
Proceedings of the 2nd Workshop on the Use of Computational Methods in the Study of Endangered Languages, pages 85–91,
Honolulu, Hawai‘i, USA, March 6–7, 2017. c©2017 Association for Computational Linguistics

Endangered Data for Endangered Languages:
Digitizing Print dictionaries∗

Michael Maxwell
Aric Bills

University of Maryland
{mmaxwell,abills}@umd.edu

1 Introduction
This paper describes on-going work in dictionary digi-
tization, and in particular the processing of OCRed text
into a structured lexicon. The description is at a con-
ceptual level, without implementation details.
In decades of work on endangered languages, hun-

dreds (or more) languages have been documented with
print dictionaries. Into the 1980s, most such dic-
tionaries were edited on paper media (such as 3x5
cards), then typeset by hand or on old computer systems
(Bartholomew and Schoenhals. 1983; Grimes 1970).
SIL International, for example, has nearly 100 lexicons
that date from their work during the period 1937–1983
(Verna Stutzman, p.c.).
More recently, most dictionaries are prepared on

computers, using tools like SIL’s Shoebox (later Tool-
box) or Fieldworks Language Explorer (FLEx). These
born-digital dictionaries were all at one time on elec-
tronicmedia: tapes, floppy diskettes, hard disks or CDs.
In some cases those media are no longer readable, and
no backups were made onto more durable media; so the
only readable version we have of these dictionaries may
be a paper copy (cf. Bird and Simons 2003; Borghoff et
al. 2006). And while paper copies preserve their infor-
mation (barring rot, fire, and termites), that information
is inaccessible to computers. For that, the paper dictio-
nary must be digitized.
A great many other dictionaries of non-endangered

languages are also available only in paper form.
It might seem that digitization is simple. It is not.

There are two approaches to digitization: keying in
the text by hand, and Optical Character Recognition
(OCR). While each has advantages and disadvantages,
in the end we are faced with three problems:

1. Typographic errors;

2. Conversion from the dictionary’s visual lay-
out into a lexicographically structured computer-
readable format, such as XML; and

3. Converting each dictionary’s idiosyncratic struc-
ture into some standard tagging system.

This paper deals mostly with the second issue (but
see section 6 about the first issue, and section 7 about

∗This material is based upon work supported by the Na-
tional Science Foundation under grant number BCS1644606.

the last issue). The information structure in a print dic-
tionary is represented mostly implicitly, by formatting:
white space, order, font and font style, and occasionally
by numbering, bullets, or markup (such as ‘Ex.’ for an
example sentence). The task addressed in this paper is
that of converting this implicit information into explicit
tags for lexical entries, parts of speech, glosses, exam-
ple sentences, and so forth.
At present, the tools described here are very much in

the development phase, and must be run on the com-
mand line. Ideally, we would go on to create a Graph-
ical User Interface (GUI) which would serve as a front
end to these tools. Whether we will achieve that goal
within the limits of our funding remains to be seen. But
even if we do, we do not envision the task of converting
paper dictionaries into electronic databases to be a job
that most field linguists will want to, or even should,
undertake. Indeed, there are a limited number of paper
dictionaries that need to be converted (all modern dic-
tionaries, we believe, are being created electronically).
Instead, we envision the user community for this soft-
ware as being composed of a small number of experts in
lexicography, who can learn enough about a particular
language to reliably interpret the format of a dictionary
of that language, and can therefore act as a sort of con-
servation corps for legacy dictionaries.

2 Print Dictionary Format

Figure 1 shows two lexical entries in a Tzeltal-English
dictionary (Cruz, Gerdel, and Slocum 1999; this is a
more detailed version of Slocum and Gerdel 1976). In
this dictionary, headwords of major entries appear at the
left margin of a column, in bold font. They are followed
by a part of speech, identifiable by position, italic font,
and the fact that they come from a small class of tokens
(‘s’, ‘vt’, etc.). The Spanish glosses follow in regular
font; individual glosses are separated by commas (not
shown in this snippet). Cross references to other en-
tries in the dictionary are bolded and preceded by the
word ‘Véase’ (Spanish for “see”). Multiple senses (not
shown in this example) are indicated by Arabic numer-
als. The entire entry is formatted with hanging indent.
Finally, subentries are further indented, and otherwise
follow much the same formatting as main entries, with
a subset of the information (e.g. subentries lack part of
speech).

