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Abstract

We are investigating parts of the mathe-
matical foundations of stemmatology, the
science reconstructing the copying history
of manuscripts. After Joseph Bédier in
1928 got suspicious about large amounts
of root bifurcations he found in recon-
structed stemmata, Paul Maas replied in
1937 using a mathematical argument that
the proportion of root bifurcating stem-
mata among all possible stemmata is so
large that one should not become sus-
picious to find them abundant. While
Maas’ argument was based on one ex-
ample with a tradition of three surviving
manuscripts, we show in this paper that
for the whole class of trees corresponding
to Maasian reconstructed stemmata and
likewise for the class of trees correspond-
ing to complete historical manuscript ge-
nealogies, root bifurcations are apriori the
most expectable root degree type. We
do this by providing a combinatorial for-
mula for the numbers of possible so-called
Greg trees according to their root degree
(Flight, 1990). Additionally, for complete
historical manuscript trees (regardless of
loss), which coincide mathematically with
rooted labeled trees, we provide formulas
for root degrees and derive the asymptotic
degree distribution. We find that root bi-
furcations are extremely numerous in both
kinds of trees. Therefore, while previously
other studies have shown that root bifurca-
tions are expectable for true stemmata, we
enhance this finding to all three philolog-
ically relevant types of trees discussed in
breadth until today.

1 Introduction

Stemmatology is the science trying to reestablish
the copy history of a text surviving in a number of
versions. One of the editors’ objectives in stem-
matology can be approaching the original autho-
rial wording, which itself is most probably lost,
given the body of extant text variants (Cameron,
1987).

In order to do so, the philologist may recon-
struct the copy history of the manuscripts so as to
better understand which variants are most likely
original. Usually, the visual reconstruction is a
graph or more precisely a tree where the nodes
symbolize manuscripts and the copy processes are
depicted by the edges. Such a visual reconstruc-
tion is then called a stemma. For an example of a
stemma, see Figure 1.

Maybe the biggest and surely most famous
problem in philology is an observation that the
French philologist Joseph Bédier made editing the
medieval French text “Le lai de l’ombre” in 1890,
1913 and 1928 (Bédier, 1890, 1913, 1928). Bédier
observed that 105 out of 110 stemmata, the vast
majority, in a collection he had made without con-
trolling for root degree patterns had a bifurcation
immediately below their root, an observation re-
peated multiple times thereafter on different col-
lections, compare Table 1.

This observation was worrisome. If there are
exactly two texts (nodes) directly below the as-
sumed authorial original (root),1 the implications
for text reconstruction of the urtext are the follow-
ing. An editor may choose one of the two texts as
his/her preferred base text at will and reconstruct
the ancestral text from this base text eliciting only
in special cases the second or yet another variant.

1More precisely, in most cases, a root of such a tree repre-
sents a hypothetical intermediary: the latest common ances-
tor of all survivors. It corresponds to the oldest objectively
reconstructible text and is called archetype.
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Collection root bifurcations root tri- or multifurcations
Bédier (1928) 95.5% 4.5%

Castellani (1957) 82.5% 17.5%

Haugen (2015) Bibliotheca A. 85.5% 14.5%

Haugen (2015) Editiones A. 80.5% 19.5%

Table 1: Percentages of root bifurcative stemmata in four collections, reported in (Haugen, 2015). Note
that extending his collection through stemmata which are not yet viewed as conclusive by the composer,
Castellani (1957, p.24) reports only 75 − 76% root bifurcating trees.

Figure 1: First modern stemma by Schlyter, 1827,
from O’Hara (1996).

Bédier was worried about editors consciously or
subconsciously choosing a base manuscript for the
urtext after their taste and justifying this by pos-
tulating root bifurcations in their stemmata. As a
second explanation for a large incidence of root bi-
furcations in reconstructed stemmata he suspected
a methodology-inherent tendency for oversepara-
tion since editors always look for the one authorial
in opposition to all other variants (a fallacy of the
stemmatic method).

