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Abstract

This submission investigates alternative
machine learning models for predicting
the HTER score on the sentence level.
Instead of directly predicting the HTER
score, we suggest a model that jointly pre-
dicts the amount of the 4 distinct post-
editing operations, which are then used to
calculate the HTER score. This also gives
the possibility to correct invalid (e.g. neg-
ative) predicted values prior to the calcula-
tion of the HTER score. Without any fea-
ture exploration, a multi-layer perceptron
with 4 outputs yields small but significant
improvements over the baseline.

1 Introduction

Quality Estimation (QE) is the evaluation method
that aims at employing machine learning in order
to predict some measure of quality given a Ma-
chine Translation (MT) output (Blatz et al., 2004).
A commonly-used subtask of QE refers to the
learning of automatic metrics. These metrics pro-
duce a continuous score based on the comparison
between the MT output and a reference transla-
tion. When the reference is a minimal post-edition
of the MT output, the quality score produced is in-
tuitively more objective and robust as compared to
other QE subtasks, where the quality score is as-
signed directly by the annotators. In that case, the
score is a direct reflection of the changes that need
to take place in order to fix the translation. HTER
(Snover et al., 2009) is the most commonly used
metric as it directly represents the least required
post-editing effort.

In order to predict the results of an automatic
metric, QE approaches use machine learning to
predict a model that associates a feature vector
with the single quality score. In this case the statis-

tical model treats the automatic metric as a black
box, in the sense that no particular knowledge
about the exact calculation of the quality score is
explicitly included in the model.

In this submission we aim to partially break
this black-box. We explore the idea of creating a
QE model that does not directly predict the single
HTER score, but it jointly predicts the 4 compo-
nents of the metric, which are later used for com-
puting the single score. This way, the structure of
the model can be aware of the distinct factors that
comprise the final quality score and also poten-
tially learn the interactions between them. Hence,
the focus of this submission will remain on ma-
chine learning and there will not be exploration
in terms of features. In Section 2 we briefly in-
troduce previous work, in Section 3 we provide
details about the method, whereas the experiment
results are given in Section 4. In Section 5 we de-
scribe the models submitted at the shared-task and
we explain why they differ from our best models.
Finally, in Section 6 we present the conclusions
and some ideas for future work.

2 Previous work

The prediction of HTER first appeared as a means
to estimate post-editing effort (Specia and Farzin-
dar, 2010). Bypassing the direct calculation of
HTER was shown by Kozlova et al. (2016), who
had positive results by predicting BLEU instead
of HTER. Predicting the HTER score with regards
to post-editing operations, such as re-ordering and
lexical choices, has been done by adding the rel-
evant features in the input (Sagemo and Stymne,
2016), whereas Tezcan et al. (2016) use the word-
level quality estimation labels as a feature for pre-
dicting the sentence-level score. To the best of
our knowledge, all previous work used a model
to directly predict a single HTER score, in con-
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trast to Avramidis (2014), which trained one sep-
arate model for every HTER component and used
the 4 individual predictions to calculate the final
score, albeit with no positive results. In our work
we extend that, by employing a more elegant ma-
chine learning approach that predicts four separate
labels for the HTER components but through a sin-
gle model.

3 Methods

3.1 Machine Learning

The calculation of HTER is based on the count of
4 components, namely the number of insertions,
deletions, substitutions and shifts (e.g. reordering)
that are required for minimally post-editing a MT
output towards the correct translation. The final
HTER score is the total number of editing opera-
tions divided by the number of reference words.

HTER =
#insertions + #dels + #subs + #shifts

#reference words
(1)

We are here testing 4 different approaches to the
prediction of HTER:

1. Baseline with single score: the baseline sys-
tem of the WMT17 shared task using SVM
regression (Basak et al., 2007) to directly pre-
dict the HTER score.

2. Combination of 4 SVM models (4×SVM):
this is following Avramidis (2014) so that it
produces 4 separate SVM regression models
that predict the amount of post-editing opera-
tions (insertions, deletions, substitutions and
shifts respectively). Then, HTER is com-
puted based on the 4 separate outputs (Equa-
tion 1).