85

Figure 2 shows a lexical entry in SIL’s Muinane-
Spanish dictionary (J. W. Walton, J. P. Walton, and
Buenaventura 1997).1 As in the Tzeltal dictionary,
headwords of major entries appear at the left margin of
a column, in bold font. They are followed by a part of
speech, identifiable by position, by a lighter (non-bold)
upright font, and again by the fact that they come from
a small limited class of tokens (‘s.’, ‘v.i.’, etc.), all end-
ing in a period. The glosses follow in the same font, and
consist of Spanish words; individual glosses are sepa-
rated by commas, and the list of glosses ends with a pe-
riod. If the list of glosses extends beyond the first line, it
is indented by a bit over an em relative to the headword.
Example sentences and their translations appear on sep-
arate lines, indented by perhaps two ems; the Muinane
text of example sentences is in italics, while the Span-
ish translation is in an upright font. Within theMuinane
text, the inflected form of the headword is underlined.
Finally, subentries (as in the right-hand column) are in-
dented by about one em, and otherwise follow the same
formatting as main entries. Irregular inflected forms
(not shown in the figure) are given in italics, preceded
by their inflectional category, with square brackets en-
closing the grammatical information and the irregular
form. Elsewhere in this dictionary, multiple senses are
provided with Arabic numerals in a bold font.
Note that in both of these dictionaries, lexical entries

are represented as paragraphs with hanging indent. Sig-
nificantly, there is no extra vertical space between these
paragraphs; this makes automatic inference of lexical
entries difficult, a problem to which we now turn.

3 Inferring Lexical Entries
In our experiments, we are concentrating on how the
OCR form of a dictionary can be converted into a lexi-
cal database. We are not concerned here with the OCR
process itself, which we treat as more or less a black
box. Our reason for doing so should be obvious; much
work has been done on converting paper documents
into electronic form as streams of text, searchable by
matching strings of characters. While some work has
been done on formatting the streams of text to corre-
spond with the position of that text on paper, so that
a human user can be shown the location on the page
of their search terms, apart from the issues of process-
ing tables, very little work has been done on converting
the OCR output of visually structured documents into
structured databases. This is particularly true for dic-
tonaries, which vary greatly in their format. The post-
OCR conversion process is thus ripe for exploration,
and is our topic here.
In order, then, to concentrate our effort on the con-

version from OCR output to lexical database, rather
than cutting up paper dictionaries and feeding them

1A differently formatted version of this dictio-
nary is available on-line: http://www-01.sil.
org/americas/colombia/pubs/MuinaneDictBil_
49558-with-covers.pdf.

through scanners, we are using for our experiments sev-
eral dictionaries which are available on-line in image
format:

• The Tzeltal-English dictionary mentioned above
(Cruz, Gerdel, and Slocum 1999)

• The Muinane-Spanish dictionary mentioned
above (J. W. Walton, J. P. Walton, and Buenaven-
tura 1997)

• A Cubeo-Spanish dictionary (Morse, Jay
K. Salser, and Salser 1999)

All three dictionaries use Latin script, although we
did encounter issues with recognizing some characters
(see section 6). Non-Latin scripts would of course
introduce other issues, although most of those issues
would have to do with training or adapting an OCR
system to recognize those scripts, research which oth-
ers have tackled (see e.g. Govindaraju and Setlur 2009;
Smith, Antonova, and Lee 2009).
We converted the online images of these dictionaries

into raster images, and then ran an OCR program on the
result.
Most modern OCR systems include as one of

their output formats the ‘hOCR’ form (https://
kba.github.io/hocr-spec/1.2/. This XML for-
mat tags hypothesized words, lines, paragraphs, and
columns, and provides additional information such as
position on the page; some information on font and
font style is also extractable. We have been using the
open source program Tesseract (https://github.
com/tesseract-ocr). An excerpt from the hOCR
output of Tesseract showing the structure correspond-
ing to the first line of figure 1 appears in figure 3.2
In this output, the ‘bbox’ indicates the coordinates of

rectangles occupied by individual tokens, lines, para-
graphs etc. Notice that this lexical entry has been cor-
rectly tokenized into the Tzeltal word ‘ajan’, the part of
speech ‘s’, and the Spanish gloss ‘elote’ (corncob), all
as part of an ocr_line. Unfortunately, although lexi-
cal entries are represented as hanging indent paragraphs
in this dictionary, neither the <div> (division) nor the
<p> (paragraph) elements reliably parse this structure.3
This is also true of the OCR output of the Cubeo dic-
tionary which we have been working with (Morse, Jay
K. Salser, and Salser 1999). It seems in general that we
cannot rely on Tessearact’s division into paragraphs, i.e.
lexical entries.
Hence the first task for the user is to define the gen-

eral shape of the page, including the approximate posi-
tion of headers and/or footers, and columns. The user
also needs to define the shape of a lexical entry, so that
individual lexical entries can be parsed out from the

2This has been simplified by removing some attributes,
and formatted to clarify the structure.

