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Abstract

In this article, we present the use of a term bank for text classification purposes. We developed a
supervised text classification approach which takes advantage of the domain-based structure of a term
bank, namely TERMIUM Plus, as well as its bilingual content. The goal of the text classification
task is to correctly identify the appropriate fine-grained domains of short segments of text in both
French and English. We developed a vector space model for this task, which we refer to as the
DCVSM (domain classification vector space model). In order to train and evaluate the DCVSM,
we generated two new datasets from the open data contained in TERMIUM Plus. Results on these
datasets show that the DCVSM compares favourably to five other supervised classification algorithms
tested, achieving the highest micro-averaged recall (R@1).

1 Introduction

Text classification is a well-known task in Natural Language Processing, which aims at automatically
providing additional document-level metadata (e.g. domain, genre, author). To our knowledge, the
curated domain structures found in term banks have never been used to automatically provide metadata
describing the fine-grained domains discussed in a given document. This might perhaps be due to the
fact that term banks have not been made available as open and free resources until recently, as well as
the lack of text data annotated using a term bank’s domains as target classes, which is necessary for a
supervised classification approach.

Our research was stimulated by the gap mentioned above, and our contribution, highlighted in this
paper, is both to provide annotated datasets for fine-grained domain classification of texts, and a classi-
fication method that achieves high accuracy. We should say that our first contribution is only possible
because of the recent release of the term bank TERMIUM Plus, which contains both the domain struc-
turing information and the short text segments which we use to build our two datasets, one for French
and one for English. Our second contribution is a comparison of six different supervised classification
algorithms on these datasets, which aims to determine which kind of classifier produces the best results
on this task. Among the models we tested, the one which achieves the highest accuracy is a vector space
model we developed for this task, which we refer to as the domain classification vector space model
(DCVSM).

The datasets are described in Section 2 and the DCVSM is explained in Section 3. The experimental
setup and results are presented in Sections 4 and 5. Related work is outlined in Section 6.

2 Datasets generated from Termium

The datasets we created for this research were extracted from TERMIUM Plus R©, which we will call
simply Termium from now on. Termium1 is a multilingual terminology and linguistic data bank, devel-
oped by the Translation Bureau of Canada for over thirty years, but only recently released as open data
by the Government of Canada. Since 2014, an open version of Termium Plus is available, with periodic

1http://open.canada.ca/data/en/dataset/94fc74d6-9b9a-4c2e-9c6c-45a5092453aa



updates. So far, it has not been used much for research on computational linguistics, yet it is a rich
resource which can be used for such research in various ways, as we will show.

The latest release of Termium contains data in four languages: English, French, Castilian Spanish,
and Portuguese. The datasets presented in this paper were extracted from a 2016 release of Termium,
which only included English and French data. The release we used contains about 1.33 million records
associated with 2252 domains. An example of a record is shown in Table 1.

English French
Terms 1. penalty kick; 2. penalty 1. coup de pied de réparation; 2. coup de pied

de pénalité; 3. coup de réparation; 4. coup de
pied de punition; 5. tir de réparation; 6. tir
de punition; 7. penalty; 8. penalty kick

Definitions A kick, unopposed except for the goalkeeper,
awarded to sanction a foul committed by a de-
fensive player in his own penalty area.

Coup tiré sans opposition de l’adversaire pour
sanctionner une faute commise par un joueur
défensif dans sa propre surface de réparation.

Contexts The referee may award a penalty kick for an
infringement of the laws.

Les coups de pied de pénalité et les coups de
pied francs sont accordés à l’équipe non fau-
tive à la suite de fautes de [ses] adversaires.

Domains 1. Specialized Vocabulary and Phraseologism
of Sports; 2. Soccer (Europe: Football); 3.
Rugby

1. Vocabulaire spécialisé et phraséologie des
sports; 2. Soccer (Europe : football); 3.
Rugby

Table 1: Excerpt from a record in Termium.