One can easily imagine that the subsequent de-
bate had far-reaching consequences for textual
criticism and editing. The community divided into
best text editors (or Bédierists) which abandoned
stemmatic approaches altogether and based their
editions on a good available manuscript and those
which continued and continue to produce stem-
mata (or Lachmannians). More realistically, any
modern editor may choose among one of those
approaches depending on his/her material and cir-
cumstances. Nevertheless, the argument has ever
since stimulated much research repeatedly includ-
ing mathematical argumentation, see for instance,
Greg (1931), Maas (1937), Fourquet (1946),
Whitehead (1951), Pasquali (1952), Castellani

(1957), Hering (1967), Kleinlogel (1968), Weitz-
man (1982), Weitzman (1987), Grier (1989), Hau-
gen (2002), Timpanaro (2005), Haugen (2010),
Haugen (2015), Hoenen (2016). Maas argued
that the number of stemmata with a root bifur-
cation among all possible stemmata which can
be reconstructed (thus regarding stemma genera-
tion apriori as a random process) would be nat-
urally high. One should thus rather not be too
surprised of large proportions in real reconstructed
stemmata: those were no good reason to abandon
the stemmatic method. Maas numerically based
this counter argument on the example of traditions
with three surviving manuscripts.2 Bédierists
could have reacted to this and could have tried
to seek a generalization of his argument. How-
ever, neither Bédierists nor Lachmannians have
ever come up with such a generalization. What if
Maas’ argument would only hold for three surviv-
ing manuscripts, but witness completely different
proportions for 4, 5, or 60 survivors? Would those
numbers reveal justification for being suspicious
of the real-world reconstructions?

In fact, Maas himself estimated numbers of
possible stemmata for a number of surviving
manuscripts of up to 5 according to Flight (1990),
who decades later generalized the type of graphs
Maas had considered for the modeling of stem-
mata. Flight (1990) provided a formula to count
numbers of these so-called Greg trees, given a
certain number of survivors. However, the ques-
tion of the proportion of root bifurcating stem-

2Maas distinguishes two kinds of traditions of medieval
texts: texts read by many and texts read by few. He assumes
that strict stemmatics fails for texts read by many, which
should be characterized by a larger number of survivors. Yet,
not all philologists follow this distinction. Pasquali and Pier-
accioni (1952) distinguish open and closed traditions, where
the latter are such which are largely free of flaws complicat-
ing stemmatic assessment. Closed traditions are not straigh-
forwardly connected with the number of survivors, compare
also West (1973), which is why there is no reason to limit the
range of surviving manuscripts to very small numbers and
surely not to just one or two examples.
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mata and how this proportion develops—thus ulti-
mately the generalization of Maas’ argument—has
not yet been answered. In this paper, we fill this
gap and provide a formula for the numbers of pos-
sible root k-furcating stemmata given m surviving
manuscripts and compute the proportion of root
bifurcating stemmata among all stemmata given m
survivors.

Our work connects to a tradition both in lin-
guistics and biology to count certain subclasses
of graphs. In our case these graphs are trees,
whereas other works have counted alignments be-
tween two or multiple sequences, that is, certain
bi- or multi-partite graphs (Griggs et al., 1990;
Covington, 2004; Eger, 2015).

2 Counting Manuscript Trees:
Prerequisites

The theoretical entity used to model manuscript
genealogy is a tree. A tree, as a concept from
graph theory, is a set of nodes V together with a set
of (unordered) edges E, with E ⊆ {{u, v} | u, v ∈
V }. The two defining properties of trees is
that they must be free of cycles (including self-
cycles) and connected. General works on count-
ing different types of trees appear early on (Cay-
ley, 1889), and research on trees is comprehen-
sive, compare Moon (1970). The similarity of
the three disciplines of historical linguistics, phy-
logeny and stemmatology has likewise been no-
ticed early and led to various transfers and adap-
tations between methods of those fields, compare
O’Hara (1996). Especially in the domain of phy-
logeny the understanding of trees is a central is-
sue and consequently much research has focussed
on phylogenetic trees, see for instance Felsenstein
(1978); Swofford (1990); Huson (1998); Felsen-
stein (2004). One characteristic of phylogenetic
trees is that they are apriori exclusively bifurcat-
ing. Thus, the question for a proportion of root bi-
furcating trees becomes meaningless. Apart from
this, the manual reconstruction of a consistent and
complete genome or characterome of ancestors is
by no means as central an issue as in stemmatics
(Platnick and Cameron, 1977; Cameron, 1987).

