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Abstract

The Semantic Verbal Fluency Task is a common neuropsychological assessment for cognitive
disorders: patients are prompted to name as many words from a semantic category as possible in
a time interval; the count of correctly named concepts is assessed. Patients often organise their re-
trieval around semantically related clusters. The definition of clusters is usually based on hand-made
taxonomies and the patient’s performance is manually evaluated. In order to overcome limitations
of such an approach, we propose a statistical method using distributional semantics. Based on tran-
scribed speech samples from 100 French elderly, 53 diagnosed with Mild Cognitive Impairment and
47 healthy, we used distributional semantic models to cluster words in each sample and compare
performance with a taxonomic baseline approach in a realistic classification task. The distributional
models outperform the baseline. Comparing different linguistic corpora as basis for the models, our
results indicate that models trained on larger corpora perform better.

1 Introduction

Verbal fluency is amongst the most widely adapted neuropsychological standard tests and is routinely
applied in the asessment of neurocognitive disorders. Its subform, category fluency or semantic verbal
fluency (SVF), demands the assessed person to produce as many different items from a given category
as possible within a given time interval, e.g., “as many animals as possible in 60 seconds”. A substantial
number of clinical studies confirm the discriminative power of SVF for brain pathologies including
Alzheimer’s disease (AD) (Pakhomov et al., 2016; Raoux et al., 2008; Auriacombe et al., 2006), AD’s
probable predecessor amnestic mild cognitive impairment (MCI), schizophrenia (Robert et al., 1998), as
well as focal brain lesions (Troyer et al., 1998). In order to differentiate between multiple pathologies,
semantic measures have been established which serve as additional markers next to the raw fluency word
count (Gruenewald and Lockhead, 1980; Troyer et al., 1997). There is a broad agreement that these
semantic measures serve as indicators for underlying cognitive processes. On a behavioural level, words
are spoken in spurts, forming temporal clusters. A cluster is followed by a pause, implying (1) the
lexical search between clusters, and (2) retrieval of words within a cluster. On a cognitive level, this is
interpreted as follows: executive search processes happen between temporal clusters, (1) switching, and
semantic memory retrieval processes happen within temporal clusters, (2) clustering.

(cat - dog) - (cow - horse)
(Cluster1) Switch1 (Cluster2)

Temporal cluster are closely related to semantic clusters, as “words that comprise these temporal
clusters tend to be semantically related” (Troyer et al., 1997, p. 139). Traditionally, semantic clusters are



defined by predefined semantic subcategories. After clustering the words, the clusters’ mean size and the
number of switches between clusters are computed.

However, multiple studies investigating the same subject group report a great variance of cluster sizes
and switch counts. This can be explained through the subjective clustering criterion (Troyer et al., 1997)
which leaves some room for interpretation regarding the clustering and thereby directly affecting both
measures, switches and cluster size. Statistical semantic analysis automatically and reliably providing
clusters is a powerful solution to this problem.

This paper explores the possibility of using distributional semantics in the analysis of SVF tasks with
a focus on clustering and switching patterns. This is in contrast to taxonomic models which are based on
predefined subcategories and might not be able to capture the full complexity of semantic connections
made by humans. We investigate the application and performance of word2vec (Mikolov et al., 2013)
by which words are embedded into a vector space and where the cosine distance in this space is used as
a metric for semantic similarity. This allows for an automatic identification of semantic clusters as well
as the computation of switches and cluster size. To indicate the feasibility of this approach within the
particular scenario of automated SVF analysis for clinical MCI detection, we compare a set of statistical
classification experiments building upon multiple variations of word2vec models to an implementation
of the taxonomic approach provided by Troyer et al. (1997).

2 Related Work

Recently, first computational approaches to analyse SVF have been proposed (Woods et al., 2016). The
classical measure for SVF performance is word count per minute; sometimes the one minute is split into
four 15s time frames. In qualitative analysis of SVF performance this count can be modelled as a combi-
nation of two components: the mean cluster size and the number of switches between clusters. The two
measures relate to the word count as depicted below; The semantic clustering criterion is the main deter-
miner for both measures. The following section will briefly discuss the two concurring approaches for
semantic clustering: taxonomy/ subcategory-based semantic clustering and statistical clustering/ chain-
ing.

Word Count = Mean Cluster Size× (Number of Switches + 1)