To create the datasets used in this research, we first had to process the source files containing the open
data of Termium in order to reconstruct its records. The source files are organized by domain, and records
belonging to multiple domains are represented by multiple rows, often in different files. Furthermore,
the source files do not (currently) indicate which rows belong to the same record (i.e. using some kind
of unique record identifier). Therefore, data fusion must be performed to reconstruct the records. The
principle used to perform the data fusion is that rows that belong to the same record are identical except
for the domain fields. By merging the rows which are identical except for these fields and combining
the values found in these fields, we can reconstruct Termium’s records. Note that there are exceptions
to this rule which produce a small quantity of noise (i.e. mismatches between the records shown in the
web version of Termium and the index we created using the source files). Thus the 2 million rows in
the source files were aggregated into 1.33 million indexed records, from which we extracted the datasets
described below. We have released this data2 in order to make it easier to reproduce the results reported
in this paper, and more generally, to train a classifier using the fine-grained classification of Termium.

As illustrated in Table 1, records in Termium are all linked to at least one domain, and many are
linked to 2 domains (31% of records), 3 domains (8%) or more (1%). Records can also contain various
kinds of textual supports such as a definition or examples which illustrate the use of a term, known
as contexts. Termium contains about 170 000 of these contexts in English and 155 000 in French, not
counting duplicates. These contexts are meant to illustrate the use of a term, but they sometimes also
contain definitional or encyclopedic information about the term. Unlike definitions, which often do not
contain the term they define, contexts usually contain an occurrence of one of the synonymous terms on
the record, as they are meant to illustrate usage. We created two gold standard datasets by extracting
these contexts and their associated domains from Termium, one in English and one in French. We will
refer to them as the Termium Context (TC) datasets.

Although the contexts in Termium are supposed to show terms in use, we found out during our
experiments that some records contain a context in which none of the record’s terms actually occur.
Therefore, we defined a procedure to automatically validate each context by checking if it contained at
least one of the terms of the record(s) in which it was found. The contexts shown in Table 1 are examples
of valid contexts as they contain the terms penalty kick and coup de pied de pénalité. About 85% of the

2See https://github.com/crim-ca/LOTKS_2017.



Context Domain
The use of Jacobson’s organ is most obvious in snakes. If a strong odour or vibration
stimulates a snake, its tongue is flicked in and out rapidly. Each time it is retracted the
forked tip touches the opening of Jacobson’s organ in the roof of the mouth, transmitting
any chemical fragments adhering to the tongue.

Reptiles and
Amphibians

The rate of speed of a composition or a section thereof, ranging from the slowest to the
quickest, as is indicated by tempo marks such as largo, adagio, andante, moderato, allegro,
presto, prestissimo ...

Musicology

A player is “onside” when either of his skates are in physical contact with or on his own side
of the line at the instant the puck completely crosses the outer edge of that line regardless
of the position of his stick.

Ice Hockey

Table 2: Examples of labeled contexts included in the datasets. Terms in bold are those illustrated by
each context.

contexts in each language passed this test.
Some contexts appear on multiple records and are associated with several domains, but most are

associated with one or two domains, which are often related by a hierarchical relationship (e.g. Zoology
and Reptiles and Amphibians). We decided to treat the classification task as a single-label classification
task, therefore only one domain label was retained for each context. This makes the task more difficult, as
only one domain is considered correct when evaluating the predictions of a classifier for a given context,
even if that context belongs to multiple, related domains according to Termium. To select a single
label for these contexts, we used a frequency-based heuristic which favours less frequent (and perhaps
more specific) domains. Subsequently, a minimum class (domain) frequency of 20 was imposed, which
removed about 5% of the remaining contexts in each language.

English French
Nb instances 139 327 122 151
Nb classes 1376 1342
Min class freq 20 20
Avg class freq 101.3 91.0
Max class freq 1145 1012
Avg tokens/context 40 45

Table 3: TC Datasets statistics.

Each instance in the TC datasets comprises a context
and a domain label, as shown in Table 2. Statistics on the
TC datasets are presented in Table 3. Contexts contain
about 40-45 tokens on average, which makes these texts
much shorter than those typically used to evaluate text
classification, yet longer than a typical query in informa-
tion retrieval. The number of classes (1376 in English,
1342 in French) is also higher than that of other text clas-
sification datasets, such as Reuters-215783, which con-
tains 118 classes. Thus, this task can be considered a
fine-grained domain classification of short texts.

