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Abstract
OpenNMT is an open-source toolkit for neural machine translation (NMT). The system prior-

itizes efficiency, modularity, and extensibility with the goal of supporting NMT research into

model architectures, feature representations, and source modalities, while maintaining compet-

itive performance and reasonable training requirements. The toolkit consists of modeling and

translation support, as well as detailed pedagogical documentation about the underlying tech-

niques. OpenNMT has been used in several production MT systems, modified for numerous

research papers, and is implemented across several deep learning frameworks.

1 Introduction

Neural machine translation (NMT) is a new methodology for machine translation that has led to

remarkable improvements, particularly in terms of human evaluation, compared to rule-based

and statistical machine translation (SMT) systems (Wu et al., 2016; Crego et al., 2016). Orig-

inally developed using pure sequence-to-sequence models (Sutskever et al., 2014; Cho et al.,

2014) and improved upon using attention-based variants (Bahdanau et al., 2014; Luong et al.,

2015a), NMT has now become a widely-applied technique for machine translation, as well as

an effective approach for other related NLP tasks such as dialogue, parsing, and summarization.

As NMT approaches are standardized, it becomes more important for the machine trans-

lation and NLP community to develop open implementations for researchers to benchmark

against, learn from, and extend upon. Just as the SMT community benefited greatly from toolk-

its like Moses (Koehn et al., 2007) for phrase-based SMT and CDec (Dyer et al., 2010) for

syntax-based SMT, NMT toolkits can provide a foundation to build upon. A toolkit should aim

to provide a shared framework for developing and comparing open-source systems, while at the

same time being efficient and accurate enough to be used in production contexts.

With these goals in mind, in this work we present an open-source toolkit for developing

neural machine translation systems, known as OpenNMT (http://opennmt.net). Since

its launch in December 2016, OpenNMT has become a collection of implementations targeting

both academia and industry. The system is designed to be simple to use and easy to extend,

while maintaining efficiency and state-of-the-art accuracy. In addition to providing code for the

core translation tasks, OpenNMT was designed with two aims: (a) prioritize training and test

efficiency, (b) maintain model modularity and readability hence research extensibility.

During this time, many other stellar open-source NMT implementations have also been
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Figure 1: (a). Schematic view of neural machine translation. The red source words are first mapped to
word vectors and then fed into a recurrent neural network (RNN). Upon seeing the 〈eos〉 symbol, the final
time step initializes a target blue RNN. At each target time step, attention is applied over the source RNN
and combined with the current hidden state to produce a prediction p(wt|w1:t−1, x) of the next word. This
prediction is then fed back into the target RNN. (b). Live demo of the OpenNMT system.

released, including GroundHog, Blocks, Nematus, tensorflow-seq2seq, GNMT, fair-seq, Ten-
sor2Tensor, Sockeye, Neural Monkey, lamtram, XNMT, SGNMT, and Marian. These projects

mostly implement variants of the same underlying systems, and differ in their prioritization of

features. The open-source community around this area is flourishing, and is providing the NLP

community a useful variety of open-source NMT frameworks. In the ongoing development of

OpenNMT, we aim to build upon the strengths of those systems, while supporting a framework

with high-accuracy translation, multiple options and clear documentation.

This engineering report describes how the system targets our design goals. We begin by

briefly surveying the background for NMT, and then describing the high-level implementation

details. We end by showing benchmarks of the system in terms of accuracy, speed, and memory

usage for several translation and natural language generation tasks.

2 Background

NMT has now been extensively described in many excellent tutorials (see for instance https:
//sites.google.com/site/acl16nmt/home). We give only a condensed overview.

