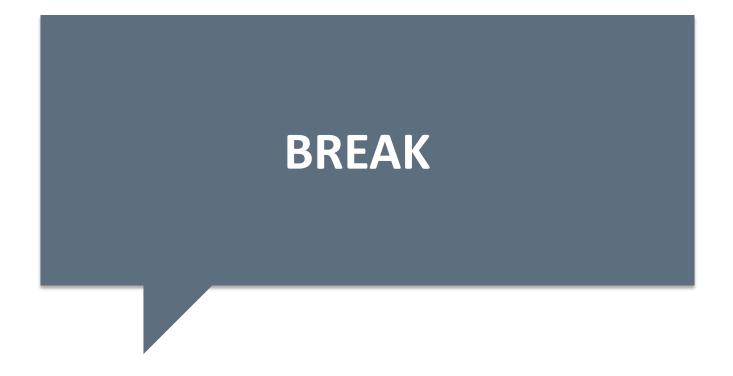
Similar words have similar vectors



AMTA 2018 Tutorial: De-mystifying Neural MT

NMT: Word Representations and Word Embedding





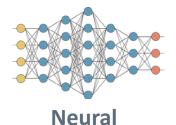
Rule-based vs. Statistical vs. Neural

(i) S	
(ii) NP + VP	by rule (1)
(iii) NP + Verb + NP	by rule (2)
(iv) Det + N + Verb + NP	by rule (3)
(v) Det + N + Verb + Det + N	by rule (3)
(vi) $Det + N + Aux + V + Det + N$	by rule (4)
(vii) $lhe + N + Aux + V + Det + N$	by rule (5)
(viii) $the + N + Aux + V + the + N$	by rule (5)
(ix) $the + man + Aux + V + the + N$	by rule (6)
(x) $the + man + Aux + V + the + ball$	by rule (6)
(xi) $the + man + will + V + the + ball$	by rule (7)
(xii) $the + man + will + hit + the + ball$	by rule (8)

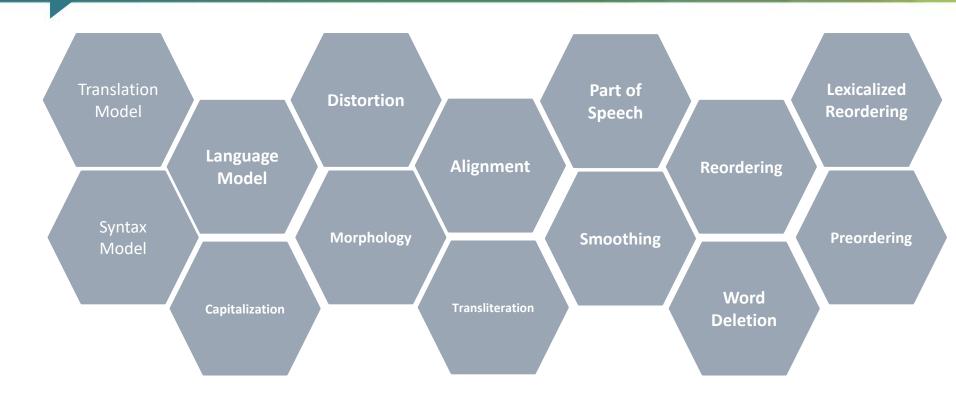
Rule-Based

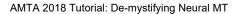
$$ilde{e} = arg \max_{e \in e^*} p(e|f)$$

Statistical



Statistical Machine Translation



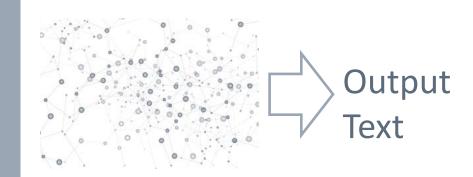


SDL*

Neural Machine Translation

ENCODER

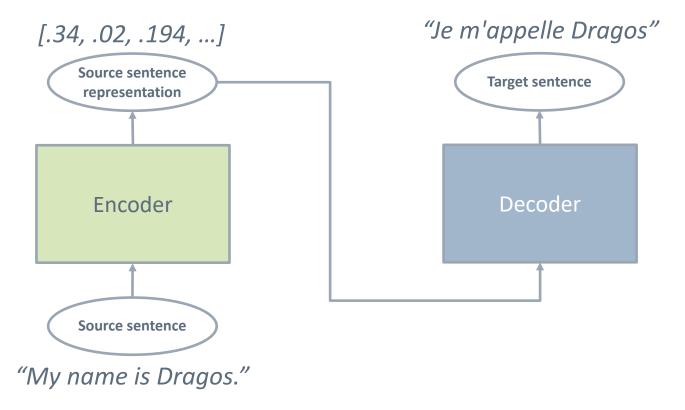
AMTA 2018 Tutorial: De-mystifying Neural MT



