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Abstract

Many recent advances in deep learning
for natural language processing have come
at increasing computational cost, but the
power of these state-of-the-art models is
not needed for every example in a dataset.
We demonstrate two approaches to re-
ducing unnecessary computation in cases
where a fast but weak baseline classier and
a stronger, slower model are both avail-
able. Applying an AUC-based metric to
the task of sentiment classification, we
find significant efficiency gains with both
a probability-threshold method for reduc-
ing computational cost and one that uses a
secondary decision network. 1

1 Introduction

Deep learning models are getting bigger, better
and more computationally expensive in the quest
to match or exceed human performance (Wu et al.,
2016; He et al., 2015; Amodei et al., 2015; Sil-
ver et al., 2016). With advances like the sparsely-
gated mixture of experts (Shazeer et al., 2017),
pointer sentinel (Merity et al., 2016), or atten-
tion mechanisms (Bahdanau et al., 2015), models
for natural language processing are growing more
complex in order to solve harder linguistic prob-
lems. Many of the problems these new models
are designed to solve appear infrequently in real-
world datasets, yet the complex model architec-
tures motivated by such problems are employed
for every example. For example, fig. 1 illustrates
how a computationally cheap model (continuous
bag-of-words) represents and clusters sentences.

1Blog post with interactive plots is available at
https://metamind.io/research/learning-when-to-skim-and-
when-to-read
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Figure 1: Illustration with t-SNE (van der Maaten
and Hinton, 2008) of the activations of the last
hidden layer in a computationally cheap bag-of-
words (BoW) model on the binary Stanford Sen-
timent Treebank (SST) dataset (Socher et al.,
2013). Each data point is one sentence, while the
plot has been annotated with qualitative descrip-
tions.

Clusters with simple syntax and semantics (“sim-
ple linguistic content”) tend to be classified cor-
rectly more often than clusters with difficult lin-
guistic content. In particular, the BoW model is
agnostic to word order and fails to accurately clas-
sify sentences with contrastive conjunctions.

This paper starts with the intuition that exclu-
sively using a complex model leads to inefficient
use of resources when dealing with more straight-
forward input examples. To remedy this, we pro-
pose two strategies for reducing inefficiency based
on learning to classify the difficulty of a sentence.
In both strategies, if we can determine that a sen-
tence is easy, we use a computationally cheap bag-
of-words (“skimming”). If we cannot, we default
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Figure 2: Accuracy for thresholding on binary
SST. Probability thresholds are the maximum of
the probability for the two classes. The green
bars corresponds to accuracy for each probability
bucket (examples within a given probability span,
e.g. 0.5 < Pr(Y |X, θBoW) < 0.55), while the
orange curve corresponds the accuracy of all ex-
amples with a probability above a given threshold
(e.g. Pr(Y |X, θBoW) < 0.7).

to an LSTM (reading). The first strategy uses the
probability output of the BoW system as a con-
fidence measure. The second strategy employs a
decision network to learn the relationship between
the BoW and the LSTM. Both strategies increase
efficiency as measured by an area-under-the-curve
(AUC) metric.

2 When to skim: strategies

To keep total computation time down, we investi-
gate cheap strategies based on the BoW encoder.
Where the probability thresholding strategy is a
cost-free byproduct of BoW classification and the
decision network strategy adding a small addi-
tional network.

2.1 Probability strategy

Since we use a softmax cross entropy loss func-
tion, our BoW model is penalized more for con-
fident but wrong predictions. We should thus ex-
pect that confident answers are more likely cor-
rect. Figure 2 investigates the accuracy by thresh-
olding probabilities empirically on the SST based
on the BoW outputs, strengthening such hypothe-
sis. The probability strategy uses a threshold τ to
determine which model to use, such that:

ŶPr(Y |X,θBoW)>τ = arg max
Y

Pr(Y |X, θBoW)

ŶPr(Y |X,θBoW)<τ = arg max
Y

Pr(Y |X, θLSTM)
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Figure 3: Histogram showing frequency of each
BoW probability bin on the SST validation set.
The line represents the cumulative frequency, or
the fraction of data for which the expensive LSTM
is triggered given a probability threshold.