2.1 Subcategory-based clustering

Troyer et al. (1997) first described a taxonomy-based semantic clustering approach, which despite ob-
vious shortcomings is still extremely popular within clinical research (Troyer et al., 1998; Gomez and
White, 2006; Bonner et al., 2010). In this approach words, i.e., animals, can belong to one or more pre-
defined subcategories. The categories are based on living environment, zoological categories, and human
use. A cluster is then defined as successively generated words belonging to the same subcategory. If a
word could be assigned to two clusters, meaning it is part of the subcategory of the previous and the next
cluster, it is counted as belonging to both. In case one cluster is contained by another one, only the bigger
one is scored. Adaptations have been suggested, which extend the inclusion rules (Ledoux et al., 2014),
the minimal cluster size (Robert et al., 1998), or the handling of repetitions and intrusions (Mueller et al.,
2015). However, the fundamental mechanisms remain the same and some prominent limitations are: (1)
recognising non-category based associations is not catered for: phonemically similar words (e.g. donkey
& monkey) or animals that occur together in popular culture (e.g. panther, crane & aardvark, as in the
cartoon series The Pink Panther); (2) human-made taxonomies are error prone and likely to be incom-
plete. In the Troyer et al. (1997) system, there is only one category for water animals and therefore, frog
and dolphin appear in the same semantic cluster which may not capture the differences between both
animals well; (3) there is a high effort to build a model for a new category which leads to usage within
a single category. However, availability of different semantic categories (e.g., tools & supermarket) is of
high clinical value for re-testing patients as it prevents confounding training effects.



For a detailed discussion, see Woods et al. (2016).

2.2 Statistical clustering and chaining

To avoid the above-mentioned shortcomings, statistical methods have been applied in order to obtain
semantic clusters. However, careful revision of these approaches reveals that many do not actually
implement semantic clustering, but rather what we would call semantic chaining. In semantic chains, the
semantic chain adherence decision is solely based on the previous word.

chain: (cat - dog - wolf ) - (cow) vs. cluster: (cat - dog) - (dog - wolf ) - (cow)

To our knowledge, Hills et al. (2012) are the only authors who explicitly differentiates between a
static and fluid switch model—a clustering and a chaining model. In this study, the model of Troyer
et al. (1997) is used to evaluate clustering and chaining models. A chaining model is built on the basis of
the BEAGLE (Jones and Mewhort, 2007) model, a holographic word embedding trained on Wikipedia.
To the best of our knowledge, there has been no research into building a clustering model instead of a
chaining one based on distributional semantics.

Ledoux et al. (2014) use Latent Semantic Analysis (LSA), based on the LSA website1 of the Col-
orado University to compute similarity within clusters and between clusters, to verify their adapta-
tion of Troyer’s method. Woods et al. (2016) use Explicit Semantic Analysis (ESA) (Gabrilovich and
Markovitch, 2009)—a vector embedding trained on co-occurrence of words in Wikipedia articles—to
identify chaining behaviour for different demographics based on pairwise cosine similarity.

In summary, though very powerful for automation of SVF tasks, statistical approaches are only as
good as the linguistic material they are trained on. Most approaches discussed above were trained on
Wikipedia articles. However, this might not be the most suitable training material for a model that
should capture semantic associations made by humans.

Therefore, we compare the discriminative performance of qualitative SVF parameters derived from
statistical models based on word2vec to the approach by Troyer et al. (1997) as prominent baseline and
subcategory-based approach. Additionally, we investigate the performance of two different text corpora
as basis—the common Wikipedia-based approach vs. a less organised and less academic corpus. We
also explore the performance of semantic clustering and semantic chaining implementations.

3 Methodology and Results

As authors before us, we are left with a lack of hard metrics to reliably compare the performance of
semantic similarity models. Mikolov et al. (2013) propose a benchmark task for evaluating word2vec
models, but it is not suitable to judge the applicability to our task. To get around this conundrum, we
adhere to the following line of reasoning: Whatever approach performs best at our task at hand, that
is discriminating between MCI and healthy subjects, is the approach we should use in analysis. This
method is obviously limited by the amount of data that is available for evaluation, and results have to be
interpreted with this in mind. We are going to compare two different distributional semantic models with
different hyper parameters on a French data set.

3.1 Data

The corpus used consists of 100 samples from older persons: 53 patients diagnosed with MCI (MAge=76.8
±7.2; 28F/ 25M; MFluencyCount=14.63 ± 5.76) and 47 healthy control subjects (HC) with a subjective
memory complaint (MAge=72.4 ±7.9; 40F/ 7M; MFluencyCount=18.86 ± 5.57). Patients are given 60s
to name as many animals as they can. All performances have been recorded and transcribed. The data
have been collected in the context of the Dem@Care project (Karakostas et al., 2014).

1http://lsa.colorado.edu/



Table 1: Hyper parameters of trained word2vec models (CBoW=Continous Bag of Words; Skip=Skip-
Gram Model), classification results for chaining and clustering implementations (Pre=Precision;
Rec=Recall; F1=F1 Score; highest values are marked in bold) and Pearson correlation coefficient be-
tween clustering and chaining-based features (switch counts=rSwitch; mean cluster size=rSize).