In the context of manuscript trees, although
a number of the above enumerated philological
studies count stemmatic trees under certain con-
ditions or elaborate on specific phenomena, Flight
(1990) is apparently the first to provide a general-
ized definition for stemmas. He aims at solving the

question, which he attributes to Maas (1958), how
many different stemmas may exist for some given
number of surviving manuscripts (Flight, 1990,
p.122).

To solve this, he counts so called Greg trees.3

Based on Flight (1990), we define a rooted di-
rected Greg tree (which Flight names after the tex-
tual critic W. W. Greg) as a tree with a distin-
guished root, m labeled nodes standing for surviv-
ing manuscripts and n unlabeled nodes symbol-
izing hypothetical manuscripts. The latter must
have an outdegree of at least two. There can be
neither chains of hypothetical manuscripts (unla-
beled nodes) with indegree one and outdegree one
nor unlabeled leafs. This restriction corresponds
to philological practice (Maas, 1937). A rooted
Greg tree therefore symbolizes a reconstructed
stemma. With this definition, Flight (1990) re-
covers the numbers of possible trees for three sur-
viving manuscripts as postulated by Maas (1937),
see Figure 2. Flight (1990) gives a recursive for-
mula for the enumeration of unrooted and rooted
Greg trees, building on all (four) generalized con-
ditions on how to add a new labeled node and
tabulates all possible Greg trees for up to 12 la-
beled nodes. Thus, he extends values mentioned
by Maas as well as corrects Maas’ numbers. From
the 22 rooted Greg trees for 3 survivors, there are
12 root bifurcating ones, compare again Figure 2.
The recursive formula Flight gives for rooted Greg
trees g(m,n) on m labeled and n unlabeled nodes
is:4

g(m,n) = (m + n − 2) · g(m − 1, n − 1)

+ (2m + 2n − 2) · g(m − 1, n)

+ (n + 1) · g(m − 1, n + 1).

If we fix m, the number of unlabeled nodes n can
vary in the range of {0, 1, . . . , m−1} and the sum,
over n, of all such (m,n)-trees for a fixed m is
the number g(m) of possible rooted Greg trees for
m survivors (Flight, 1990). This gives the num-
ber of possible stemmata one can reconstruct for
m surviving manuscripts adhering to philological
principles.5

3According to Josuat-Vergès (2015), a similar problem
in phylogeny has been described and tackled by Felsenstein
(1978) as recognized by Knuth (2005).

4Flight refers to these as g∗, but for brevity and since we
do not deal with unrooted Greg trees, we denote them simply
as g.

5The number sequence g(m) is listed as integer sequence
A005264 in the On-Line Encyclopedia of Integer Sequences
(OEIS), published electronically at https://oeis.org .
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Figure 2: The unlabeled rooted (root topmost
node) topologies of possible stemmata for three
surviving manuscripts as thought of by Maas
(1937). White nodes symbolize reconstructed lost
manuscripts (unlabeled) whereas black nodes are
survivors (labeled). The number in brackets refers
to the number of possible distinct labeled trees (la-
bel permutations) for each topology.