3 Domain Classification Vector Space Model

The domain classification vector space model (DCVSM) we developed follows the general principles of
vector space models4. To predict the domain of a short text, the DCVSM considers the short text as a
query and Termium domains as pseudo-documents. The underlying principle is that a Termium domain
can be viewed as a document containing all the contexts found in the term bank’s records and associated
with that domain. The short text can then be classified by computing its similarity to each domain (or
pseudo-document). We formally define the DCVSM below as a supervised classifier, and compare it to
other classifiers in the following sections.

Let C = {c1, . . . , cm} be the set of classes and F = {f1, . . . , fn} the set of features. A supervised
classifier is trained using a collection X of labelled feature vectors 〈x, c〉, where x ∈ Rn is the feature
vector and c is its class. To train the DCVSM, we calculate a matrix W which indicates for each pair

3See http://www.daviddlewis.com/resources/testcollections/reuters21578/readme.txt.
4See Manning et al. (2009) for an overview of vector space models, as well as classification algorithms and feature selection

techniques used for text classification, including those discussed in this section and most of the classifiers evaluated in Section 5.



(fi, cj) the strength of the association between feature fi and class cj . In the case of the text classifica-
tion task addressed in this paper, the features are words and the classes are domains, so each value Wij

represents the importance of word fi in domain cj . Thus, matrix W is similar to the word-document
matrices commonly used for text classification and information retrieval (Salton, 1971), word similar-
ity estimation (Turney and Pantel, 2010), and related tasks. These matrices are typically calculated by
counting how many times each word occurs in each document, then weighting these frequencies us-
ing a scheme such as tf-idf (Spärck Jones, 1972) or an association measure such as pointwise mutual
information (Church and Hanks, 1989).

Matrix W is calculated using the following method. For each pair (fi, cj), we sum up the values of
feature fi for each feature vector in the training data that belongs to class cj , which we will note Tficj .
This can be formulated as follows: Tficj =

∑
〈x,c〉∈Xcj

xi. where Xcj is the subset of training instances
belonging to class cj , and xi is the value of feature fi in x (e.g. the weighted frequency of a word). This
sum is then weighted to estimate the association between the feature and the class: Wij = ψ(Tficj ),
where ψ is some weighting function. The resulting value Wij is the weight of feature fi for class cj .

Each column vector W:j represents the feature weights of the classifier for class cj . A new feature
vector x is classified by calculating the dot product of x and the feature weights of each class, and
selecting the class which maximises this function. In other words, W:j represents a pseudo-document
corresponding to domain cj , and contexts are classified by finding the most similar pseudo-document.
Formally, the probability of a class cj is defined as follows: Pr(cj |x) ∝

∑n
i=1 xiWij .

The DCVSM assumes that the contribution of each feature to the likelihood of a class is independent
of the other features. Many other classifiers make this assumption, including the multinomial Naive
Bayes classifier which is often used for text classification. Furthermore, like Naive Bayes, the DCVSM
is fast, scalable, and simple to train, as training only involves calculating matrix W on the training data.
Naive Bayes is one of the five classifiers to which we compare the DCVSM in the following experiment.

4 Text classification experiment

Using the TC datasets (in English and French) described in Section 2, we evaluated the DCVSM as well
as five other supervised classification algorithms that have been used for text classification. Each short
text (instance) from a TC dataset was converted into a bag of words after applying basic preprocessing
(tokenization, lemmatization, case-folding, and removal of stop words and punctuation)5. Thus, each
instance is represented by a feature vector where each value is the frequency of a specific word. The
set of features contains every word that occurs at least twice in the training data. Word frequencies
were optionally weighted using tf-idf, with idf being defined as follows for a given word w: idf(w) =

log
(
|D|
|Dw| + 1

)
, where D is the set of contexts used for training, |D| is its size, and Dw is the subset of

training contexts that contain w.
The five other supervised classification algorithms we tested are: multinomial Naive Bayes (NB),

Rocchio classification (RC), softmax regression (SR), k-nearest neighbours (k-NN) and a multi-layer
perceptron (MLP).