3. Single-output perceptron (MLP): a multi-
layer perceptron is trained to predict the
HTER score

4. Multi-output perceptron (MLP4): a multi-
layer perceptron is trained given the feature
set in the input and the counts of the 4 post-
editing operations as the output labels. Sim-
ilar to 4×SVM, the separate predictions are
used to compute the HTER score (Equa-
tion 1). The perceptron is depicted in Fig-
ure 1.
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Figure 1: Network graph for the multi-layer per-
ceptron which given the features x1...D can jointly
predict the amount of the post-editing operations
y1...4

In the fist two models, SVM follows the base-
line set-up of the WMT17 shared task, using SVM
regression with an RBF kernel. The hyperparam-
eters of all three models, including the number of
the hidden units of the perceptron, are tuned via
grid search on cross-validation with 5 folds over
the training data.

3.2 Normalization of predictions
Additionally to the separate models, we are test-
ing here some additional normalization on the pre-
dicted number of post-editing operations, before it
is used to calculate HTER:

i. Integer rounding: although the model was
trained using only integers as labels, the re-
gression model resulted into predictions in-
cluding decimals. By assuming that only
an integer amount of post-editing operations
should be valid, we round up the post-editing
operations to the closest integer.

ii. Trim negative and big numbers: MLP4
may also predict numbers outside the valid
integer range, e.g. providing negative num-
bers or numbers higher than the amount of
actual words in the sentence, particularly
when features have not been normalized.
Here, we trim the invalid values to the nearest
integer within the valid range.

3.3 Optimization measure
Preliminary experiments indicated that the perfor-
mance of the MLP4 may vary depending on the
optimization metric used for tuning the hyperpa-
rameters in a grid search with cross-validation. We
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tested the optimization scoring the folds with R2

and Pearson’s rho (which is the official metric of
the shared task) in three variations:

a) the R2 of the predicted amount of post-
editing operations against the golden amount
of the post-editing operations

b) the product of 4 rhos (rho edits); each rho
evaluating the predictions for one type of
post-editing operation (no normalization of
predictions) against the golden amount of ed-
its for the same post-editing operation

c) the rho over the final computed HTER
(rho HTER) against the golden HTER with-
out any prior normalization of predictions

4 Experiments

Here we present the experiments of testing the var-
ious machine learning approaches on the develop-
ment set. After the decisions were taken based on
the development set, the models were also applied
on the test-sets and the respective results are also
given. The performance of the models is measured
with Pearson’s rho, as this is the basic metric of
the WMT17 Shared Task. A test on statistical sig-
nificance for comparisons is performed with boot-
strap re-sampling over 1000 samples. The 4 types
of post-editing operations were re-computed with
TERCOM on the exact way that the workshop or-
ganizers computed the HTER scores.1

Similar to the baseline, features values are stan-
dardized by removing the mean and scaled to unit
variance. Since the experiment is focusing on ma-
chine learning, for German-English only the base-
line features are used. For English-German, we
additionally performed preliminary experiments
with the feature-set from Avramidis (2017) includ-
ing 94 features that improved QE performance for
translating into German, generated with the soft-
ware Qualitative (Avramidis, 2016). The addition
of these features did not result into any improve-
ments, so we are not reporting their results dur-
ing the development phase (see Section 5 for more
details). The code for training quality estimation
models was based on the software Quest++ (Spe-
cia et al., 2015) and Scikit-learn (Pedregosa et al.,
2011) ver. 1.18.

1TERCOM ver. 0.7.25 was downloaded from http:
//www.cs.umd.edu/˜snover/tercom. The scripts
used for running the experiments can be found at https:
//github.com/lefterav/MLP4.

The development results concerning the pre-
sented methods are given below in this section.
The model approaches are tested for both language
directions, whereas the experiments on the nor-
malization of the predictions and ML optimiza-
tion are run only for German-English and these
observations are applied to the models for English-
German.