Hyper parameters Chain Cluster Correlation
Model Size Algorithm Cutoff Dimensionality Pre Rec F1 Pre Rec F1 rSwitch rSize

FraWac 1.6 B

CBoW 100 200 0.75 0.79 0.77 0.73 0.80 0.76 0.90 0.87
Skip 100 200 0.66 0.75 0.70 0.70 0.83 0.76 0.90 0.85
Skip 100 500 0.72 0.72 0.72 0.68 0.68 0.68 0.91 0.88
Skip 200 500 0.71 0.72 0.69 0.71 0.84 0.77 0.90 0.75

Wiki 600 M

CBoW 100 1000 0.67 0.71 0.69 0.67 0.75 0.71 0.99 0.95
CBoW 200 1000 0.77 0.74 0.75 0.71 0.69 0.70 0.96 0.87
Skip 100 1000 0.68 0.80 0.74 0.71 0.72 0.72 0.91 0.84
Skip 200 1000 0.70 0.74 0.72 0.67 0.76 0.71 0.84 0.77

Troyer - - - - - - - 0.71 0.74 0.72 - -

3.2 Models

We compare a set of models, all of them learned using word2vec (Mikolov et al., 2013). Word2vec is
a word-embedding based on a shallow, two-layer neural network trained to embed words in a vector
space, where the cosine distance is a measure for semantic similarity. We compare models trained on
two different linguistic corpora: (1) models based on the FraWac corpus (Baroni et al., 2009), a large
corpus collected by a web crawler and (2) models based on a dump of the French Wikipedia. Pre-trained
models are taken from here2. All varying word2vec hyper parameters are reported in Table 1. For all
models, the context window was set to 5 tokens and negative sampling was used.

3.3 Clustering and Chaining

On the basis of these models and the cosine distance in the resulting vector space we compute semantic
clusters/chains in the following way:

Let a1, a2, . . . , an be the sequence of animals produced by patient p. Let ~a1, ~a2, . . . , ~an be their
representations in the vector space and let a1, . . . , an−1 form a semantic cluster/chain. an is part of this
cluster/chain if

Cluster

| 〈
~µ, ~an 〉

‖~µ‖ · ‖ ~an ‖
| > δp

Chain

| 〈
~an−1, ~an 〉

‖ ~an−1‖ · ‖ ~an ‖
| > δp

with

~µ =
1

n− 1
·

∑
~x∈{ ~a1,..., ~an−1}

~x δp =
n!

(n− 2)!
·

∑
~x,~y∈{ ~a1,..., ~an}

| 〈
~x,~y 〉

‖~x‖ · ‖~y ‖
|

One of the main problems of using distributional semantic models to determine clusters/chains is
finding a sensible cut-off value δ. We decided to use the mean distance between any animal produced
by a subject. An ad-hoc global cut-off value would be hard to determine, since similarity scores tend to
vary a lot.

2http://fauconnier.github.io/



3.4 Classification

We train different classifiers, one for each model using Support Vector Machines (SVMs) with a radial
basis kernel. This is mainly because we only have two features (Hsu et al., 2010). Moreover, since our
data set is small, we perform a stratified 10-fold cross validation. As features we use the mean size of
clusters identified and the number of switches between clusters. For results, see Table 1.

4 Discussion

This paper set out to compare the discriminative performance of qualitative SVF parameters derived from
statistical models based on neural word embeddings with the traditional subcategory-based approach by
Troyer et al. (1997). Therefore, we implemented Troyer’s approach as a baseline deriving the semantic
clustering criterion from predefined subcategories. We compared this to a group of statistical approaches
based on a patient-dependent clustering criterion derived from word2vec models. Through both ap-
proaches, we automatically calculated mean cluster size and number of switches based on transcripts of
two groups’ SVF recordings: MCI and healthy controls. In order to examine both approaches’ feasibil-
ity within the given scenario, we trained classifiers, showing results clearly in favour of the statistically
derived feature set. This is in line with reported feasibility benefits of this approach (Woods et al., 2016;
Hills et al., 2012). However, to the best of our knowledge, no study so far compared both approaches
based on the discriminative performance they achieve, given a clinical classification scenario; so far, ei-
ther one of both approaches has been used to validate the features derived by the other approach and vice
versa. Nonetheless, maybe the most straight forward way of comparing both approaches is by applying
them to a relevant clinical scenario—which SVF has actually been designed and used for—and deciding
based on their performance in the classification task at hand.

Additionally, we investigate the performance of two different text corpora as basis for the word2vec
models. Our results show that the classifiers using features based on the FraWac corpus models (Baroni
et al., 2009) achieve higher F1 scores than the ones based on the Wikipedia models. Although it is
difficult to derive a conclusion from this rather exploratory result, possible explanations might be that
the FraWac corpus is simply larger, or that it represents a less (artificially) academic and therefore more
natural linguistic resource.

Finally, considering different effects through semantic chaining vs. semantic clustering, we yield no
interpretable results favouring either one of the implementations. Our experiments yield throughout high
correlation indices between both implementations across both SVF dependent variables/ features: switch
count & mean cluster size. This is in line with Hills et al. (2012), who also find no clear pattern.

5 Conclusion

To conclude, this paper presents a clinical application of neural word embeddings rendering a statistical
approach to the traditionally manual analysis of semantic verbal fluency tasks. Our results demonstrate
the feasibility and therefore economic validity of such an approach, having especially relevant implica-
tions for remote automatic screening applications like in Tröger et al. (2017). The strong dependency
between both qualitative SVF measures, switch count & mean cluster size, and simple word count per-
formance, still remains a challenge for understanding their respective diagnostic values. Future research
should therefore explore measures which are based on the here-presented encouraging approach and
which go beyond the triangular relation of SVF switches, cluster size and word count.
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