While Flight (1990) does not compute numbers of
Greg trees according to their root degree, Hering
(1967), referring to a colleague of his,6 tabulates
the numbers of root k-furcating Greg trees (and
the numbers of rooted Greg trees being the sum
over all k) up to m = 6. The sums for all k at
a fixed m coincides exactly with g(m) calculated
by Flight (1990). Alas, there is no formula pro-
vided by Hering (1967). Furthermore, he states
that a calculation for more than 6 survivors would
be difficult. This is demoralizing insofar as surely
numbers (much) larger than m = 6 are relevant to
the philological debate. For instance, according to
Weitzman (1987), numbers of survivors in Greek
and Latin traditions can range from 1 to “well over
100”.

3 Counting Manuscript Trees: New
Formulas

3.1 A Meta Formula
First, we present a general formula for counting
trees with fixed root degree and two different types
of nodes (e.g., black and white), which we use
later on to derive our main results. We write T
for a class of trees and T for |T |.

If the root of a rooted tree has degree k and the
tree has µ black nodes and ν white nodes, it means
that the tree has k subtrees, which we also per-
ceive as rooted. The root node, r, is either black
or white. We connect r to the root of each sub-
tree. Each of these subtrees can have some size
s1 + p1, . . . , sk + pk, where si is the number of
black nodes in branch i and pi is the number of
white nodes in the same branch. The sum of the
si must equal µ − δB and the sum of the pi must
equal ν−δW , since there are in total µ black nodes
and ν white nodes. Here, δB is a binary variable
indicating whether r is a black node and analo-
gously for δW , where δB = 1 iff δW = 0. If the
black nodes are distinguishable, we can choose the
subsets of nodes of sizes s1, . . . , sk from a total
of µ − δB nodes, and analogously for the white
nodes. There are

(
µ−δB

s1,...,sk

)
possibilities to do so,

where
(

m
k1,...,kℓ

)
= m!

k1!···kℓ!
are the multinomial co-

efficients.
Now, we specialize. We assume that the black

nodes are distinguishable and the white nodes are
indistinguishable. Then, for any class of rooted
trees Tµ,ν with µ such black nodes and ν such

6Prof. Dr. Wolfgang Engel, a mathematician from Ros-
tock University.
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white nodes, the number Tµ,ν,k of rooted labeled
trees from Tµ,ν in which the root has degree k has
the form

µ
∑

(s,p)∈C((µ−1,ν),k)

(
µ − 1

s

)
F (s,p)

+
∑

(s,p)∈C((µ,ν−1),k)

(
µ

s

)
F (s,p).

Here, C((a, b), ℓ) denotes the number of vector
compositions (Eger, 2017) of the ‘vector’ (a, b) ∈
N2 with ℓ parts; that is,

C((a, b), ℓ) = {(s1, . . . , sℓ), (p1, . . . , pℓ) |
s1 + · · · + sℓ = a, p1 + · · · + pk = b}.

Moreover, by s and p, we denote tuples
(s1, . . . , sk) and (p1, . . . , pk), respectively. The
above sum formula arises because the root node
can either be black or white. If it is black, we have
the additional factor µ because the black nodes are
distinguishable and each of them can be the root.

Finally, F is a function of the sizes
s1, . . . , sk, p1, . . . , pk which will be specified
in any particular case.

Now, we have overcounted Tµ,ν,k since we have
counted subtrees as if they were ordered, while in
reality different orders of the subtrees do not con-
stitute a distinct tree t ∈ Tµ,ν,k. Thus, we have to
divide by k! to finally arrive at:

Tµ,ν,k =
µ

k!

∑

(s,p)∈C((µ−1,ν),k)

(
µ − 1

s

)
F (s,p)

+
1

k!

∑

(s,p)∈C((µ,ν−1),k)

(
µ

s

)
F (s,p).

(1)

It is possible that Tµ,ν,k can be expressed
simpler—e.g., as a linear combination of the
terms Tµ+τ,ν+ρ,k+κ for integers τ, ρ, κ—for spe-
cific choices of F .

3.2 Root k-furcating Greg Trees

We are now ready to derive the general formula
for the number gk(m,n) of root k-furcating Greg
trees for m survivors (labeled nodes) and n hypo-
thetical (unlabeled) nodes.

