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Abstract

Detecting negated concepts in clinical texts
is an important part of NLP information
extraction systems. However, generaliz-
ability of negation systems is lacking, as
cross-domain experiments suffer dramatic
performance losses. We examine the per-
formance of multiple unsupervised domain
adaptation algorithms on clinical negation
detection, finding only modest gains that
fall well short of in-domain performance.

1 Introduction

Natural language processing applied to health-
related texts, including clinical reports, can be valu-
able for extracting information that does not exist
in any other form. One important NLP task for clin-
ical texts is concept extraction and normalization,
where text spans representing medical concepts
are found (e.g., colon cancer) and mapped to con-
trolled vocabularies such as the Unified Medical
Language System (UMLS) (Bodenreider and Mc-
Cray, 2003). However, clinical texts often refer
to concepts that are explicitly not present in the
patient, for example, to document the process of
ruling out a diagnosis. These negated concepts, if
not correctly recognized and extracted, can cause
problems in downstream use cases. For example, in
phenotyping, a concept for a disease (e.g., asthma)
is a strong feature for a classifier finding patients
with asthma. But if the text ruled out asthma occurs
and the negation is not detected, this text will give
the exact opposite signal that its inclusion intended.

There exist many systems for negation detection
in the clinical domain (Chapman et al., 2001, 2007;
Harkema et al., 2009; Sohn et al., 2012; Wu et al.,
2014; Mehrabi et al., 2015), and there are also a
variety of datasets available (Uzuner et al., 2011;
Albright et al., 2013). However generalizability of

negation systems is still lacking, as cross-domain
experiments suffer dramatic performance losses,
even while obtaining F1 scores over 90% in the
domain of the training data (Wu et al., 2014).

Prior work has shown that there is a problem
of generalizability in negation detection, but has
done little to address it. In this work, we describe
preliminary experiments to assess the difficulty of
the problem, and evaluate the efficacy of existing
domain adaptation algorithms on the problem. We
implement three unsupervised domain adaptation
methods from the machine learning literature, and
find that multiple methods obtain similarly modest
performance gains, falling well short of in-domain
performance. Our research has broader implica-
tions, as the general problem of generalizabiliy
applies to all clinical NLP problems. Research in
unsupervised domain adaptation can have a huge
impact on the adoption of machine learning-based
NLP methods for clinical applications.

2 Background

Domain adaptation is the task of using labeled data
from one domain (the source domain) to train a
classifier that will be applied to a new domain (the
target domain). When there is some labeled data
available in the target domain, this is referred to
as supervised domain adaptation, and when there
is no labeled data in the target domain, the task
is called unsupervised domain adaptation (UDA).
As the unsupervised version of the problem more
closely aligns to real-world clinical use cases, we
focus on that setting.

One common UDA method in natural language
processing is structural correspondence learning
(SCL; Blitzer et al. (2006)). SCL hypothesizes that
some features act consistently across domains (so-
called pivot features) while others are still informa-
tive but are domain-dependent. The SCL method
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combines source and target extracted feature sets,
and trains classifiers to predict the value of pivot
features, uses singular value decomposition to re-
duce the dimensionality of the pivot feature space,
and uses this reduced dimensionality space as an
additional set of features. This method has been
successful for part of speech tagging (Blitzer et al.,
2006), sentiment analysis (Blitzer et al., 2007), and
authorship attribution (Sapkota et al., 2015), among
others, but to our knowledge has not been applied
to negation detection (or any other biomedical NLP
tasks). One difficulty of SCL is in selecting the
pivot features, for which most existing approaches
use heuristics about what features are likely to be
domain independent.

Another approach to UDA, known as bootstrap-
ping or self-training, uses a classifier trained in the
source domain to label target instances, and adds
confidently predicted target instances to the train-
ing data with the predicted label. This method has
been successfully applied to POS tagging, spam
email classification, named entity classification,
and syntactic parsing (Jiang and Zhai, 2007; Mc-
Closky et al., 2006).