3Also, while the OCR correctly captured the italicization
of the part of speech, it usually fails to detect bolding, as seen
for the headword.

86

Figure 1: Some lexical entries from Tzeltal print dictionary

Figure 2: Lexical entries from Muinane dictionary

<div class="ocr_carea"... title="bbox 526 577 1222 665">
<p ... title="bbox 525 1459 1230 1655">

ajan

s

elote

...

</p>
</div>

Figure 3: Extract from hOCR output of Tzeltal dictionary (some details ellipted)

87

columns. A mechanism is therefore required to allow
the user to define the shape of these entities, and then
to apply this shape to the hOCR data so that succes-
sive lines (approximately) matching that shape can be
either discarded (headers and footers) or grouped into
lexical entries. This post-processing step is the first part
of what we will call Stage 1.
There are several other steps needed to reliably group

lines output by Tesseract into lexical entries. Tesseract
does appear to correctly capture the division of lines be-
tween columns (without incorrectly joining lines across
columns), but it does not create an actual column struc-
ture. This must be inferred in post-processing, so that
lexical entries which are broken across columns can be
re-joined. (Page breaks are of course correctly parsed.)
We have constructed a program (written in Python) to

do this step of inferring the division of the OCRed text
into components. A human supplies several parameters
to the program, including:

• The number of columns on a page, and their left-
hand margins relative to the page.4

• Any information that spans columns. These are
typically headers and/or footers, but see below for
other information which may fall into this cate-
gory.

• Number of tab stops in lexical entries. Lexical en-
tries are often formatted as hanging indent para-
graphs; in such a case, the indent would be the first
tab stop. For some dictionaries there may be ad-
ditional tab stops (indents), as in the Muinane dic-
tionary of figure 2. At present the user must also
supply an approximate measure for each indent,
but we hope to eliminate the need for that.

The output of Stage 1 is then an XML file whose
structure below the root element consists of a se-
quence of inferred lexical entries. Within these lex-
ical entries, the structure is a sequence of elements, unchanged from
the original input.
Nevertheless, we expect there to be a need formanual

intervention in this inference step. Figure 4 shows sev-
eral potential instance of this in the Cubeo dictionary.
First, while Tesseract is reasonably good at recognizing
that images (such as the picture of the tree in the sec-
ond column) are not text, and ignoring them, the cap-
tions of such figures are generally parsed as paragraphs,
and must be omitted from the machine-readable dictio-
nary.5

4This may of course differ for left- and right-hand pages.
For dictionaries whose headwords are written in right-to-left
scripts, this will probably need to be the right-hand margin of
the columns.

5If pictures are to be included in the machine-readable dic-
tionary, we assume that the process of capturing those images
and linking them to an appropriate entry will be separate from
the process of converting the text portion of the dictionary into
database form.

Second, observe that the letter ‘B’ constitutes a span-
ning element across both columns. That is, while else-
where columns are usually continued at the top of the
page, in this case, columns containing entries beginning
with the letter ‘A’ appear above this spanning element,
while the columns for words beginning with ‘B’ appear
below this.
Finally, note that the upper first column, down to the

spanning ‘B’, consists entirely of the continuation of a
lexical entry on the previous page, and is thus indented
to the first tab stop. In fact, this lexical entry continues
in indented form onto the upper right-hand column. If
our program incorrectly inferred that this indent is the
level at which lexical entries start, instead of the level at
which the second and following lines of a lexical entry
are indented, then our program will infer that the up-
per columns consist of a number of entries, rather than
being a single entry with some subentries.6
Our approach to manual correction is intended to al-