As noted above, multinomial Naive Bayes is commonly used for text classification. Rocchio classifi-
cation (Rocchio, 1971), like Naive Bayes, is a linear classification algorithm. The DCVSM is similar to
Rocchio classification, which involves computing centroids by averaging all the feature vectors belong-
ing to each class, and classifying new instances by assigning them to the class of the nearest centroid.
The DCVSM is different in that the feature vectors belonging to each class are summed rather than being
averaged, and then weighted.

Softmax regression (or multinomial logistic regression) is also a linear classification algorithm. The
softmax classifier was trained using stochastic gradient descent, with a penalty on the L2 norm of the
feature weights for regularisation.

5Stanford’s CoreNLP library (Manning et al., 2014) was used for tokenization. TreeTagger (Schmid, 1994) and TT4J
(https://reckart.github.io/tt4j/tokenizer.html) were used for lemmatization.



The k-NN algorithm and the MLP are non-linear classifiers. k-NN classifies a given instance based
on the classes of the k most similar instances in the training data. The MLP is also known as a fully
connected artificial neural network. A description of artificial neural networks and the backpropagation
algorithm used to train them can be found in Rumelhart et al. (1986), and Bengio (2012) provides a
practical guide to training and tuning neural networks. We tested MLPs containing 1 or 2 hidden layers of
exponential linear units (Clevert et al., 2015). The MLP was trained using the Adam algorithm (Kingma
and Ba, 2014) and regularised using dropout and a max-norm constraint on the incoming weights of all
units (Srivastava et al., 2014).

Each TC dataset was split into 3 subsets of equal size (about 46K instances in English and 41K
in French) for training, validation, and testing. A grid search was used to tune the hyperparameters of
each classifier on the validation set (except Naive Bayes, which has no hyperparameters). Then the best
configuration of each classifier was evaluated on the held-out test set. Each classifier was tuned and
tested twice, once using raw word frequencies as input, and once using tf-idf weighted frequencies. The
impact of this weighting will be assessed in the next section.

For the DCVSM, the only hyperparameter is the weighting scheme ψ used to compute the feature
weights. We tested nine different weighting schemes including tf-idf6 and the simple association mea-
sures defined in Evert (2007, ch. 4). These association measures compare the observed frequency of
(word, context) pairs to their expected frequency in order to measure the strength of their association.
We calculate this expectation using the following equation:

E[Tficj ] =

∑m
j′=1 Tficj′

∑n
i′=1 Tfi′cj∑n

i′=1

∑m
j′=1 Tfi′cj′

where Tficj , as defined earlier (see Section 3), is the sum, for each feature vector in the training
data belonging to class cj , of the value of feature fi. We set all of the association measures to 0 if
Tficj <= E[Tficj ]. We optionally apply a log or square root transformation to the output of all the
weighting schemes, following Lapesa et al. (2014).

For Rocchio classification, we tuned the measure used to estimate the distance between a feature vec-
tor and the class centroids (euclidean distance or cosine). For k-NN, we tuned the number of neighbours
(k) and the distance-based weighting of neighbours. For the softmax classifier, we tuned the learning
rate and the L2 penalty coefficient. As for the MLP, we tuned the number of hidden layers (1 or 2),
the number of units in each, the learning rate, the number of training iterations (epochs), the dropout
probability and the max-norm constraint.

5 Results

Table 4 shows the accuracy achieved by each classifier on the test sets in English and French. Accuracy
is measured using two different evaluation measures, namely micro-averaged recall at rank 1 (R@1)
and recall at rank 5 (R@5). R@1 is simply the percentage of correctly classified instances. This is the
measure that was used to tune the models on the validation set. It only considers the top prediction of a
classifier for a given test case, whereas R@5 considers the top five predictions. In other words, R@5 is
the percentage of test cases for which the correct class is among the five most likely classes according to
the classifier.

The results indicate that the DCVSM achieves a higher R@1 than the five other classifiers tested,
and the second-highest R@5, just behind the MLP. The DCVSM does not fit the training data as well
as other classifiers, yet it achieves the highest R@1 on the held-out data used for testing. The MLP can
easily fit the training data perfectly (as can k-NN), which the DCVSM cannot. Regularisation techniques
(dropout, max-norm constraint, early stopping) were used to avoid overfitting the training data using
the MLP, yet no configuration we tested scored better on the validation data (in terms of R@1) than

6Not to be confused with the tf-idf weighting that is optionally applied to the input feature vectors. Here, tf-idf is applied
to the feature weight vectors of each class (as the weighting scheme ψ), rather than the feature vectors of each instance in the
dataset.