SST Valid BoW 82%
True False

LSTM
88%

True 76% 12%
False 6% 6%

Table 1: Confusion matrix for the BoW and the
LSTM, where True means that the given model
classifies correctly.

where Y is the prediction, X the input, θBoW the
BoW model and θLSTM the LSTM model. The
LSTM is used only when the probability of the
BoW is below the threshold. Figure 3 illustrates
how much data is funneled to the LSTM when in-
creasing the probability threshold, τ .

2.2 Decision network
In the probability strategy we make our decision
based on the expectation that the more powerful
LSTM will do a better job when the bag-of-words
system is in doubt, which is not necessarily the
case. Section 2.1 illustrates the confusion matrix
between the BoW and the LSTM. It turns out that
the LSTM is only strictly better 12% of the time,
whereas 6% of the sentences neither the BoW or
the LSTM is correct. In such case, there is no rea-
son to run the LSTM and we might as well save
time by only using the BoW.

2.2.1 Learning to skim, the setup
We propose a trainable decision network that is
based on a secondary supervised classification
task. We use the confusion matrix between the
BoW and the LSTM from Section 2.1 as labels.
We consider the case where the LSTM is correct
and the BoW is wrong as the LSTM class and all
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Model Cost per sample
Bag-of-words (BoW) 0.16 ms
LSTM 1.36 ms

Table 2: Computation time per sample for each
model, with batch size 64.

Figure 4: We train both models (BoW and LSTM)
on “model train”, then generate labels and train
the decision network on “decision train” and lastly
fine tune the models on the full train set. The full
validation set is used for validation.

other combinations as the BoW class.
However, the confusion matrix on the train set

is biased due to the models overfitting—which is
why cannot co-train the decision network and our
models (BoW, LSTM) on the same data. Instead
we create a new held-out split for training the de-
cision network in a way that will generalize to the
test set. We split the training set into a model train-
ing set (80% of training data) and a decision train-
ing set (remaining 20% of training data). We first
train the BoW and the LSTM models on the model
training set, generate labels for the decision train-
ing set and train the decision network on the deci-
sion training set, and lastly fine-tune the BoW and
the LSTM on the original full training set while
holding the decision network fixed. We find that
the decision network will still generalize to mod-
els that are fine-tuned on the full training set. The
entire pipeline is illustrated in 4.

3 Related Work

The idea of penalizing computational cost is not
new. Adaptive computation time (ACT) (Graves,
2016) employs a cost function to penalize addi-
tional computation and thereby complexity. Con-
currently with our work, two similar methods
have been developed to choose between compu-
tationally cheap and expensive models. Odena
et al. (2017) propose the composer model, which
chooses between computationally inexpensive and
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Figure 5: Model usage strategies plotted with
thresholds for the probability and decision net-
work strategies chosen to save a given fraction
of computation time. The curve stops at around
90% savings as this represents using only the BoW
model. The dashed red line represents the naı̈ve
approach of using the BoW and LSTM models at
random with a fixed ratio.

expensive layers. To model the compute versus
accuracy tradeoff they use a test-time modifiable
loss function that resembles our probability strat-
egy. The composer model, similar to our deci-
sion network, is not restrained to the binary choice
of two models. Further, their model, similar to
our decision network, does not have the draw-
backs of probability thresholding, which requires
every model of interest to be sequentially evalu-
ated. Instead, it can in theory support a multi-class
setting; choosing from several networks Boluk-
basi et al. (2017) similarly use probability output
to choose between increasingly expensive models.
They show results on ImageNet (Deng et al., 2009)
and provides encouraging time-savings with mini-
mal drop in performance. This further suggest that
the probability thresholding strategy is a viable al-
ternative to exclusively using SoTA models.