low the user to make corrections in a way that is pre-
served during processing, even during earlier stages of
processing. The motivation for this is as follows: sup-
pose that the user did not notice problems resulting from
the layout of 4 until much additional processing and
manual annotation had taken place. Insofar as this sub-
sequent manual annotation is correct, we wish to pre-
serve it, even if previous stages of automatic processing
need to be re-applied. (Automatic annotation, on the
other hand, can be easily and cheaply re-done, hence
does not require preserving–indeed the reason for re-
doing previous automatic stages would presumably be
to introduce changes in their functioning.) Our pro-
grams therefore preserve human-supplied annotations
so that the annotated file can be re-run through earlier
steps of processing without loss of the user’s work.7
We must therefore provide a means for human cor-

rection of the output at this point in the pipeline, and
do so in a way that does not lose any subsequent anno-
tation, particularly where that subsequent annotation is
done by humans.

4 Inferring Substructure
Once the boundaries between lexical entries have been
tagged, the next step is to build a finite state grammar
giving the order of elements in the dictionary (referred
to by lexicographers as the dictionary’s ‘microstruc-
ture’). This can be written as a regular expression by
observing a sampling of lexical entries. Conceptually,

6In fact the program looks for indents relative to a bound-
ing box around all the text of the page; so in this example,
the indents would probably be correctly determined, since the
lower left-hand column establishes the full width of the text.
However, if the long lexical entry had appeared on a page that
did not have a spanning letter, the page width might have been
incorrectly inferred.

7Another way to preserve human work would be to use
stand-off annotation; but that would require ensuring that the
stand-off annotation pointed only to structures present in the
earliest stages of processing.

88

Figure 4: A page of the Cubeo print dictionary

for example, in the two lexical entries of figure 1, there
are two structures:8

Headword POS GlossWord
Headword POS GlossWord GlossWord \

GlossWord GlossWord `Véase' XRefWord
Hence the task for the user is to create a finite state

grammar representing these two lexical entries, and to
incrementally expand the grammar to match additional
lexical entries. A grammar (still conceptual) combining
the above two structures would be the following:

Headword POS GlossWord+ \
(`Véase' XRefWord)?

Here we have used Kleene plus to indicate that the
GlossWord can be repeated one or more times, paren-
theses for grouping, and ‘?’ to indicate optionality.
The finite state grammar described above can be

thought of as a finite state acceptor (FSA). But in or-
der to transmute the hOCR file into a lexicographically
structured dictionary, a finite state transducer (FST) is
used to convert the elements found in the hOCR file
into the elements needed for the dictionary. For exam-
ple, what we have called ‘Headword’ in the above con-
ceptual grammar is represented in the input by ... ;
this hOCR structure must be converted into lexico-
graphic elements like <form>...</form>.9 Sim-
ilarly, the transducer converts a sequence of con-

8For purposes of this paper, we ignore the subentry.
9The tag represents bold font in this dictionary.

For output, we use the Text Encoding Initiative (TEI) schema

ceptual glosswords, each represented by a ..., into an ele-
ment like

<def>
<cit type="translation" xml:lang="sp">

<quote>...</quote>
</cit>

</def>
Further refinement of this grammar will capture the

fact that the POS is one of a small number of possible
words (‘s’, ‘vt’, etc.), and will take account of punc-
tuation which (in some dictionaries) defines the end of
certain elements.
The grammar is applied to the output from Stage 1

to parse as many lexical entries as it can; unparsed lexi-
cal entries are passed through as-is. Examination of un-
parsed lexical entries will reveal other patterns that need
to be captured, which may include subentries, multiple
senses, etc. semantic restrictions or explanations (such
as ‘trampa (compuesta de madera)’ (= “trap (composed
of wood)”)), etc.
Recall that the hOCR representation tags each line

of the original print dictionary. We have retained these
tags in the output of Stage 1 because some line breaks
may be relevant to parsing. (For example, subentries in
the Tzeltal dictionary start on new lines.) However, line
breaks can also be due to typesetting constraints. The
FST therefore allows newlines between any two tokens,
outputting an epsilon (nothing).
Application of the FST grammar to the output of

Stage 1 produces a derived XML file in which (most)
lexical entries have been transformed from a sequence
of lines, each composed of a sequence of tokens, into
lexicographically tagged entries. This constitutes the
output of Stage 2.
The output of Stage 2 may contain a residue of lexi-

cal entries that do not parse. This may imply deficien-
cies in the grammar, but it may instead be a result of
boundaries between lexical entries which have been in-
correctly OCRed or inferred in Stage 1 processing. The
input structure can be modified to correct such errors,
and the grammar rules re-applied until some desired
proportion of the lexical entries parse successfully.
Finally, the human may choose to parse some of

these non-parsing entries–particularly complex ones–
by hand, a process which we touch on in the next sec-
tion.