R@1 R@5
EN FR EN FR

k-NN 0.104 0.080 0.107 0.085
NB 0.224 0.218 0.442 0.430
SR 0.245 0.241 0.494 0.476
RC 0.253 0.253 0.504 0.498
MLP 0.264 0.260 0.530 0.521
DCVSM 0.283 0.277 0.529 0.512

Table 4: Micro-averaged R@1 and R@5 on the
test sets in English and French.

∆ R@1 ∆ R@5
EN FR EN FR

k-NN -0.016 +0.005 -0.016 +0.005
NB +0.051 +0.072 +0.085 +0.140
SR +0.016 +0.020 +0.034 +0.042
RC +0.066 +0.108 +0.122 +0.198
MLP -0.005 -0.002 -0.006 -0.005
DCVSM -0.008 -0.002 -0.007 -0.001

Table 5: Impact of weighting the feature values us-
ing tf-idf.

the DCVSM. It remains possible that higher accuracy could be achieved using an MLP by testing other
regularisation or optimisation techniques. It is also possible that the DCVSM could produce even higher
accuracy if we tested other weighting schemes.

The scores shown in Table 4 represent the best of two scores for each classifier, using either raw word
frequencies or tf-idf weighted frequencies as input. Table 5 shows the impact of using tf-idf to weight
the word frequencies on the accuracy achieved by each classifier on the test sets. These results show that
the DCVSM performs slightly better when feature values are raw word frequencies, as does the MLP.
Other classifiers perform much worse when the input is not weighted using tf-idf, especially the Naive
Bayes and Rocchio classifiers.

To gain insight on both the datasets and the DCVSM, we inspected the classes on which the DCVSM
achieved the lowest and highest recall. The classes for which recall was highest on the test set in English
are shown in Table 6, along with the top features for each of these classes, most of which do seem like
good predictors for these classes.

Class R@1 Top features
Solid Fuel Heating 1.000 stoker, grate, chain-grate, stokers, traveling-grate, underfeed, pul-

verize, pulverizer, direct-fired, coal, . . .
Opening and Closing
Devices (Packaging)

0.900 press-on, closure, dauber, innerseal, cap, foil, applicator, ct, heat-
sealed, hermetic, . . .

Hats and Millinery 0.900 hat, brim, bicorne, chinstrap, milliner, tricorne, courtier, gentle-
man, cock, napoleon, . . .

Tunnels Overpasses
and Bridges

0.880 bridge, span, anchorage, abutment, pontoon, girder, cantilever,
pier, 700-m, bridges, . . .

Electoral Systems and
Political Parties

0.875 election, ballot, electoral, elector, voting, polling, vote, voter, can-
didate, officer, . . .

Deep Foundations 0.867 pile, caisson, pier, hammer, excavation, fuel-injection, morris,
concrete, piling, pinning, . . .

Yoga and Pilates 0.864 yoga, chakra, bandha, muladhara, pranayama, vinyasa, pose,
bhedana, chakras, meditation, . . .

Table 6: High-recall classes and their top features.

As for the low-recall classes, inspecting the top features did not provide any clues as to why recall
was lower on these classes. However, observing the top prediction for these classes suggests that class
frequency and domain granularity are important factors. This is illustrated in Table 7, which shows a few
low-recall classes, along with the most frequently predicted class for each of these classes. These pairs
of classes show that some distinctions between domains are quite fine-grained. Furthermore, looking at
their respective frequencies (shown in brackets) suggests a tendency to predict higher-frequency classes
for these low-recall classes.



Predicted class Correct class
Radio Transmission and Reception [54] Radio Interference [10]
Criminology [61] Criminal Psychology [14]
Advertising [46] Advertising Techniques [31]
Human Behaviour [55] Animal Behaviour [48]
Artificial Intelligence [383] Philosophy (General) [21]

Table 7: Low-recall classes (right) and the classes with which they are most often confused (left). The
frequency of each class is shown in brackets. This is their frequency in the training set (in English).