Clinical negation detection has a long history
because of its importance to clinical informa-
tion extraction. Rule-based systems such as
Negex (Chapman et al., 2001) and its successor,
ConText (Harkema et al., 2009) contain manually
curated lists of negation cue words and apply rules
about their scopes based on word distance and in-
tervening cues. While these methods do not learn,
the word distance parameter can be tuned by ex-
perts to apply to their own datasets. The DepNeg
system (Sohn et al., 2012) used manually curated
dependency path features in a rule-based system to
abstract away from surface features. The Deepen
algorithm (Mehrabi et al., 2015) algorithm also
uses dependency parses in a rule-based system, but
applies the rules as a post-process to Negex, and
only to the concepts marked as negated.

Machine learning approaches typically use su-
pervised classifiers such as logistic regression or
support vector machines to label individual con-
cepts based on features extracted from surround-
ing context. These features may include manually
curated lists, such as those from Negex and Con-
Text, as well as features intended to emulate the
rules of those systems, as well as more exhaustive
contextual features common to NLP classification
problems. The 2010 i2b2/VA Challenge (Uzuner

et al., 2011) had an “assertion classification” task,
where concepts had mutually exclusive present,
absent (negated), possible, conditional, hypotheti-
cal, and non-patient attributes, and this task had a
variety of approaches submitted that used some
kind of machine learning. The top-performing
system (de Bruijn et al., 2011) used a multi-level
ensemble classifier, classifying assertion status of
each word with three different machine learning
systems, then feeding those outputs into a concept-
level multi-class support vector machine classifier
for the final prediction. In addition to standard
bag of words features for representing context, this
system used Brown clusters to abstract away from
surface feature representations. The MITRE sys-
tem (Clark et al., 2011) used conditional random
fields to tag cues and their scopes, then incorpo-
rated cue information, section features, semantic
and syntactic class features, and lexical surface
features into a maximum entropy classifier. Fi-
nally, Wu et al. (2014) incorporated many of the
dependency features from rule-based DepNeg sys-
tem (Sohn et al., 2012) and the best features from
the i2b2 Challenge into a machine learning system.

3 Methods

In this work, we apply unsupervised domain adap-
tation algorithms to machine learning systems for
clinical negation detection, evaluating the extent to
which performance can be improved when systems
are trained on one domain and applied to a new
domain. We make use of the (Wu et al., 2014) sys-
tem in these experiments, as it is freely available as
part of the Apache cTAKES (Savova et al., 2010)1

clinical NLP software, and can be easily retrained.
Unsupervised domain adaptation (UDA) takes

place in the setting where there is a source dataset
Ds = {X, ~y}, and a target dataset Dt = {X},
where feature representations X ∈ RN×D for N
instances and D feature dimensions and labels
~y ∈ RN . Our goal is to build classifiers that will
perform well on instances from Ds as well as Dt,
despite having no gold labels from Dt to use at
training time. Here we describe a variety of ap-
proaches that we have implemented.

The baseline cTAKES system that we use is a
support vector machine-based system with L1 and
L2 regularization. Regularization is a penalty term
added to the classifier’s cost function during train-
ing that penalizes “more complex” hypotheses, and

1http://ctakes.apache.org
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is intended to reduce overfitting to the training data.
L2 regularization adds the L2 norm to the classi-
fier cost function as a penalty and tends to favor
smaller feature weights. L1 regularization adds
the L1 norm as a penalty and favors sparse feature
weights (i.e., setting many weights to zero).

Before attempting any explicit UDA methods,
we evaluate the simple method of increasing regu-
larization. While regularization is already intended
to reduce overfitting, it may still overfit on a tar-
get domain since its hyper-parameter is tuned on
the source domain. In a real unsupervised domain
adaptation scenario it is not possible to tune this
parameter on the target domain, so for this work
we use heuristic methods to set the adapted regu-
larization parameter. We first find the optimal regu-
larization hyperparameter C using cross-validation
on the source data, then increase it by an order
of magnitude and retrain before testing on target
data. For example, if we find that the best F1 score
occurs when C = 1 for a 5-fold cross-validation
experiment on the source data, we retrain the classi-
fier at C = 0.1 before applying to target test data.2

Changing this parameter by one order of magni-
tude is purely a heuristic approach, chosen because
that is how we (the authors) typically would vary
this parameter during tuning. Future work may ex-
plore whether this parameter on target data without
supervision, perhaps by using some information
about the data distribution in the target domain.

