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Eugenio Martı́nez-Cámara†, Vered Shwartz‡, Iryna Gurevych†, Ido Dagan‡
†Ubiquitous Knowledge Processing Lab (UKP-TUDA)

Department of Computer Science, Technische Universität Darmstadt
‡Bar-Ilan University, Ramat-Gan, Israel

{camara, gurevych}@ukp.tu-darmstadt.de, vered1986@gmail.com,
dagan@cs.biu.ac.il

Abstract

Causation is a psychological tool of humans to understand the world and it is projected in natural
language. Causation relates two events, so in order to understand the causal relation of those events
and the causal reasoning of humans, the study of causality classification is required. We claim that
the use of linguistic features may restrict the representation of causality, and dense vector spaces can
provide a better encoding of the causal meaning of an utterance. Herein, we propose a neural network
architecture only fed with word embeddings for the task of causality classification. Our results show
that our claim holds, and we outperform the state-of-the-art on the AltLex corpus. The source code
of our experiments is publicly available.1

1 Introduction

Causation is a psychological tool of humans to understand the world independently of language, and it is
one of the principles involved in the construction of the human mental model of reality (Neeleman and
van de Koot, 2012). Following the words of Reinhart (2002), causal relations are imposed by humans on
input from the world, and the (computational) linguist’s task is to understand what it is about language
that enables speakers to use it to describe their causal perceptions.

Due to the importance of modelling causality, in this paper we present a study of the classification of
the causal meaning of an utterance. The computational treatment of causality requires a computational
definition, which should be grounded in a philosophical theory. There are two broad categories of theo-
ries modelling causality: dependency and production theories. The dependency theories define causality
as a relation of dependence between two eventualities, and the counterfactual theory of Lewis (1973) is
their main representative theory. Differently, production theories define causation as the transmission of
forces with the sense that the transmission of the force of the causing event enables the provoked effect.
In this case, the force dynamic theory of Talmy (1988) stands out.

The computational treatment of causality can be addressed by the study of the causal relation be-
tween a predicate and its arguments (lexical causality) or towards the analysis of the relation between
propositions (propositional causality). Copley and Wolff (2014) argue that production theories may fit
with lexical causality, because the transmission of a force may be better projected by the relation between
a predicate and its arguments. Otherwise, propositional causality is explicitly projected by some lexical
markers, such as because, that represent the dependency relation between propositions, so dependency
theories may suit propositional causality.

We argue that the dependency theories restrict the phenomenon of causality, because they require the
satisfaction of some conditions to establish the causal relation, hindering the representation of the human
causal reasoning, which is sometimes based on assumptions instead of empirical evidences. In contrast,

1https://github.com/UKPLab/iwcs2017_disambiguation_causality_lexical_markers



production theories encompass those causal relations that are not founded on facts, can incorporate the
general knowledge of humans into the model and may represent abstract causality. We additionally
argue that the transmission of forces can be produced not only between the arguments of a predicate,
but between the eventualities expressed in different propositions too. Thus, we follow the production
theories, and we extend their definition in order to model propositional causality.

The computational treatment of causality could benefit from the existence of specific linguistic con-
structions of causality, and the matching of those linguistic constructions with any philosophical theory
of causality. However, Neeleman and van de Koot (2012) assert that causation lacks of unarguable syn-
tactic constructions, and Copley and Wolff (2014) conclude that there is not an agreement between the
link of linguistic and philosophic theories of causation. Nonetheless, there are some lexical units that
project the meaning of causality of an utterance. Those lexical units can be verbs (cause), prepositions
(because), adverbs (consequently) or expressions like as a result of. However, those lexical markers are
ambiguous, which means that they can also be used without a causal meaning. Moreover, the set of
lexical markers with a causal meaning is not limited, which increases the need of their disambiguation.

Due to the lack of unambiguous linguistic construction of causality, we claim that the use of linguistic
features may restrict the representation of causality meaning. Also, the use of dense vector spaces,
roughly speaking word embeddings, can provide a better representation of causality, and can improve
the disambiguation of the causal meaning of lexical markers. Hence, we propose a neural network
architecture with two inputs as sequences of word embeddings, encoding the left and the right context
of the lexical marker. We evaluate our proposal on the AltLex corpus (Hidey and McKeown, 2016),
which is a corpus of causal relations signalled by lexical markers with a wider coverage of those kind of
expressions than the Penn Discourse TreeBank Corpus (PDTB) (Prasad et al., 2008). Empirical results
on the AltLex corpus show that our claim indeed holds and our system outperforms the state-of-the-art
on that corpus.