The only question remaining from above is how
we have to specify the function F (s,p) on the k
subtrees. This is very simple, however. Since all

branches i are independent of each other, F (s,p)
takes the form of a product of individual factors:

F (s,p) =

k∏

i=1

g(si, pi)

where g is the function of Flight (1990). The num-
ber gk(m,n) of root k-furcating Greg trees for m
survivors and n hypothetical nodes is hence given
by (1) with this specification of F .

We make three additional remarks. The si sat-
isfy si ≥ 1, since the specification of Greg trees
disallows to have only unlabeled nodes (i.e., si =
0) in a branch. In contrast, the pi may take on the
value zero and therefore satisfy pi ≥ 0. Moreover,
the pi actually satisfy 0 ≤ pi < si because of the
link restrictions on unlabeled nodes in Greg trees.
While the constraint on the pi’s is automatically
taken care of by the function g of Flight (1990),
explicitly accounting for it can speed up computa-
tions.7 Finally, when k = 1, we have to exclude
the second term in (1) from consideration because,
by definition, the root of a Greg tree cannot have
degree one when it is unlabeled.

The numbers gk(m) of root k-furcating Greg
trees for m survivors and an arbitrary number of
hypothetical manuscripts n is the sum over n of
root k-furcating (m, n)-trees. In other words,

gk(m) =
∑

n≥0

gk(m,n).

Table 2 shows the growth of gk(m) until m, k =
15.

We are now interested in the proportions of root
bifurcating Greg trees among all Greg trees since
this was aluded to in Bédier (1928). That is, we
investigate the ratio

R2(m) =
g2(m)∑

k≥1 gk(m)
.

7In order to more efficiently compute the numbers, we
also used further simplified formulas for specific k where
possible. Root unifurcating Greg trees (here g1) are espe-
cially easily computed. The root can only be labeled, since an
unlabeled node as root must have degree at least two. Then,
the number of possible root unifurcating Greg trees corre-
sponds to m ·g(m−1). Root-(m−1)-furcating rooted Greg
trees for all m ̸= 2 coincide with the pentagonal numbers
(sequence A000326 in the OEIS), whose number is given by
3m2−m

2
. This is so because there are only three principle ar-

chitectures of root-(m − 1)-furcating rooted Greg trees, the
individual formulas for the enumeration of which sum to the
same as the pentagonal numbers: m + m(m − 1) +

(
m
2

)
.

Finally, for a root m-furcation, there is always only one Greg
tree.
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At m = 2, the proportion is one third, at m = 3,
Maas’ famous example, we witness a proportion
of R2 = 0.54545. For m = 10, R2 is already
0.59958 with the increase slowing down. For
m = 20, we have R2 = 0.60351 and at m = 100
survivors the proportion is R2 = 0.60599. Growth
is further slowing down and at m = 200 the pro-
portion is R2 = 0.60626. While we are not able
to prove it, we think it is a very safe conjecture
that R2(m) converges to below 0.607, as m tends
toward infinity. Figure 3 plots the proportions of
trees with root degree k = 1, k = 2 and k > 2, as
m becomes larger. Figure 4 plots the root degree
distribution for fixed m.

Root bifurcations thus outweigh all other root
degree patterns by far. Maas’ argument was there-
fore generally true as what regards a large ex-
pectability of root bifurcations in reconstructible
stemmata. Nevertheless, the observed proportions
are considerably lower than Bédier’s ones. How-
ever, a better fit occurs when we exclude all trees
with root degree one from consideration. A root
degree of one requires root to be labeled and thus
surviving, a case which is empirically probably
quite rare, although not impossible. In Bédier’s
collection presumably, there simply had not been
any root unifurcating stemma with a surviving root
and he does not comprehensively discuss this gen-
eral possibility. In Castellani’s (1957) and Hau-
gen’s (2010) collections there have been no counts
of root unifurcations. At m = 200, the fraction of
unifurcating trees is about 21.467%, which means
that the fraction of trees with root degree two is

R̃2(m) =
0.60626

1 − 0.21467
= 0.7719

at m = 200, when trees with root degree one
are discarded. Comparing this number to those in
Table 1, we observe that the empirically reported
numbers for actual collections of stemmata are just
slightly above this reference point. This would in-
dicate that there seems to be a bias for root bifur-
cations, but that this bias is rather low.