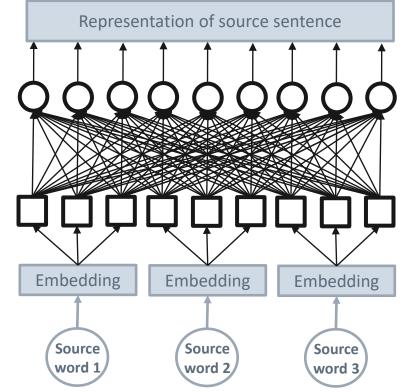
DECODER

Boston, March 17, 2018 | Page 59

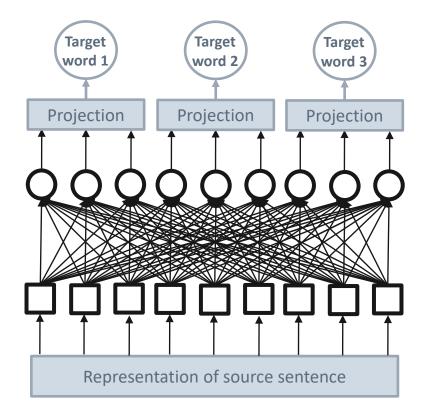
Encoder Decoder



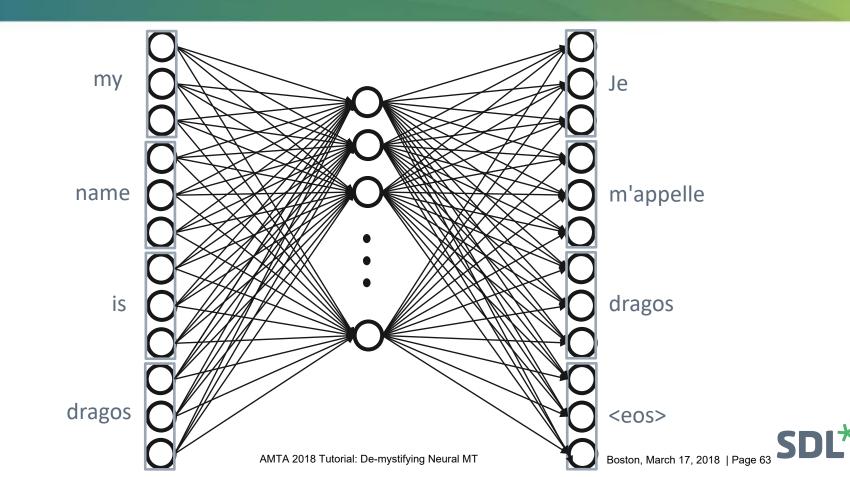
Sequence-to-sequence learning: Encoder



Sequence-to-sequence learning: Decoder



Let's use a simple NN for machine translation

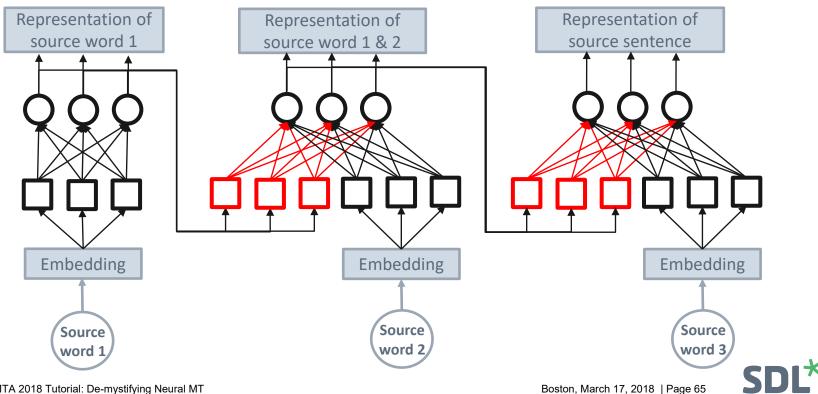


Sequence-to-sequence learning

• Example sentences

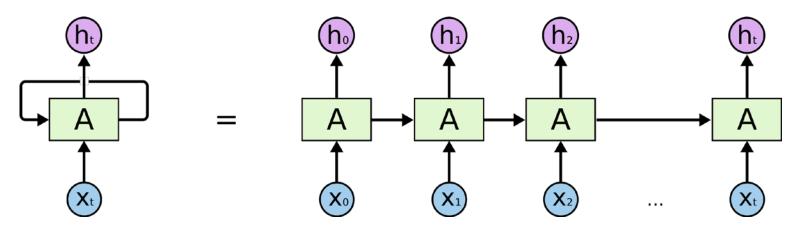
- "My name is Dragos."
- "Machine translation, sometimes referred to by the abbreviation MT (not to be confused with computer-aided translation, machine-aided human translation (MAHT) or interactive translation) is a sub-field of computational linguistics that investigates the use of software to translate text or speech from one language to another." [Wikipedia]

Vanilla Recurrent Network



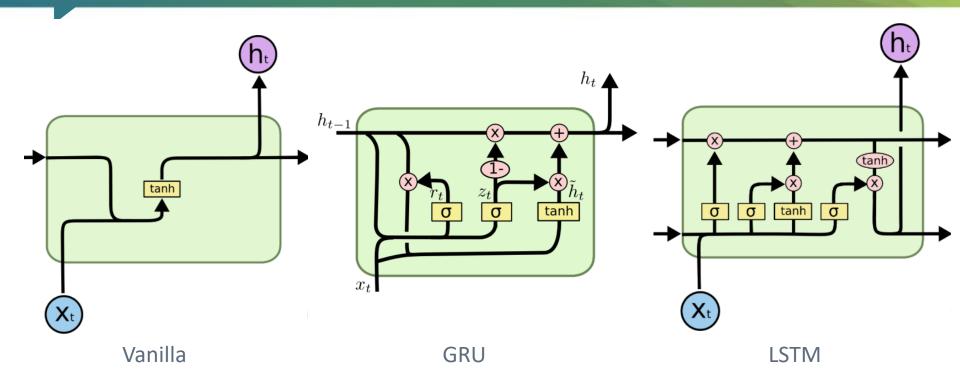
AMTA 2018 Tutorial: De-mystifying Neural MT