4.1 Best ML method
The results concerning the choice of the ML
method applied on German-English are shown in
Table 1.

method dev test

SVM 0.400 0.441
4×SVM 0.392 0.409
MLP 0.447* 0.447
MLP4 0.476* 0.475**

Table 1: Pearson rho correlation against golden
labels concerning the 4 different approaches for
predicting HTER for German-English. (*) indi-
cates significant improvement (α = 0.05) over the
SVM baseline (**) significant improvement over
all models

The approach of MLP4 achieves a small but
significant improvement over the baseline and the
4×SVM on the development set. On the develop-
ment set both MLP and MLP4 beat significantly
the baseline, but MLP4 is not significantly better
than MLP. Nevertheless, when applied to the test-
set, the improvement achieved with MLP4 is sig-
nificant as compared to all other ML methods.

method dev test2017 test2016

SVM 0.414 0.402 0.407
4×SVM 0.049 -0.071 0.044
MLP 0.343 0.335 0.327
MLP4 0.429* 0.412 0.412

Table 2: Performance of the 4 different approaches
for predicting HTER for English-German (*) indi-
cates a significant improvement (α = 0.1) over the
baseline

The same approaches show moderate improve-
ments when applied to English-German with the
baseline feature set (Table 2). MLP4 achieves
higher correlation score than the baseline, but the
difference is small and it is significant only for the
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development set. When compared to the other two
methods, though, MLP4 achieves a significant im-
provement. In contrast to the direction German-
English, in English-German the MLP with one
output performs worse than the baseline. 4×SVM
fails to predict HTER as its predictions achieve
zero correlation. Since the individual models
failed to predict the post-editing operations sep-
arately, this may be an indication that among the
4 post-editing operations in English-German there
are dependencies which are stronger than the ones
in German-English.

4.2 Normalization of predicted post-editing
operations

The effect of the normalization of the predicted
post-editing operations of MLP4, prior to the cal-
culation of the final HTER score, is shown in Ta-
ble 3.

dev test

original labels 0.473 0.471
trim 0.476 0.475
round 0.456 0.469
round & trim 0.456 0.467

Table 3: Performance improvements by introduc-
ing rounding and cut-off for the predicted post-
editing operations (German-English)

The experiment indicates some small improve-
ment when we trim the invalid predicted values,
so we use this for all other calculations. Prelim-
inary experiments indicated more significant im-
provements when the feature values have not been
standardized and re-scaled prior to the training.

4.3 ML optimization
The effect of using different methods for hyperpa-
rameter optimization is show in Table 4.

dev test

R2 0.440 0.454
rho HTER 0.431 0.457
rho edits 0.476 0.475

Table 4: Experimentation with different optimiza-
tion measures for defining the perceptron hyperpa-
rameters (German-English model)

The product of the 4 rhos, calculated over the
4 types of post-editing operations (rho edits) has

slightly better performance than the other scoring
methods, nevertheless the difference is not statisti-
cally significant. Using these findings just as an in-
dication, we perform all experiments by optimiz-
ing the hyperparameters with rho edits.

The optimized hyperparameters for the SVM
models are shown in Table 5, whereas the ones for
the MLP models are shown in Table 6. All SVMs
have an RBF kernel and all MLPs are optimized
with adam as a solver. It is noteworthy that for
German-English a network topology with multiple
hidden layers performed better, which is an indica-
tion that the mapping between features and labels
in this language pair is much more complex than
the one for German-English.

langpair model ε C γ

de-en SVM 0.1 10 0.001
4×SVM (ins) 0.2 10 0.01
4×SVM (del) 0.2 10 0.01
4×SVM (shifts) 0.2 10 0.01
4×SVM (subst) 0.1 10 0.01

en-de SVM 0.1 1 0.01
4×SVM (ins) 0.2 1 0.001
4×SVM (del) 0.1 1 0.001
4×SVM (shifts) 0.1 1 0.001
4×SVM (subst) 0.2 1 0.001