4 Results

4.1 Model setup
The architecture and training details of all mod-
els are all available in section 5. In table 2 is an
overview of the computational cost of our mod-
els. Our dataset is the binary version of the Stan-
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Strategy Validation AUC Test AUC
Naı̈ve ratio 84.84 83.77
Probability thresholding µ = 86.03, σ = 0.3 µ = 85.49, σ = 0.3
Decision network µ = 86.13, σ = 0.3 µ = 85.49, σ = 0.3

Table 3: Results for each decision strategy. The AUC is the mean value of the curve from 5. Each model
is trained ten times with different initialization, and results are reported as mean and standard deviation
over the ten runs.

ford Sentiment Treebank (SST), where “very posi-
tive” is combined with “positive”, “very negative”
is combined with “negative” and all “neutral” ex-
amples are removed.

4.2 Benchmark model
To compare the two decision strategies we eval-
uate the trade-off between speed and accuracy,
shown in fig. 5. Speedup is gained by using the
BoW more frequently. We vary the probability
threshold in both strategies and compute the frac-
tion of samples dispatched to each model to cal-
culate average computation time. We measure the
average value of the speed-accuracy curve, a form
of the area-under-the-curve (AUC) metric.

To construct a baseline we consider a naı̈ve ra-
tio between the two models, i.e. let Yratio be the
random variable to represent the average accuracy
on an unseen sample. Then Yratio has the following
properties:{

Pr(Yratio = ABoW) = α

Pr(Yratio = ALSTM) = 1− α (1)

Where A is the accuracy and α ∈ [0, 1] is the pro-
portion of data used for BoW. According to the
definition of the expectation of the random vari-
able, we have the expected accuracy be:

E(Yratio) =
∑

Pr(Yratio = y)× y (2)

= α×ABoW + (1− α)×ALSTM (3)

We calculate the cost of our strategy and bench-
mark ratio in the following manner.

Cstrategy = CBoW + (1− α)× CLSTM (4)

Cratio = α× CBoW + (1− α)× CLSTM (5)

Where C is the cost. Notice that the decision net-
work is not a byproduct of BoW classification and
requires running a second MLP model, but for
simplicity we consider the cost equivalent to the
probability strategy.

4.3 Quantitative results

In fig. 5 and Table 3 we find that using either
guided strategy outperforms the naı̈ve ratio bench-
mark by 1.72 AUC.

4.4 Qualitative results

One might ask why the decision network is per-
forming equivalently to the computationally sim-
ple probability thresholding technique. In 5 we
have provided illustrations for qualitative analysis
of why that might be the case. For example, A1
provides a t-SNE visualization of the last hidden
layer in the BoW (used by both policies), from
which we can assess that the probability strategy
and the decision network follow similar predictive
patterns. There are a few samples where the prob-
abilities assigned by both strategies differ signifi-
cantly; it would be interesting to inspect whether
or not these have been clustered differently in the
extra neural layers of the decision network. To-
wards that end, A2 is a t-SNE plot of the last hid-
den layer of the decision network. What we hope
to see is that it learns to cluster when the LSTM is
correct and the BoW is incorrect. However, from
the visualization it does not seem to learn the ten-
dencies of the LSTM. As we base our decision net-
work on the last hidden state of the BoW, which is
needed to reach a good solution, the decision net-
work might not be able to discriminate where the
BoW could not or it might have found the local
minimum of imitating BoW probabilities too com-
pelling. Furthermore, learning the reasoning of
the LSTM solely by observing its correctness on
a slim dataset could be too weak of a signal. Co-
training the models in similar fashion to (Odena
et al., 2017) might have yielded better results.