Recurrent Neural Network



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Different RNN units



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

AMTA 2018 Tutorial: De-mystifying Neural MT

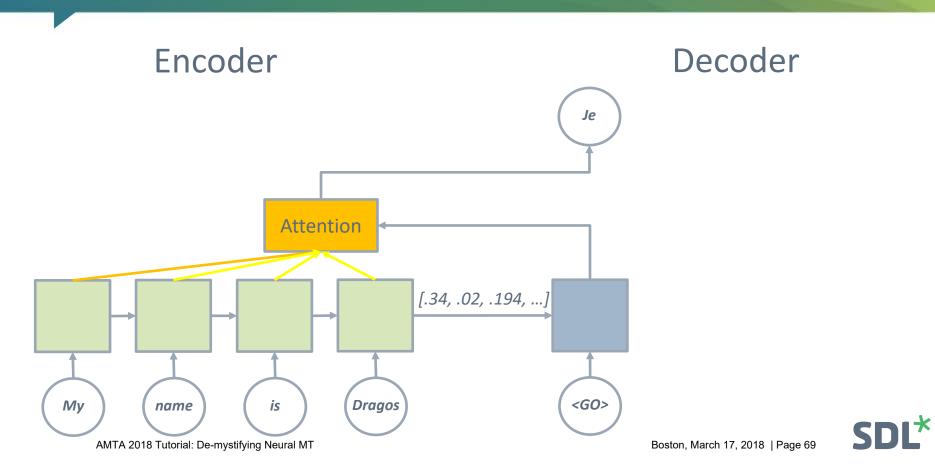
Boston, March 17, 2018 | Page 67

SDL*

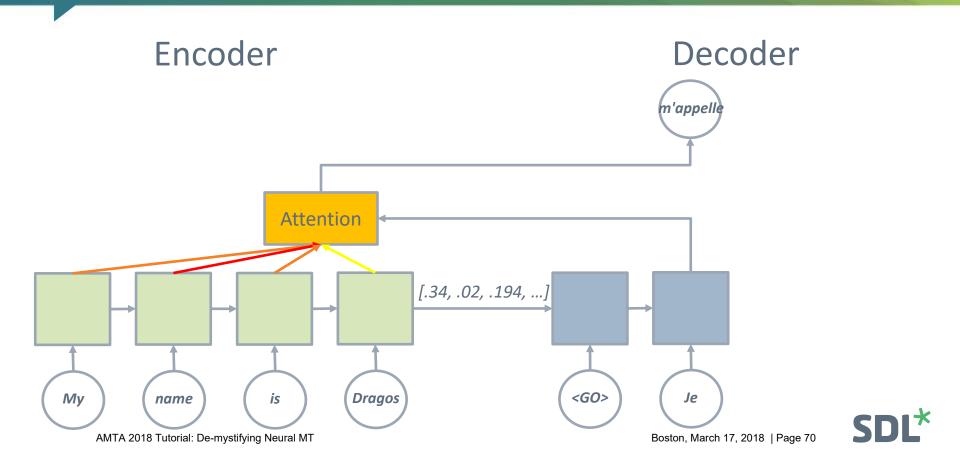
Encoder Decoder unrolled

Encoder Decoder m'appelle Je Dragos <eos> [.34, .02, .194, ...] My is Dragos <GO> name