2 Related Work

Previous works in the task of causal language classification are mainly focused on lexical or propositional
causality, explicit causality and some of them were restricted to a narrow kind of syntactic constructions.

The works of Girju (2003); Riaz and Girju (2013, 2014) were focused on the classification of lexical
causality conveyed between verbs and nouns. Recently, Kruengkrai et al. (2017) proposed a system for
the classification of propositional causality in Japanese. The system incorporates background knowledge
for enhancing the learning process through the use of multi-column convolutional neural networks.

Regarding the classification of explicit causality, Khoo et al. (1998) proposed a rule-based system
grounded in regular expressions for the classification of explicit causal relations, whereas Mirza and
Tonelli (2016) presented a supervised system based on the use of lexical, syntactic and semantic features
from WordNet. The proposal of Bethard and Martin (2008) is similar to that of Mirza and Tonelli (2016),
but it was focused only on conjunction constructions, namely conjoined events. The three approaches
suffer from the ambiguity of the lexical markers, the limited coverage of the linguistic resources and the
constraint to a specific syntactic construction.

In contrast, our proposal tries to cover lexical and propositional causality independently of whether
it is explicit or implicit, and we do not restrict the study to a specific syntactic construction.

3 Causality classification

The next sections present the task definition (§ 3.1), the corpus (§ 3.2) and the proposed system (§ 3.3).

3.1 Definition

The cause dynamics model of Wolff (2007) is the main basis for our definition of causality, because we
can adapt it to the causal language that we find on real data. The dynamics model states that causation is



Sentence Type

(Cathay Pacific delayed both legs of its quadruple daily Hong Kong to London route)e1 [due to]l (this
disruption in air traffic services.)e2

Explicit

The factory was not well equipped to handle (the gas)e1 (created by the sudden addition of water to the
MIC tank.)e2

Implicit

Table 1: Explicit and implicit causal relations.

Sentence Meaning

An undercroft is traditionally a cellar or storage room, often brick-lined and vaulted, and used for
storage in buildings since medieval times.

Temporal

Additionally if one is to use a large scan range then sensitivity of the instrument is decreased due to
performing fewer scans per second since each scan will have to detect a wide range of mass
fragments.

Causal

In stark contrast to his predecessor, five days after his election he spoke of his determination to do
what he could to bring peace.

Temporal

Bischoff in a round table discussion claimed he fired Austin after he refused to do a taping in Atlanta. Causal

Table 2: Different meanings of the prepositions since and after taken from the AltLex corpus.

an interaction between two entities, namely affector and patient. This definition can be extended in order
to fit our definition. The affector and the patient will be the causing (e1) and the caused (e2) events, and
the interaction between them will correspond to the lexical marker (l) in case of explicit causal relations,
and the context in implicit scenarios. Table 1 shows the difference between explicit and implicit causal
relations. So, following the cause dynamics model of Wolff (2007), we define causality as e1

CAUSE−−−−−→
l

e2.

The next sentence from the test set used in our experiments is an example of our definition of causality:

A government affidavit in 2006 stated that (the leak)e1 ([caused]l 558,125 injuries, including 38,478
temporary partial injuries and approximately 3,900 severely and permanently disabling injuries.)e2

The presence of a lexical marker does not ensure that the meaning of an utterance is causal, because
they are usually ambiguous. An example is the adverb since, which can have a temporal or a causal
meaning, as Table 2 shows.

We define the task of causality classification as a task composed of two subtasks: causal meaning
classification and causal arguments identification. Given two events, the task of causal meaning classi-
fication is to disambiguate the causal meaning (Causal or Non Causal) of the relation of those two
events. The task of causal argument identification focuses on the identification of the causing (e1) and
caused (e2) events. We contribute to the first subtask.

3.2 Data

According to the definition of causal meaning classification, we need a corpus in which the events are
annotated, as well as the lexical markers that can trigger the causal meaning in case of explicit relations,
for the classification of the causal meaning of an utterance. Thus, our method requires that the input
utterance is composed of the two events of the relation and optionally the lexical marker (e1, l, e2).