NMT takes a conditional language modeling view of translation by modeling the

probability of a target sentence w1:T given a source sentence x1:S as p(w1:T |x) =∏T
1 p(wt|w1:t−1, x; θ) where the distribution is parameterized with θ. This distribution is esti-

mated using an attention-based encoder-decoder architecture (Bahdanau et al., 2014). A source

encoder recurrent neural network (RNN) maps each source word to a word vector, and pro-

cesses these to a sequence of hidden vectors h1, . . . ,hS . The target decoder combines an RNN

hidden representation of previously generated words (w1, ...wt−1) with source hidden vectors to

predict scores for each possible next word. A softmax layer is then used to produce a next-word

distribution p(wt|w1:t−1, x; θ). The source hidden vectors influence the distribution through

an attention pooling layer that weights each source word relative to its expected contribution

to the target prediction. The complete model is trained end-to-end to minimize the negative

log-likelihood of the training corpus. An unfolded network diagram is shown in Figure 1(a).

In practice, there are also many other important aspects that improve the effectiveness of

the base model. Here we briefly mention four areas: (a) It is important to use a gated RNN

such as an LSTM (Hochreiter and Schmidhuber, 1997) or GRU (Chung et al., 2014) which help

the model learn long-term features. (b) Translation requires relatively large, stacked RNNs,

which consist of several vertical layers (2-16) of RNNs at each time step (Sutskever et al.,

2014). (c) Input feeding, where the previous attention vector is fed back into the input as well
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as the predicted word, has been shown to be quite helpful for machine translation (Luong et al.,

2015a). (d) Test-time decoding is done through beam search where multiple hypothesis target

predictions are considered at each time step. Implementing these correctly can be difficult,

which motivates their inclusion in a NMT framework.

3 Implementation

OpenNMT is a community of projects supporting easy adoption neural machine translation. At

the heart of the project are libraries for training, using, and deploying neural machine translation

models. The system was based originally on seq2seq-attn, which was rewritten for ease of

efficiency, readability, and generalizability. The project supports vanilla NMT models along

with support for attention, gating, stacking, input feeding, regularization, copy models, beam

search and all other options necessary for state-of-the-art performance.

OpenNMT has currently three main implementations. All of them are actively maintained:

• OpenNMT-lua The original project developed in Torch 7. Full-featured, optimized, and

stable code ready for quick experiments and production.

• OpenNMT-py An OpenNMT-lua clone using PyTorch. Initially created by by Adam Lerer

and the Facebook AI research team as an example, this implementation is easy to extend

and particularly suited for research.

• OpenNMT-tf An implementation following the style of TensorFlow. This is a newer project

focusing on large scale experiments and high performance model serving using the latest

TensorFlow features.

OpenNMT is developed completely in the open on GitHub at (http://github.com/
opennmt) and is MIT licensed. The initial release has primarily contributions from SYS-

TRAN Paris, the Harvard NLP group and Facebook AI research. Since official beta release, the

project (OpenNMT-lua, OpenNMT-py and OpenNMT-tf) has been starred by over 2500 users

in total, and there have been over 100 outside contributors. The project has an active forum for

community feedback with over five hundred posts in the last two months. There is also a live

demonstration available of the system in use (Figure 1(b)).

One often overlooked benefit of NMT compared to SMT is its relative compactness.

OpenNMT-lua including preprocessing and model variants is roughly 16K lines of code, the

PyTorch version is less than 4K lines and Tensorflow version has around 7K lines. For compar-

ison the Moses SMT framework including language modeling is over 100K lines. This makes

our system easy to completely understand for newcomers. Each project is fully self-contained

depending on minimal number of external libraries and also includes some preprocessing, visu-

alization and analysis tools.

4 Design Goals

4.1 System Efficiency
As NMT systems can take from days to weeks to train, training efficiency is a paramount con-

cern. Slightly faster training can make the difference between plausible and impossible experi-

ments.

Memory Sharing & Sharding When training GPU-based NMT models, memory size re-

strictions are the most common limiter of batch size, and thus directly impact training time.

Neural network toolkits, such as Torch, are often designed to trade-off extra memory alloca-

tions for speed and declarative simplicity. For OpenNMT, we wanted to have it both ways,
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Figure 2: Schematic overview of OpenNMT-py code

and so we implemented an external memory sharing system that exploits the known time-series

control flow of NMT systems and aggressively shares the internal buffers between clones. The

potential shared buffers are dynamically calculated by exploration of the network graph before

starting training. In practical use, aggressive memory reuse provides a saving of 70% of GPU

memory with the default model size. For OpenNMT-py, we implemented a sharding mechanism

both for data loading to enable training on extremely large datasets that cannot fit into memory,

and for back-propagation to reduce memory footprints during training.