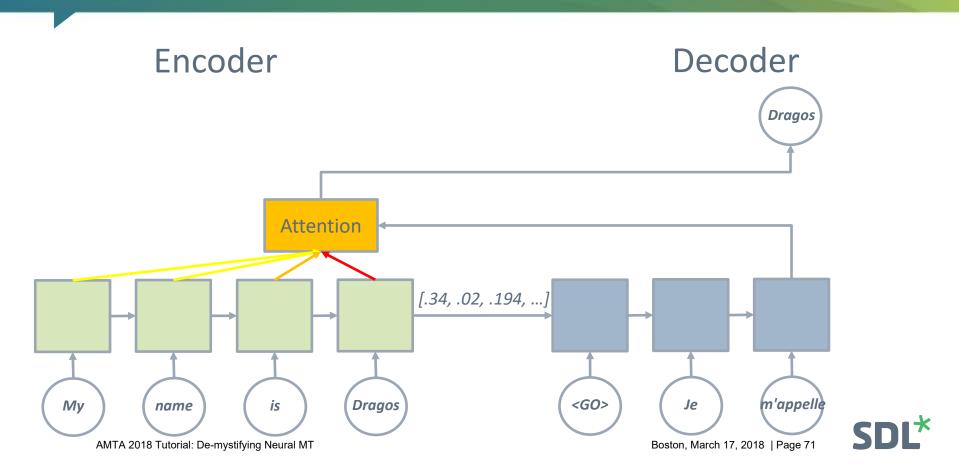
Encoder Decoder with Attention



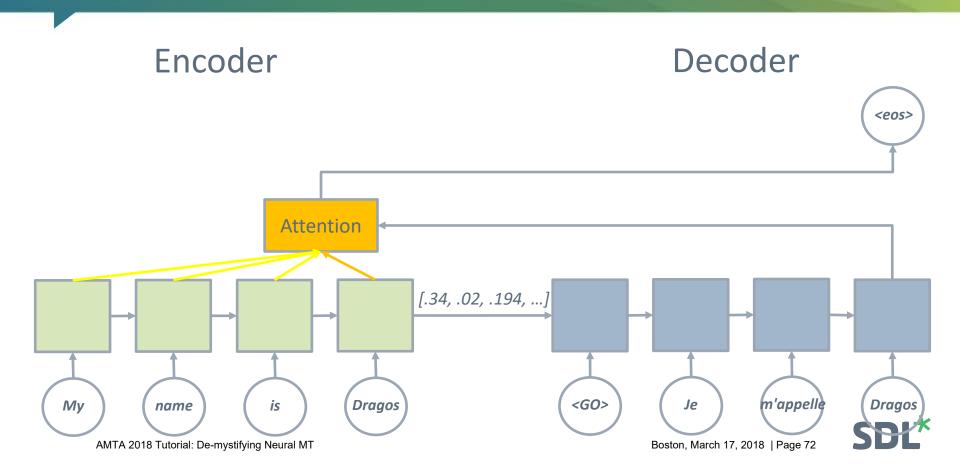
Encoder Decoder with Attention



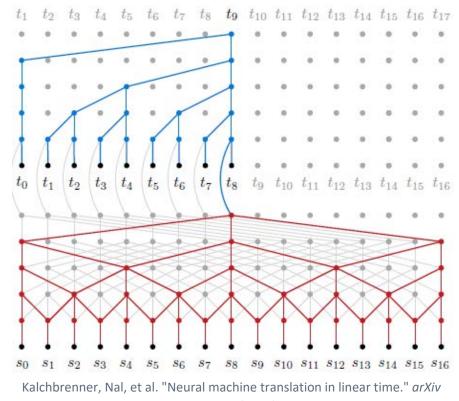
Encoder Decoder with Attention



Encoder Decoder with Attention



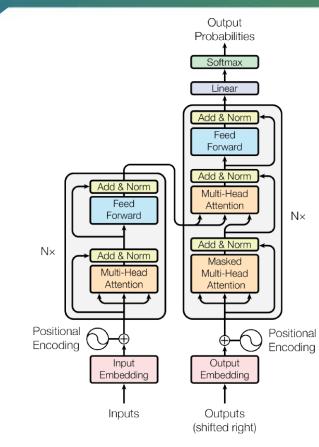
Convolutional Model for Machine Translation



AMTA 2018 Tutorial: De-mystifying Neural MT preprint arXiv:1610.10099 (2016).

Boston, March 17, 2018 | Page 73

Transformer Model



- No recurrence
- No convolution
- More parallelizable
- Use self-attention

Vaswani, Ashish, et al. "Attention is all you need." *Advances in Neural Information Processing Systems*. 2017. Boston, March 17, 2018 | Page 74

Figure 1: The Transformer - model architecture.

Winograd schema sentences

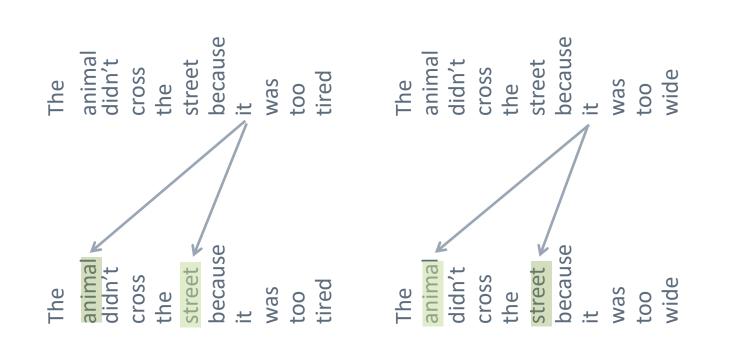
He didn't put the trophy in the suitcase because it was too **small**. He didn't put the trophy in the suitcase because it was too **big**.

The cow ate the hay because it was **delicious**. The cow ate the hay because it was **hungry**.

The councilmen refused the demonstrators a permit because they **advocated** violence. The councilmen refused the demonstrators a permit because they **feared** violence.

The animal didn't cross the street because it was too **tired**. The animal didn't cross the street because it was too **wide**.