The AltLex corpus (Hidey and McKeown, 2016) meets the requirements of our task. The corpus was
built on the idea that causality can be expressed by different types of linguistic constructions. This is val-
idated by the fact that in PDTB there are explicit causal lexical markers, and other kinds of expressions
that have a discourse meaning, which are called AltLex (Alternative Lexicalization). The relations sig-
nalled by an AltLex expression are a kind of implicit relation, in which the causal meaning is projected
by an expression that is not part of common discourse connectives. The relations with an AltLex expres-
sion are those ones in which the annotators did not find an appropriate lexical marker to insert between



Corpus Version Causal Non-Causal Total

Training
non-bootstrapped 7,606 79,290 86,896
bootstrapped 12,534 88,210 100,744

Dev. 181 307 488
Test 315 296 611

Table 3: Number of instances in the AltLex corpus.

Non-Boots. Boots.

Unambiguous in Non Causal class 7171 7673
Unambiguous in Causal class 922 1034
Ambiguous 121 147
Total 8214 8854

Causal in train, Non Causal in test 0 27
Non Causal in train, Causal in test 0 8

Table 4: Distribution of the lexical markers.

the events, because the meaning of the causal relation is entailed by an AltLex expression. From the
existence of AltLex expressions in PDTB one can deduce that there are more expressions that entail the
causal meaning of an utterance. Hence, the authors of the AltLex corpus developed a method to identify
a larger amount of AltLex expressions that can trigger the causal meaning of an utterance. The corpus
construction leveraged Simple Wikipedia by aligning sentences from Wikipedia that consist of unknown
lexical causal markers with sentences from Simple Wikipedia that contain corresponding known lexical
causal markers. The result was a set of sentences with expressions that trigger their causal meaning.
Once a first set of causal and non-causal sentences were identified, a bootstrapping method was applied
to enhance the corpus. We call the first version of the corpus “non-bootstrapped” and the second one
“bootstrapped”. The corpus statistics are in Table 3. More details in Hidey and McKeown (2016).

Since one feature of the corpus is the annotation of the lexical markers that may express causation,
we studied their class distribution. Table 4 shows the class distribution of the lexical markers, as well as
the number of unarguable ones and the number of lexical markers with mostly a different meaning in the
training and the test set. According to Table 4, there are few ambiguous lexical markers: 121 in the “non-
bootstrapped” corpus and 147 in the “bootstrapped” version. However, there is an important difference
between the two versions of the corpus: the class distribution of the lexical markers in the training and
test set is the same in the “non-bootstrapped” version, whereas in the “bootstrapped” version is not. This
fact means that the instances of the “bootstrapped” version of the corpus present a higher difficulty for
the classifier, because there are some lexical markers with a dissimilar class distribution in the training
and test set. We show that our system works on those instances in § 4.3.2.

3.3 Disambiguation of the Causal Meaning

e1

|input1|= n

w1,1 w1,2 w1,3 ... w1,t

Embed. Lookup

...

LSTM1

l * e2

|input2|= m

Input:

w2,1 w2,2 w2,3 ... w2,t
Token. &
Padding:

Embed. Lookup

...

LSTM2

Context:

Dense layers (tanh):

Softmax:

Output:

Figure 1: Neural model, where e1 is
the first event, l is the lexical marker
and e2 is the second event.

According to our definition of causality as the relation of two
events (e1

CAUSE−−−−−→
l

e2), we propose a neural network architec-

ture with two inputs (see Figure 1). The first input matches the
first event (e1), and the second one corresponds to the lexical
marker (l) and the second event (e2), which are separated by a
special character. In case there is no lexical marker (implicit re-
lation), the second input is composed of a special character and
the second event.

The classification starts with the tokenization of the two in-
puts. The lengths (n, m) of the instances of each input are not
necessarily the same, so in order to make their lengths equal,
three zero-padding strategies were assessed, namely the maxi-
mum, the mean and the mode of the lengths (t) of the compo-
nents of the inputs (see Equation 1).

For each word, its corresponding word vector of 300 com-
ponents (d) was looked up in the 840b cased Glove embeddings
(Pennington et al., 2014). Subsequently, the concatenated word
embeddings get passed through an encoding Long Short-Term



Memory (LSTM) recurrent neural network (RNN) (Hochreiter and Schmidhuber, 1997) layer. We de-
cided to use LSTM because of its ability to encode sequential and contextual information (Melamud
et al., 2016). We assume some sort of relation exists between e1 and e2, so we first evaluated the per-
formance of the connection of the two LSTM layers through the initialization of the second LSTM with
the end state of the first one (dashed arrow in Figure 1). We call this model “Stated Pair LSTM”. We
assessed the same model but without the connection of the two LSTMs for evaluating our assumption.
We call it “Pair LSTM” (no dashed arrow in Figure 1).