While Bédier had looked at R2(m) or R̃2(m)
(coinciding in his collection), Maas explicitly
looked at

Rk>2(m) =

∑
k>2 gk(m)∑
k≥1 gk(m)

for m = 3, and based his counter argument to
Bédier’s conclusions on that. This has been crit-
icized variously because R2(3) corresponds to 12

in 22, the complement of which is not Maas’ 1
but 10 in 22, a ratio probably too small to base
a counter argument on it. Neither Bédier nor
Maas discuss root unifurcating cases extensively,
but they could make a crucial difference in the
ratios of interest since including root unifurcat-
ing trees, non-root-bifurcating would no longer
be equivalent to root multifurcating in meaning.
Thus, Maas’ shift of focus from root bifurcating
to root multifurcating introduces ambiguity. Re-
sponding to such ambiguity, we demonstrated a
mathematically sound way of looking both at pro-
portions of root degree patterns with (R2(m)) and
without root unifurcations (R̃2(m)).

Hering (1967), probably aware that root degrees
of k = 1 appear to be somewhat unrealistic in ac-
tually observed stemmas, stated that instead of fol-
lowing Maas’ focus, one should rather look at

RHE(m) =

∑
k>2 gk(m)

g2(m)

which Hering (1967) investigated until m = 6
and for which he speculated that it would proba-
bly never surpass 0.33 or lie even lower. Looking
at the plot of the proportions, see Figure 3, we can
see that Hering was right, the asymptote is how-
ever rather 0.3. The extraordinary role of root uni-
furcations is immediately visible, since they are
the only k witnessing a decline. This naturally
follows from their restrictions—for instance their
root can only be labeled, meaning that only the
first term in (1) will be relevant, while for all other
root degree patterns both add up.
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Figure 3: Proportions of root unifurcating and
root bifurcating rooted Greg trees among all pos-
sible rooted Greg trees for a fixed m as well as
Rk>2(m) and RHE(m). Note that the first three
proportions add to 1.

17



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

re
la

tiv
e

fr
eq

ue
nc

y

k

m = 3
m = 5

m = 15
m = 25

Figure 4: Root degree distribution for trees
counted by gk(m) for fixed m = 3, 5, 15, 25.

In order to gain a deeper insight, we are now look-
ing at another type of tree which plays an impor-
tant role in stemmatology.

4 The Second Type of Manuscript Tree

While Maas had looked at possible trees a philol-
ogist can reconstruct, other studies looked at true
historical trees and their proportionalities. The un-
derlying process reflected in stemmatological trees
is the generation of manuscripts and their copying.
There is (in many cases) one original—which we
can understand as a root node to a rooted tree—
which gets copied a certain number of times (chil-
dren in first generation). Each manuscript (includ-
ing root) can be copied a certain number of times
again (always including 0 times) and so forth.
We assume each node to represent a unique text
symbolized through a distinct label. In this way,
the copy history can be understood/displayed as
a rooted labeled tree. Since copying is a process
from a vorlage8 to a copy, the edges can be under-
stood as directed.

Such a tree depicts the complete copy history
of a text—and not as a stemma does, the re-
constructible portion of it. It ignores loss of
manuscripts (does not assume or know any unla-
beled node) and extends to the entire copying his-
tory of a text. In order to avoid terminological
confusion, the class of trees depicting this com-
plete copy history of a tradition has been called
an arbre réel in philology, a term coined by Four-
quet (1946)—for convenience referred to as ar-
bre in the rest of the paper.9 Arbres were usually

8Vorlage is a loaned term for original of a copy, not of a
tradition deriving from German used in philology.