Self-Attention for coreference resolution



SDL*

Unseen words

- Sentence: "I had a hamburger for lunch"
- The model: "I had a UNK for lunch"
- Sentence: "I don't like rollercoasters"
- The model: "I don't like UNK"
- Solutions
 - Subword

Subword

- "ham"+"burger" => "hamburger"
- "roll" + "er" + "coast" + ers" => "rollercoasters"
- "d" + "r" + "a" + "g" + "o" + "s" => "Dragos"

- Resource requirements
 - Large amount of data
 - GPU
- User constraints: names, numbers, terminology
- Coverage
 - Dropping translation

- Neurobabble
 - "if you do not have any questions , please do not have any questions"
 - "in the middle of the middle of the river , the river flows into the south of the river"
 - "... confronting the history of the history of the history of the history"

Advantages of NMT

• Example:

- "因此,要改善机器翻译的结果,人为的介入仍显相当重要。"
- Literal: "Therefore, to improve machine translation results, human intervention is still very important"
- SMT: "Therefore, it is necessary to improve machine translation results, human intervention is still the video was important."
- NMT: "Therefore, human intervention is still significant in order to improve the results of machine translation."

Future Outlook

- Adaptation
- Low-resource languages
- Multi-lingual models
- Multi-modal models (speech, image, etc.)