Multi-GPU OpenNMT additionally supports multi-GPU training using data parallelism.

Each GPU has a replica of the master parameters and processes independent batches during

training phase. Two modes are available: synchronous and asynchronous training (Dean et al.,

2012). Experiments with 8 GPUs show a 6× speed up in per epoch, but a slight loss in training

efficiency. When training to similar loss, it gives a 3.5× total speed-up to training.

C/Mobile/GPU Translation Training NMT systems requires significant code complexity to

facilitate fast back-propagation-through-time. At deployment, the system is much less complex,

and only requires (i) forwarding values through the network and (ii) running a beam search that

is much simplified compared to SMT. OpenNMT includes several different translation deploy-

ments specialized for different run-time environments: a batched CPU/GPU implementation

for very quickly translating a large set of sentences, a simple single-instance implementation

for use on mobile devices, and a specialized C implementation suited for industrial use.

4.2 Modularity for Research

A secondary goal was a desire for code readability and extensibility. We targeted this goal

by explicitly separating training, optimization and different components of the model, and by

including tutorial documentation within the code. A schematic overview of our data structures

in OpenNMT-py is shown in Figure 2. We provide users with simple interfaces preprocess,

train and translate, which only require source/target files as input, while we provide a highly

modularized library for advanced users. Each module in the library is highly customizable

and configurable with multiple ready-for-use features. Advanced users can access the modules

directly through a library interface to construct and train variant of the standard NMT setup.
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System BLEU-cased

uedin-nmt-ensemble 28.3

LMU-nmt-reranked-wmt17-en-de 27.1

SYSTRAN-single (OpenNMT) 26.7

Table 1: Top 3 on English-German newstest2017 WMT17.

System Speed tok/sec BLEU

Train Trans

Nematus 3221 252 18.25

ONMT 5254 457 19.34

Table 2: Performance results for EN→DE on
WMT15 tested on newstest2014. Both systems
2x500 RNN, embedding size 300, 13 epochs, batch
size 64, beam size 5. We compare on a 32k BPE
setting.

System newstest14 newstest17

seq2seq 22.19 -

Sockeye - 25.55

ONMT 23.23 [19.34] 25.06 [22.69]

Table 3: OpenNMT’s performance as reported by
Britz et al. (2017) and Hieber et al. (2017) (brack-
eted) compared to our best results. ONMT used
32k BPE, 2-layers bi-RNN of 1024, embedding size
512, dropout 0.1 and max length 100.

Extensible Data, Models, and Search In addition to plain text, OpenNMT also supports

different input types including models with discrete features (Sennrich and Haddow, 2016),

models with non-sequential input such as tables, continuous data such as speech signals, and

multi-dimensional data such as images. To support these different input modalities the library

implements image encoder (Xu et al., 2015; Deng et al., 2017) and audio encoders (Chan et al.,

2015). OpenNMT implements various attention types including general, dot product, and con-

catenation (Luong et al., 2015a; Britz et al., 2017). This also includes recent extensions to these

standard modules such as the copy mechanism (Vinyals et al., 2015; Gu et al., 2016), which is

widely used in summarization and generation applications.

The newer implementations of OpenNMT have also been updated to include support for

recent innovations in non-recurrent translation models. In particular recent support has been

added for convolution translation (Gehring et al., 2017) and the attention-only transformer net-

work (Vaswani et al., 2017).

Finally, the translation code allows for user customization. In addition to out-of-vocabulary

(OOV) handling (Luong et al., 2015b), OpenNMT also allows beam search with various normal-

izations including length and attention coverage normalization (Wu et al., 2016), and dynamic

dictionary support for copy/pointer networks. We also provide an interface for customized hy-

pothesis filtering, enabling beam search under various constraints such as maximum number of

OOV’s and lexical constraints.