9Although in French terminology the same term is used

used as hypothetical units of argumentation for
outlining general scenarios of copying and prolif-
eration in philological discourse, see for instance
Castellani (1957). However, recently, they have
gained actuality through artificial traditions, that
is, complete copied sets with known ground truth
(Spencer et al., 2004; Baret et al., 2006; Roos and
Heikkilä, 2009; Hoenen, 2015), where arbres are
used for evaluation, comparing them to computa-
tionally reconstructed stemmata.

In the following, we are looking at arbres them-
selves and provide an answer to the question how
prevalent root bifurcation is in arbres. This may
be useful for future research on the general effects
of loss induced tree transformations (turning an ar-
bre into a stemma), as has been exemplarily done
for a restricted set of topologies by Trovato and
Guidi (2004). Greg (1927) had already hypoth-
esized that deformations arbres undergo through
historical manuscript loss may be a reason for ex-
pectable root bifurcations in stemmata.10

We note that the following is a special case
of our already derived results. In other words,
we now evaluate gk(m, 0), in our above nota-
tion. However, this special case admits simpler
closed-form formulas as well as a derivation of the
asymptotic degree distribution.

5 Rooted Labeled Trees

By Cayley’s formula (Cayley, 1889), the number
T ′

m of labeled trees on m nodes is given by mm−2.
The number Tm of rooted labeled trees is then
given by mm−1 since each of the m nodes can be
the root. Now, let’s assume that the root has de-
gree k = 1, . . . , m − 1. How many such trees are
there, Tm,k?

To answer this, we invoke our meta formula,
Formula (1), with the following specification of
F (s,p):

F (s,p) = g(s1, 0) · · · g(sk, 0)

since p = (0, . . . , 0), as we have no unlabeled
nodes in this case. We have g(s, 0) = Ts since
g(s, 0) retrieves the number of rooted labeled trees
with s nodes.

for so-called R-trees, there is no conceptual overlap whatso-
ever.

10The kind of stemma we are talking about here is not a re-
constructed stemma for any number of surviving manuscripts
but rather the one single “true” stemma or stemma reale as
termed by Timpanaro (2005).
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Thus, combining this insight with the formula
of Cayley, we find that there are exactly

m

k!

∑

s∈C(m−1,k)

(
m − 1

s

)
ss1−1
1 · · · ssk−1

k (2)

rooted labeled trees on m nodes with root degree
k, where we let C(m − 1, k) stand for C((m −
1, 0), k). An alternative, simpler formula for Tm,k

is given by:

Tm,k = m ·
(

m − 2

k − 1

)
· (m − 1)m−1−k. (3)

For k = 1 this formula is not difficult to show. For
k = 2 it has the following combinatorial interpre-
tation. A rooted labeled tree has a root, for which
we may choose any of the m nodes. Then there are
(m − 1) vertices left. There are (m − 1)m−3 pos-
sible labeled trees on them. Since the (m−1) ver-
tices form a tree, there are (m− 2) edges connect-
ing them. We may take any of these, and replace it
by connections of their endpoints to the root. This
yields all the rooted labeled trees in which the root
node has degree 2. For k > 2 a similar, but more
involved argument applies (Moon, 1970, Theorem
3.2).

Next, we ask for the probability Pm[k] that a
randomly chosen rooted labeled tree from Tm has
root degree k = 1, 2, . . .. We find

Pm[k] =
Tm,k

Tm
=

(
m−2
k−1

)

(m − 1)k−1
·
(m − 1

m

)m−2
.

(4)

The second factor in this product equals (1 −
1
m)m−2 and thus converges to exp(−1) as m →
∞. For the first factor A =

(m−2
k−1)

(m−1)k−1 , we find

• for k = 1: A = 1 −→ 1,

• for k = 2: A = (m−2)
(m−1) −→ 1,

• for k = 3: A = (m−2)(m−3)
2

1
(m−1)(m−1) −→

1
2

as m → ∞. In general, we have for A:

A =
(m − 2)(m − 3) · · · (m − k)

(m − 1)(m − 1) · · · (m − 1)

1

(k − 1)!