The two outputs of the encoding layer are transformed to a vector of length 100 by a dense layer with
a tanh activation function. The context of the causal relation is represented by the concatenation of the
two vectors (see Equation 2). The output of Equation 2 is processed by three dense layers activated by a
tanh function. The last layer is composed of the softmax operation.

∀e1 ∈ IRn×d,∀ e2 ∈ IRm×d and r ∈ {n,m}
pad(e) : IRr×d → IRt×d

t ∈ {max(e),mean(e),mode(e)}
(1)

∀W ∈ IR100×nd and ∀b ∈ IR100

vec(e) : IRn×d → IRnd

tanh(W · e+ b)

context : (vec(e1), vec(e2))

(2)

The performance of two learning optimizers with their default learning rates was evaluated, specifi-
cally Adadelta (Zeiler, 2012) and Adam (Kingma and Ba, 2015). Different values for dropout ([0.5, 0.75])
and L2 regularization (

[
8 · 10−3, 8 · 10−6

]
) were evaluated to avoid overfitting.

4 Experiments and Results

As far as we know, the AltLex corpus has been only used in Hidey and McKeown (2016), so we consider
their classification method as the state-of-the-art on that corpus. We have used the two versions of the
corpus (“non bootstrapped” and “bootstrapped”) in our experiments.

4.1 Baselines

We compare our proposal with two baselines. The first one (B1) assigns the most common class of each
lexical marker in the training data, and it is similar to the baseline used in Hidey and McKeown (2016).
The second baseline (B2) is the system of Hidey and McKeown (2016), which is based on SVM with
a large set of features generated from the original parallel corpus and some lexical resources (WordNet,
VerbNet and PropBank). Since relying on lexical resources restricts the recall of the system to their
linguistic coverage, we propose a neural model fed only by a set of word embedding vectors.

4.2 Results

Table 5 displays the performance of the different configurations of our system and the baselines.2 The
precision, recall and F1 values were used to measure the performance of the system in the Causal class
(C), and the accuracy to measure the overall performance of the system.

The performance of B1 defines a hard baseline for the two versions of the corpus, which might
indicate that the training corpus is composed of few ambiguous causal connectives, which is expected
given the statistics of the corpus in Table 4. However, the proposed systems outperform B1, which means
that the systems learn beyond the class distribution of the lexical markers in the training data.

Those configurations that use Adadelta as optimizer outperform the system B2 in the “non boot-
strapped” version of the corpus. The low value of precision of B2 means that it returns a large number
of false positives. Rather, the high precision of our proposed approach indicates a good classification of
sentences with unambiguous lexical markers, as it is expected since there are very few ambiguous lexical
markers (see Table 4). The best configuration (“Pair LSTM Max Adadelta”) uses the max operation for

2For the sake of brevity, those systems that performed worse than the three baselines are not listed in Table 5.



Training corpus Method Precision C. Recall C. F1 C. Accuracy

Non-bootstrapped

B1 68.92% 54.92% 61.13% 63.99%
B2 70.28% 77.60% 73.76% 71.86%

Stated Pair LSTM Mean Adadelta 90.04% 60.31% 72.24% 76.10%
Stated Pair LSTM Mode Adadelta 89.23% 63.17% 73.97% 77.08%
Pair LSTM Max Adadelta 88.46% 65.71% 75.40% 77.90%
Pair LSTM Mean Adadelta 89.33% 63.80% 74.44% 77.41%

Bootstrapped

B1 74.38% 86.66% 80.05% 77.74%
B2 77.29% 84.85% 80.90% 79.58%

Stated Pair LSTM Max Adadelta 78.69% 84.44% 81.47% 80.19%
Stated Pair LSTM Mean Adam 80.00% 82.53% 81.25% 80.36%
Stated Pair LSTM Mode Adam 80.24% 82.53% 81.37% 80.52%
Pair LSTM Max Adadelta 78.07% 84.76% 81.12% 79.86%
Pair LSTM Mean Adadelta 78.48% 85.71% 81.94% 80.52%
Pair LSTM Mean Adam 80.30% 82.85% 81.56% 80.68%
Pair LSTM Mode Adam 77.24% 87.30% 81.96% 80.19%

Table 5: Results of the baselines and the different configurations of our neural model.