Classifier EN FR
k-NN 0.082 0.063
NB 0.129 0.127
SR 0.163 0.157
RC 0.235 0.232
MLP 0.191 0.187
DCVSM 0.230 0.224

Table 8: Macro-averaged R@1.

An analysis of class-wise recall with respect to class fre-
quency confirmed that recall is systematically lower on low-
frequency classes. If we compare the classifiers using macro-
averaged (rather than micro-averaged) R@1, i.e. the average
R@1 per class across all classes, we obtain the results shown
in Table 8. The DCVSM performs better in this respect than
every other algorithm except Rocchio classification. It is im-
portant to remember that the models were tuned by optimiz-
ing micro-averaged R@1, and that optimizing macro-averaged
R@1 would produce different results.

6 Related Work

We have outlined similarities between the DCVSM presented in this paper and other classification al-
gorithms in section 3. It is worth noting that the DCVSM is related to methods such as explicit se-
mantic analysis or ESA (Gabrilovich and Markovitch, 2007). In ESA, texts are represented in a high-
dimensional space of explicit concepts or categories, based on associations between words and these
categories. These associations are calculated on some knowledge base, typically Wikipedia, using tf-idf.
The main difference between this and the DCVSM presented in this paper is that ESA computes feature
weights (i.e. word-category associations) using category-labeled Wikipedia articles as training data.

Mohammad and Hirst (2006) compute associations between words and categories for disambiguation
purposes, which are similar to the word-domain associations discussed in this paper. Mohammad and
Hirst (2006) calculate these associations using unlabelled text and a thesaurus, whereas we use labeled
text, which renders the bootstrapping procedure they propose unnecessary, as the relevant domains of
each text are known.

Also worth mentioning is the text classification algorithm introduced by Navigli et al. (2011), which
exploits the structure of WordNet (Fellbaum, 1998) and is used to identify the domain of a document.
This is evaluated on a (single label) dataset of domain-labelled Wikipedia articles. For reference, they
obtain a micro-averaged R@1 of 0.670, which is more than twice as high as the maximum obtained on
the task tackled in this paper. However, the articles in their dataset are much longer than the contexts in
Termium, the number of domains (29) is smaller by two orders of magnitude, and the prior probabilities
of the domains are uniform. The fine-grained nature of the domain classification presented in this paper
makes the task more difficult, as does the short length of the texts.

7 Concluding remarks and future work

In this paper, we showed that the fine-grained domain information found in a term bank could be
used as a text classification system. We presented domain-labeled datasets generated from the usage
contexts found in Termium. We then compared six supervised text classification algorithms on these
datasets, including a vector space model we developed for this task, the DCVSM. Results showed that



the DCVSM performed well, achieving the highest micro-averaged recall (R@1) and the second-highest
macro-averaged recall.

Future work will focus on applications of the DCVSM and the TC datasets. In particular, we wish to
go back to the work described in Barrière et al. (2016) and further evaluate the DCVSM on a disambigua-
tion task. The fact that the DCVSM can identify the domain of a short text with relatively high accuracy,
as shown in this paper, can be useful in itself, but this information can also be used to disambiguate the
words or terms that appear in the text. Domain-driven disambiguation methods first identify the relevant
domains of the context in which an ambiguous term (or word) occurs, then use this domain information
to identify the sense conveyed by that term in that context. Some methods based on domain identification
have been used for word sense disambiguation in Magnini et al. (2001); Gliozzo et al. (2005); Navigli
et al. (2011). In our own previous work (Barrière et al., 2016), we performed domain-driven term sense
disambiguation, but the disambiguation algorithm exploited a different text classifier. In future work, we
plan on measuring the impact of using the higher-accuracy text classifier presented here within our term
disambiguation algorithm.

In a more general perspective, we could investigate how representing texts using the fine-grained
domain classification of Termium would impact performance on other tasks. Classifying a text using
this classification produces a score for each domain, indicating the likelihood that the text is related to
that domain. This list of scores can be considered a representation of the text in a high-dimensional
space of domains. Representing texts in this domain space could be useful for other classification or
clustering purposes, with different applications in mind. We hope our research will help promote the
use of terminological resources for such diverse NLP applications. With this in mind, we have made the
datasets we developed available to the research community.
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