Table 5: Hyperparameters used after the optimiza-
tion of the SVM models

langp. model act. α tol. hidden units

de-en MLP relu 0.10 10−9 1: 100
MLP4 relu 0.10 10−3 1: 300

en-de MLP tanh 0.01 10−3 3: 150, 75, 6
MLP4 tanh 0.10 10−3 2: 300, 150

Table 6: Hyperparameters and network topology
after the optimization of the MLP models

5 Submission and post-mortem analysis

Whereas previous sections described a full devel-
opment phase in order to support the idea of the
multi-output MLP, this section is focusing on our
exact submission for the Quality Estimation Task
of WMT17. Unfortunately, a development issue
prior to the submission prevented our experiments
from standardizing the feature values and scaling
them to unit variance. Since the performance of
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SVM suffers from non-scaled feature values, this
led our development phase to proceed by contrast-
ing with a much lower baseline than the one finally
provided by the workshop organizers. Non-scaled
features and other settings affected also the perfor-
mance of MLP models, and therefore the scores on
our final submissions are significantly lower than
the official baseline. The issue became apparent
only after the submission, so we then re-computed
the all models with standardized and scaled fea-
ture values. The results presented in Section 4 are
based on these corrected models.

The submitted models used both rounding and
trimming of predicted integers (Section 3.2). The
MLPs were optimized with an α = 0.01, tanh as
an activation function, and adam as a solver. The
German-English model got optimal with 300 hid-
den units. The English-German was trained using
the additional 52 features from Avramidis (2017)
which gave good development results only with
3,000 hidden units, which is an indication of over-
fitting.

method dev test

baseline (ours) 0.32 0.34
MLP4 (submitted) 0.40 0.40

baseline (official) 0.40 0.44
MLP4 (corrected) 0.48 0.48

Table 7: Scores for the submitted models and
for their corrected versions after the submission
(German-English)

method dev test2017 test2016

baseline (ours) 0.19 0.20 0.12
MLP4 (submitted) 0.40 0.11 0.13

baseline (official) 0.41 0.40 0.40
MLP4 (corrected) 0.43 0.41 0.41

Table 8: Scores for the submitted models and
for their corrected versions after the submission
English-German

A comparison of the models developed be-
fore the submission and the corrected ones are
shown in Tables 7 and 8. The submitted model
for German-English was expected to be signifi-
cantly better than the baseline, whereas the one for
English-German with the additional features had

strong indications of overfitting and performed in-
deed poorly at the final test-sets.

The corrected models perform better after scal-
ing is added and the rounding of integers is dis-
abled. The corrected model for English-German
converges without overfitting after removing the
additional features and adding one more hidden
layer. These models, if submitted to the shared
task, despite comparing with the baseline, they
would still score lower than almost all the others
submitted methods. Though, we need to note that
this should still be satisfactory, as we did not per-
form any feature engineering, aiming at confirm-
ing our hypothesis for using multi-output models.

6 Conclusion and further work

In this submission we investigated the idea of us-
ing a multi-layer perceptron in order to jointly pre-
dict the 4 distinct post-editing operations, which
are then used for calculating the HTER score.
The experiments show some small but significant
improvements on both the development set and
the test-set for German-English, but the same ap-
proach showed improvement only on the develop-
ment set when applied English-German.

Despite not having conclusive results yet, we
think that the idea is promising and that further
experiments could have positive impact. Concern-
ing the current development, several issues need
to be further investigated, such as possible ways
to avoid the lack of robustness of the perceptron.
Since this work did not focus at feature engineer-
ing, further work could profit from introducing
features highly relevant to the specific types of
post-editing operations, or even upscaling obser-
vations from word-level and phrase-level QE. On
the machine-learning level, additional hidden lay-
ers and more work on the number of hidden units
might be of benefit. Finally, evaluation specific to
the types of the predicted post-editing operations
could provide hints for further improvement.
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