5 Conclusion

We have investigated if a cheap bag-of-words
model can decide when samples, in binary senti-
ment classification, are easy or difficult. We found
that a guided strategy, based on a bag-of-words
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neural network, can make informed decisions on
the difficulty of samples and when to run an ex-
pensive classifier. This allow us to save computa-
tional time by only running complex classifiers on
difficult sentences. In our attempts to build a more
general decision network, we found that it is diffi-
cult to use a weaker network to learn the behavior
of a stronger one by just observing its correctness.
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Supplementary material

Visualizations

t-SNE plots for the qualitative analysis section.

t-SNE BoW with probability outputs
Very confident
Confident
Doubtful
Very doubtful

(a) Probability

t-SNE BoW with decision network labels
BoW
LSTM

(b) Decision Network

Figure A1: t-SNE plot of the last hidden layer of the BoW model. The probabilities are colored by the
confidence of the probability strategy. The colors in the decision network plot are the predictions of
which model should be used at a given threshold of the decision network.

Model training

All models are optimized with Adam (Kingma and Ba, 2014) with a learning rate of 5× 10−4. We train
our models with early stopping based on maximizing accuracy of all models, except the decision network
where we maximize the AUC as described in section 4.2. We use SST subtrees in both the model and
decision train splits and for training both models.

Model illustration: The bag of words (BoW)

As shown in fig. A3, the BoW model’s embeddings are initialized with pretrained GloVe (Pennington
et al., 2014) vectors, then updated during training. The embeddings are followed by an average-pooling
layer (Mikolov et al., 2013) and a two layer MLP (Ruck et al., 1990) with dropout of p = 0.5 (Srivastava
et al., 2014). The network is first trained on the model train dataset (80% of training data, as shown
in fig. 4) until convergence (early stopping, at max 50 epochs) and afterwards on the full train dataset
(100% of training data) until convergence (early stopping, at max 50 epochs).

Model illustration: The LSTM

The LSTM is visualized in fig. A3. The LSTM’s word embeddings are initialized with GloVe (Penning-
ton et al., 2014). Instead of updating the embeddings, as is done in the BoW, we apply a trainable projec-
tion layer. We find that this reduces overfitting. After the projection layer a bi-directional (Schuster and
Paliwal, 1997) recurrent neural network (Graves, 2012) with long short-term memory cells (Hochreiter
and Schmidhuber, 1997; Gers et al., 2000) is applied, followed by concatenated mean- and max-pooling
of the hidden states across time. We then employ a two layer MLP (Ruck et al., 1990) with dropout of
p = 0.5 (Srivastava et al., 2014). The network is first trained on the model train dataset (80% of training
data) until convergence (early stopping, max 50 epochs) and afterwards on the full train dataset (100%
of training data) until convergence (early stopping, max 50 epochs).
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t-SNE decision network with BoW vs LSTM comparison

Only LSTM correct

Only BoW correct

Both wrong

Both correct

Figure A2: We compare the predictions of the BoW and the LSTM to assess when one might be more
correct than the other. We train the decision network to separate the yellows (only LSTM correct) from
the rest. This plot enables us to evaluate if the model is able to learn the relationship between the
correctness of the two models, even though it only has access to the BoW model.

Model illustration: The Decision Network
The decision network is pictured in fig. A4, it inherits all but the output layer of the BoW model trained
on the model train dataset, without dropouts. The layers originating from the BoW are not updated
during training. We find that it overfits if we allow such. From the last hidden layer of the BoW model,
a two layer MLP (Ruck et al., 1990) with dropout of p = 0.5 (Srivastava et al., 2014) is applied on top.

The network is trained on the decision train portion of the dataset (20% of training data) until conver-
gence. We use early stopping by measuring the AUC metric between the BoW and LSTM trained only
on the model train dataset.
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(a) LSTM (b) Bag of words

Figure A3: Visualization of the BoW and LSTM model. Green refers to initialization by GloVe and
updating during training. Grey is randomly initialized and updated during training. Turquoise means
fixed GloVe vectors.

Figure A4: Architecture of the decision network. Turquoise boxes represent layers shared with the BoW
model trained on the model train dataset and not updated during decision model training.
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