Trainig corpus Method Precision C. Recall C. F1 C. Accuracy

Non-bootstrapped

B1 68.92% 54.92% 61.13% 63.99%
B2 70.28% 77.60% 73.76% 71.86%
Pair LSTM Max Adadelta 88.46% 65.71% 75.40% 77.90%

Pair LSTM 0dense Max Adadelta 88.84% 65.71% 75.54% 78.06%
Pair LSTM 4dense Mode Adadelta 88.52% 68.57% 77.28% 79.21%

Bootstrapped

B1 74.38% 86.66% 80.05% 77.74%
B2 77.29% 84.85% 80.90% 79.58%
Pair LSTM Mean Adam 80.30% 82.85% 81.56% 80.68%

Pair LSTM 2dense Mode Adam 79.57% 84.12% 81.79% 80.68%
Pair LSTM 0dense Mean Adam 80.74% 82.53% 81.63% 80.85%
Pair LSTM 1dense Mean Adam 80.18% 86.49% 81.80% 80.85%
Pair LSTM 4dense Mode Adam 80.06% 84.12% 82.04% 81.01%
Pair LSTM 0dense Mode Adadelta 81.44% 82.22% 81.83% 81.17%

Table 6: Results of the evaluation of the influence of the number of dense layers.

the zero-padding strategy and Adadelta as learning optimizer. Our proposal improves B2 by 2.13% and
7.72% according to F1 and accuracy respectively.

Our assumption about the relation of the meaning of the two inputs does not hold, due to the better
performance of the architecture “Pair LSTM” with both versions of the corpus. Accordingly, it is better
to independently encode each argument and then to measure the relation between the arguments by using
dense layers. When the “bootstrapped” version of the corpus is used as training data, the optimizer Adam
returns more homogeneous results between precision and recall, which indicates a better disambiguation
of different expressions of causality. Although B2 outperforms our method in terms of recall by 2.41%,
overall our system performs better in terms of F1 score, as B2 tends to classify many instances as false
positives. To conclude, the best configuration (“Pair LSTM Mean Adam”) uses the mean strategy for
zero-padding and the optimizer Adam, and yields an improvement of 3.89% in precision over B2.

According to Conneau et al. (2017), the number of dense layers influences the performance of neural
models in text classification tasks, so we also made that analysis in the task of causality classification. We
evaluated the performance of the best neural model, “Pair LSTM”, with a different number of dense lay-
ers, specifically from 0 to 4. The results in Table 6 show that 1) the combination of four dense layers and
mode as padding strategy substantially increases the results compared to “Pair LSTM Max Adadelta”
when the “non bootstrapped” corpus is used as training set, and 2) the efficiency of the method is also
improved because the mode operation reduces the length of the input. When the “bootstrapped” version
of the corpus is used as training data, the number of layers also influences the performance. In this case,



the best performance is reached when no dense layers are used, and the mode operation is the non-zero
padding strategy. This configuration is more efficient than “Pair LSTM Mean Adam” because the length
of the input vector of the model is shorter and less dense layers are used. Therefore, we conclude that
the number of dense layers influences the performance of causality classification.

4.3 Analysis

In this section we present analyses of the proposed model from several points of views: an evaluation of
the proposal in a balanced version of the datasets (§ 4.3.1), and a qualitative analysis of the classification
of three different groups of lexical markers (§ 4.3.2).

4.3.1 Balanced Training Set

The Causal class is only the 8.7% and the 12.4% of all the instances in both versions of the corpus
respectively (see Table 3). This big difference between the two classes may affect the performance of
the classification, because it may separate the two classes and hence may ease the classification. So,
we reduced the number of instances of the Non Causal by a factor of ten with the aim of evaluating
our system with a more balanced dataset (see Table 8). The results of the evaluation of B1 and our best
configurations are in Table 7. The results show that B1 follows a similar trend in the two versions of the
corpus, which is a big difference between the precision and the recall. In contrast, our proposal not only
outperforms the baselines, but it also yields a better balance between precision and recall. Our proposal
significantly improves B1 according to McNemar’s test (p < 0.001 and p < 0.05 respectively).

4.3.2 Distribution of Lexical Markers

Three groups of lexical markers were identified in the test set: 1) ambiguous lexical markers, those ones
that are not in the training set or the difference of the probability to belong to each class is less than 10%
according to their distribution in the training set (Ambiguous); 2) opposite meaning lexical markers,
those ones whose probability distribution in the training set is opposite to their probability distribution in
the test set (Opposite); and 3) the rest of lexical markers. We compare the performance of B2 and our
best system in those clusters in order to know the strengths and weaknesses of our proposal.