When k is fixed and m → ∞, then this converges
to 1

(k−1)! . Hence, the asymptotic distribution P [k]

of Pm[k] is

P [k] =
exp(−1)

(k − 1)!

which is a Poisson distribution with parameter λ =
1, denoted as Poisson(λ).

Figure 5 compares the asymptotic Poisson P [k]
distribution to the actual finite distributions Pm[k].
We see that convergence is rapid. For m =
40, Pm[k] is visually already extremely close to
Poisson(λ = 1).
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Figure 5: Asymptotic distribution Poisson(λ =
1) and finite distributions Pm[k] for m =
5, 10, 20, 40.

From P [k], we infer that root bifurcations are
asymptotically twice as likely as trifurcations but
exactly as likely as unifurcations, and have a prob-
ability of roughly 0.37. Moreover, the larger k
gets, the smaller the probability of root k-furcating
trees—and this probability is rapidly decaying in
k. As a side note, we emphasize that the asymp-
totic probability for bifurcations has a particularly
beautiful mathematical form, namely, the inverse
of Leonhard Euler’s constant e.

These mathematical derivations, if they are
based on a plausible description of reality, sug-
gest that in history many original manuscripts may
have been copied only once, the same number has
been copied twice, half as many three times and
a third of that number four times, a fourth of that
number (for four) five times and so on. That is,
if indeed a random process that selects each arbre
for a fixed number of trees on m nodes with equal
likelihood is a good model of true copy history. On
this, any more sophisticated model can operate.

If root bifurcations are already very numerous,
then an immediately related question would be
what consequences this could have for a stemma
when thinking about the transformations an arbre
undergoes through historical loss. To this end,
Weitzman (1982; 1987) has shown, and Trovato
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and Guidi (2004) come to a similar conclusion,
that historically realistic scenarios of loss would
imply a large quantity of bifurcations and root bi-
furcations in stemmata based on transformed ar-
bres. Those do exceed 1

e and thus a possible ef-
fect of historical loss is to increase the percentage
of root bifurcations, in which case 1

e would rather
operate as a lower bound.

6 Conclusion

We have counted root k-furcating rooted labeled
trees and root k-furcating rooted Greg trees. For
the former, the asymptotic root degree distribution
has been derived mathematically. For the latter,
we have provided exact formulas that allow to ap-
proximate the asymptotic root degree distribution.
From this, we (very strongly) conjecture that root
bifurcating Greg trees have an asymptotic proba-
bility of above (and close to) 0.606.

In both cases, relating to a model of repre-
sentation of arbres (true and complete histori-
cal manuscript genealogies) and stemmata (recon-
structed genealogies from surviving nodes), the
proportions of root bifurcating trees for histori-
cally relevant tradition sizes is the largest in re-
spect to the other root degrees. Therefore, while
previously other studies have shown that root bi-
furcations are expectable for true stemmata, we
enhance this finding to reconstructible stemmata
and arbres so that this statement now covers the
three philologically relevant general types of trees
discussed until today. Concerning stemmata, we
have argued that the proportions of root bifurcat-
ing stemmata observed in real collections of ge-
nealogies is close to what is mathematically pre-
dicted, with a seemingly small bias for root bifur-
cations.

In the philological debate, where numerical ar-
guments have been pursued since the very begin-
ning, the formulas presented here contribute to
clarify the basic combinatorial nature of the en-
tities involved in the modeling of manuscript evo-
lution. We believe that in an ever more computa-
tional stemmatological endeavour cultivating the
mathematical foundations can only have positive
effects.

While our findings with respect to root degrees
of rooted labeled trees are certainly far from novel
to the mathematics community, our formulas for
Greg trees, which generalize rooted labeled trees,
are, to our best knowledge, original.
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