The first UDA algorithm we implement is struc-
tural correspondence learning (SCL) (Blitzer et al.,
2006). Following Blitzer et al. we select as pivot
features those features that occur more than 50
times in both the source and target data. Then, for
each data instance i in Xc = {Xs ∪ Xt}, and each
pivot feature p, we extract the non-pivot features of
i (non-pivot features are simply all features not se-
lected as pivot features), ~xi = Xc[i, non-pivots],
and a classification target, yi[p] = JXc[i, p] >
0.5K.3 For each pivot feature p, we train a linear
classifier on the (~xi, yi[p]) classification instances,
take the resulting feature weights, wp, and concate-
nate them into a matrix W . We decompose W
using singular value decomposition: W = UΣV T ,
and construct θ as the first d dimensions of U . This
matrix θ represents a projection from non-pivot
features to a reduced dimensionality version of the

2Note that since C is the cost of misclassifying training
instances, increasing regularization means lowering C.

3We use JexprK to denote the indicator function, which
returns 1 if expr is true and 0 otherwise.

Test corpus
Train corpus Seed Stratified Mipacq i2b2
Seed 0.88 0.76 0.65 0.79
Stratified 0.66 0.83 0.67 0.79
Mipacq 0.73 0.78 0.75 0.85
i2b2 0.65 0.59 0.64 0.93

Table 1: Results (F1 scores) of baseline cross-
domain experiments. Bold diagonals indicate
in-domain results, which were obtained with 5-
fold cross-validation. Off-diagonal elements were
trained on source data and tested on target data.

pivot-feature space. At training and test time, fea-
tures are extracted normally, and non-pivot feature
values are multiplied by θ to create correspondence
features in the reduced-dimensionality pivot space.
Following Sapkota et al. (2016), we experiment
with two methods of combining correspondence
features with the original features: All+New, which
combines all the original features with the corre-
spondence features, and Pivot+New which com-
bines only the pivot features from the original space
with the correspondence features.

The next UDA algorithm we implement is boot-
strapping. Jiang and Zhai (2007) introduced a va-
riety of methods for UDA, under the broad head-
ing of instance weighting, but the method they call
bootstrapping was the only one which does not rely
on any target domain labeled data. This method
creates pseudo-labels for a portion of the target data
by running a classifier trained only on source data
on the target data, and adding confidently classified
target instances to the training data, labeled with
whatever the classifier decided. Jiang and Zhai
experiment with the weights of these instances, ei-
ther giving higher weights to target instances or
weighting them the same as source instances. We
implemented a simpler version of bootstrapping
that does not modify instance weights, and adds
instances based on the initial classifier score (rather
than iteratively re-training and adding additional in-
stances). We allow up to 1% of the target instances
to be added.

In addition to adding the highest-scoring in-
stances, we also experiment with adding only high-
scoring instances from the minority class. In many
NLP tasks, including negation detection, the label
of interest has low prevalence, and there is a danger
that the classifier will be most confident on the ma-
jority class and only add target instances with that
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Source Target None 10xReg SCL A+N SCL P+N BS-All BS-Minority ISF
Seed (L1) Strat 0.76 0.8 0.8 0.69 0.79 0.79 0.8

Mipacq 0.65 0.66 0.69 0.6 0.69 0.7 0.69
i2b2 0.79 0.83 0.83 0.71 0.83 0.83 0.83

Strat (L1) Seed 0.66 0.66 0.66 0.58 0.66 0.67 0.66
Mipacq 0.67 0.68 0.68 0.65 0.68 0.66 0.68
i2b2 0.79 0.79 0.79 0.71 0.79 0.8 0.79

Mipacq (L2) Seed 0.73 0.59 0.73 0.71 0.73 0.71 0.73
Strat 0.78 0.76 0.78 0.71 0.78 0.79 0.78
i2b2 0.85 0.77 0.85 0.84 0.84 0.85 0.85

i2b2 (L1) Seed 0.65 0.72 0.72 0.67 0.72 0.72 0.72
Strat 0.59 0.68 0.69 0.62 0.68 0.68 0.68
Mipacq 0.64 0.69 0.69 0.68 0.69 0.69 0.69

Average 0.71 0.72 0.74 0.68 0.74 0.74 0.74

Table 2: Results of unsupervised domain adaptation algorithms (F1 scores). None=No adaptation,
10xReg=Regularization with 10x penalty, SCL A+N is structural correspondence learning with all features
in addition to projected (new) features, SCL P+N is SCL with pivot features and projected features,
BS-All=Bootstrapping with instances of all classes added to source, BS-Minority=Bootstrapping with
only instances of minority class added to source, ISF=Instance similarity features.

label. We therefore experiment with only adding
minority class instances, enriching the training data
to have a more even class distribution.