Modularity Due to the deliberate modularity of our code, OpenNMT is readily extensible

for novel feature development. As one example, by substituting the attention module, we can

implement local attention (Luong et al., 2015a), sparse-max attention (Martins and Astudillo,

2016) and structured attention (Kim et al., 2017) with minimal change of code. As another

example, in order to get feature-based factored neural translation (Sennrich and Haddow, 2016)

we simply need to modify the input network to process the feature-based representation, and

the output network to produce multiple conditionally independent predictions.

We have seen instances of this use in published research. In addition to machine translation

(Levin et al., 2017; Ha et al., 2017; Ma et al., 2017), researchers have employed OpenNMT for

parsing (van Noord and Bos, 2017), document summarization (Ling and Rush, 2017), data-to-
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System newstest14 newstest15

GNMT 4 layers 23.7 26.5

GNMT 8 layers 24.4 27.6

WMT reference 20.6 24.9

ONMT 23.2 26.0

Table 4: Comparison with GNMT on EN→DE.
ONMT used 2-layers bi-RNN of 1024, embedding
size 512, dropout 0.1 and max length 100.

System newstest14 newstest17

T2T 27.3 27.8

ONMT T2T 26.8 28.0

GNMT (rnn) 24.6 -

ONMT (rnn) 23.2 25.1

Table 5: Transformer Results on English-German
newstest14 and newstest17. We use 6-layer trans-
former with model size of 512.

document (Wiseman et al., 2017; Gardent et al., 2017), and transliteration (Ameur et al., 2017),

to name a few of many applications.

Additional Tools OpenNMT packages several additional tools, including: 1) reversible tok-

enizer, which can also perform Byte Pair Encoding (BPE) (Sennrich et al., 2015); 2) loading

and exporting word embeddings; 3) translation server which enables showcase results remotely;

and 4) visualization tools for debugging or understanding, such as beam search visualization,

profiler and TensorBoard logging.

5 Experiments

OpenNMT achieves competitive results against other systems, e.g. in the recent WMT 2017

translation task, it won third place in English-German translation with a single model as shown

in Table 1. The system is also competitive in speed as shown in Table 2. Here we compare train-

ing and test speed to the publicly available Nematus system1 on English-to-German (EN→DE)

using the WMT20152 dataset.

We have found that OpenNMT’s default setting is useful for experiments, but not opti-

mal for large-scale NMT. This has been a cause of poor reported performance in other default

comparisons by Britz et al. (2017) and Hieber et al. (2017). We trained models with our best

effort to conform to their settings and report our results in Table 3, which shows comparable

performance with other systems. We suspect that the reported poor performance is due to the

fact that our default setting discards sequences of length greater than 50, which is too short for

BPE. Moreover, while the reported poor performance was obtained by training with ADAM,

we find that training with (the default) SGD with learning rate decay is generally better.

We also compare OpenNMT with the GNMT (Wu et al., 2016) model in Table 4. Vaswani

et al. (2017) have established a new state-of-the-art with the Transformer model. We have

also implemented this in our framework, and compare it with Tensor2Tensor (T2T) in Table 5.

(These experiments are run on a modified version of WMT 2017, namely News Comm v11

instead of v12, and no Rapid 2016.)

Additionally we have found interest from the community in using OpenNMT for lan-

guage geneation tasks like sentence document summarization and dialogue response genera-

tion, among others. Using OpenNMT, we were able to replicate the sentence summarization

results of Chopra et al. (2016), reaching a ROUGE-1 score of 35.51 on the Gigaword data.

We have also trained a model on 14 million sentences of the OpenSubtitles data set based on

the work Vinyals and Le (2015), achieving comparable perplexity. Many other models are at

http://opennmt.net/Models-py and http://opennmt.net/Models.

1https://github.com/rsennrich/nematus Comparison with OpenNMT/Nematus github revisions

907824/75c6ab1
2http://statmt.org/wmt15
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