Table 9 shows that B2 reaches a better performance with Ambiguous lexical markers, which means
that we have to continue working on improving the representation of the context for the classification of
unseen lexical markers. On the other hand, our neural model performs better with those lexical markers
of the Opposite cluster, which means that our proposal rightly leverages the context of each lexical
marker, and results in a higher capacity of generalization than B2. Our proposal also tends to classify
better those instances with lexical markers that are not Ambiguous or Opposite.

Table 10 shows some instances from the test set of AltLex corpus whose lexical markers belong
to the cluster Opposite, so they mostly have a different class in the training and the test set. Those
examples are correctly classified by our best configuration (“Pair LSTM 0dense Mode Adadelta”) using
the “bootstrapped” corpus as training data, and they are misclassified by B2. Table 10 shows the class
of the instances in the training set (Training column) and in the test set (Test column), as well as the
output of B2 and our proposal. The case of the verb break is noteworthy since break is a causative
verb, and it mostly has a causative interpretation in the training data. However, there are other uses
of break without a causal meaning, as the example shows in Table 10. Make is another example of
a causative verb, and our proposal also correctly disambiguates it, while B2 does not. These positive
results with causative verbs encourage us to research the subtleties of these kind of verbs. Due to the
better performance of our proposal on the examples showed in Table 10 and the comparison of Table 9,
we can conclude that our neural model learns beyond the class distribution of the training instances, so it
has the ability of generalizing the causal meaning. The last conclusion allow us to confirm our claim, i.e.
the use of linguistic features restricts the representation of causality, and a neural model only fed with
word embeddings performs better in the task of causality classification.



Trainig corpus Method Precision C. Recall C. F1 C. Accuracy

Non-bootstrapped
B1 63.70% 84.12% 72.50% 67.10%
Pair LSTM 4dense Mode Adadelta 73.96% 79.36% 76.56% 74.95%

Bootstrapped
B1 67.34% 94.28% 78.57% 73.48%
Pair LSTM 0dense Mode Adadelta 72.27% 88.57% 79.60% 76.56%

Table 7: Results of B1 and our best configurations with the downsampled version of the corpus.

Corpus Causal Non Causal Total

Non-bootstrapped 7,606 7,929 15,534
Bootstrapped 12,534 8,821 21,354

Table 8: Size of the reduced version of the
AltLex corpus.

Lexical markers Total B2 Our proposal

Ambiguous 344 303 284
Opposite 92 48 64
Rest 181 127 150

Table 9: Lexical markers correctly classified by B2 and
our proposal using the bootstrapped corpus for training.

Sentence from the test set Training Test B2 Our proposal

The United States decided to break off economic relations with Cuba (which
means that they would stop buying things from them).

Causal Non Causal Causal Non Causal

Although Roosevelt had promised to keep the United States out of the war, he
nevertheless took concrete steps to prepare for war.

Causal Non Causal Causal Non Causal

Mary spent the next 18 years in confinement, but proved too dangerous to keep
alive, as the Catholic powers in Europe considered her, not Elizabeth, the
legitimate ruler of England.

Causal Non Causal Causal Non Causal

Greatly alarmed and with Hitler making further demands on the Free City of
Danzig, Britain and France guaranteed their support for Polish independence;
when Italy conquered Albania in April 1939, the same guarantee was extended to
Romania and Greece.

Causal Non Causal Causal Non Causal

They are purely written languages and are often difficult to read aloud. Causal Non Causal Causal Non Causal

Table 10: Some correctly classified examples by our best configuration that were misclassified by B2.

5 Conclusions and Future Work

We divided the task of causation classification into two subtasks: causal meaning classification and causal
argument classification. The paper focused on the task of causal meaning classification, and we claim
that the encoding of the two events of the relation is required for a suitable disambiguation of causality.
We proposed an encoding system based on a neural network with two inputs, one for the first event and
the other for the lexical marker and the second event. Our proposed system outperforms the state-of-the-
art on the AltLex corpus. We also showed the success of the system in some non-causative sentences but
with commonly causative verbs (see Table 10).

The task of causality classification lacks corpora not restricted to specific syntactic constructions
(see § 2) and balanced corpora with a good coverage of causal instances (see § 4.3.1). Therefore, for
future work, we plan the creation of a new corpus for the two subtasks of causality classification, namely
causality disambiguation and causality argument classification.
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