The final UDA algorithm we experiment with
uses instance similarity features (ISF) (Yu and
Jiang, 2015). This method extends the feature
space in the source domain with a set of similarity
features computed by comparison to features ex-
tracted from target domain instances. Formally, the
method selects a random subset of K exemplar in-
stances from Dt and normalizes them as ~̂e = ~e

||~e|| .
Similarity feature k for instance i in the source
data set is computed as the dot product Xt[i] · ~̂e[k].
Following Yu and Jiang, we set K = 50 and con-
catenate the similarity features to the full set of
extracted features for each source instance at train-
ing. These exemplar instances must be kept around
past training time, so that at test time similarity
features can be similarly created for test instances.

4 Evaluation

Our evaluation makes use of four corpora of clini-
cal notes with negation annotations – i2b2 (Uzuner
et al., 2011), Mipacq (Albright et al., 2013),
SHARP (Seed), and SHARP (Stratified). We first
perform cross-domain experiments in the no adap-
tation setting to replicate Wu et al.’s experiments.4

One difference to Wu et al. is that we evaluate on

4See that paper for an discussion of corpus differences.

the training split of the target domain – we made
this choice because the development and test sets
for some of the corpora are quite small and the
training data gives us a more stable estimate of per-
formance. We tune two hyperparameters, L1 vs.
L2 regularization and the values of regularization
parameter C, with five-fold cross validation on the
source corpus. We record results for training on all
four corpora, testing on all three target domains, as
well as a cross-validation experiment to measure
in-domain performance. Table 1 shows these re-
sults, which replicate Wu et al. in finding dramatic
performance declines across corpora.

In our domain adaptation experiments, we also
use all four corpora as source domains, and for each
source domain we perform experiments where the
other three corpora are target domains. This result
is reported in Table 2.

5 Discussion and Conclusion

These results show that unsupervised domain adap-
tation can provide, at best, a small improvement to
clinical negation detection systems.

Strong regularization, while not obtaining the
highest average performance, provides nominal im-
provements over no adaptation in all settings ex-
cept when the source corpus is Mipacq, in which
case performance suffers severely. Mipacq has two
unique aspects that might be relevant; first, it is
the largest training set, and second, it pulls docu-
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ments from a very diverse set of sources (clinical
notes, clinical questions, and medical encyclope-
dias), while the other corpora only contain clinical
notes. Perhaps because the within-corpus variation
is already quite high, the regularization parameter
that performs best during tuning is already suffi-
cient to prevent overfitting on any target corpus
with less variation, and increasing it leads to un-
derfitting and thus poor target domain performance.
Future work may explore this hypothesis, which
must include some attempt to relate the within- and
between-corpus variation.

Four different systems all obtain the highest aver-
age performance, with BS-All (standard bootstrap-
ping), BS-Minority (bootstrapping with minority
class enrichment), structural correspondence learn-
ing (SCL A+N), and instance similarity features
(ISF) all showing 3% gain in performance (71%
to 74%). While the presence of some improve-
ment is encouraging, the improvements within any
given technique are not consistent, so that without
labeled data from the target domain it would not be
possible to know which UDA technique to use. We
set aside the question of “statistical significance,”
as that is probably too low of a bar – whether or
not these results reach that threshold, they are still
disappointingly low and likely to cause issues if
applied to new data.

In summary, selecting a method is difficult, and
many of these methods have hyper-parameters (e.g.,
pivot selection for SCL, number of bootstrapping
instances, number of similarity features) that could
potentially be tuned, yet in the unsupervised set-
ting there are no clear metrics to use for tuning
performance. Future work will explore the use of
unsupervised performance metrics that can serve
as proxies to test set performance for optimizing
hyperparameters and selecting UDA techniques for
a given problem.
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