5 Post-editing
Ideally, the grammar developed in section 4 will cor-
rectly account for all the lexical entries inferred in sec-
tion 3. In practice, this may not always be the case.
One source of noise which is likely to prevent full cov-
erage is inconsistencies in the print dictionary; another
is typos (treated in section 6, below) which are severe

for dictionaries, see http://www.tei-c.org/release/
doc/tei-p5-doc/en/html/DI.html.

89

enough to prevent correct parsing. But probably the
main reason for incomplete coverage will be unique (or
nearly unique) complex lexical entries, which are not
erroneous per se, but which are enough unlike “normal”
lexical entries that they resist parsing by normal means.
Thus the output of Stage 2may include some lexical en-
tries in the line oriented format output by Stage 1 (fig-
ure 3), rather than as lexical entries parsed into lexi-
cal fields. At some point, it becomes more productive
to convert such anomalous entries by hand, rather than
further modifying the grammar to account for them.
We therefore allow post-editing of the output of

Stage 2, so that the final output contains only those
lexicographic elements appropriate to a dictionary
database, without any of the formatting elements out-
put by the OCR system. We are currently using a pro-
grammer’s editor to do this post-editing; we may later
substitute an XML editor specialized for dictionaries,
which has been developed by David Zajic and others in
our group.

6 Typo correction

As mentioned in section 1, OCR systems (and human
typing) will produce typographic errors. This prob-
lem is particularly acute in dictionaries of minority lan-
guages, since it is unlikely that one can find an off-the-
shelf OCR model tuned for such a language. Minor-
ity languages may also introduce unusual characters;
Cubeo, for example, has a single (but frequent) verbal
root that contains the only phonemically contrastive in-
stance of a voiced interdental fricative, and the Cubeo
dictionary writes it as a barred ‘d’, a letter not recog-
nized by our OCR system.10 The fact that such dic-
tionaries are likely to be bilingual further exacerbates
the problem, since at the time the OCR process runs,
there is no indication of which words are in which lan-
guage; so even if one did have a character-based lan-
guage model to help discover typos, the system would
not know which words to apply that to.
But of course the latter problem is solved once we

have converted the OCR output into an XML dictio-
nary file; we then know which fields encode which lan-
guages. At that point, various techniques can be em-
ployed to find possible typos, whether using a stan-
dard spell corrector for the glossing language, creat-
ing a character-based language model of the minority
language, or manually searching in the minority lan-
guage fields for particular sequences of characters (such
as characters characterizing that one Cubeo verb root,
using an ordinary ‘d’ for search in place of the desired
barred-d). We therefore treat typo correction as a nearly
last step, rather than an initial step.

10Morse and M. B. Maxwell 1999, p. 5 treats this as virtu-
ally allophonic, but the Cubeo dictionary writes it in this one
morpheme with a distinct alphabetic character.

7 Conversion to standard XML schemas

The structure of the output of the processing described
above should match the conceptual structure of the
original print dictionary. For reasons which will not be
discussed here, this is probably not the optimum struc-
ture for electronic dictionaries. For example, while
print dictionaries frequently treat phrasal entries as
subentries of one of the words found in the phrase,
it is more common in lexicographic databases to treat
phrasal entries as separate lexical entries, linked to each
of the words of which they are composed. A view of a
phrasal entry as a subentry of these words can then be
created on the fly.
The Lexical Markup Framework (LMF, Francopoulo

2013; ISO TC37 2008) is a meta-schema finding in-
creasing use for electronic dictionaries. There is no
comparable standard for print dictionaries; however,
the Text Encoding Initiative (TEI) Guidelines (TEI
Consortium 2016), particularly chapter 9, contain an
ample set of tags that should be usable for virtually any
dictionary. While we cannot treat here the conversion
between a custom XML file derived from a particular
print dictionary (which might conform to the TEI) and
other standards (such as LMF), we do consider that con-
version to be a recommended practice.

8 Related work

To the best of our knowledge, there has been little pub-
lished about how to convert OCRed (or hand-typed)
lexical data into a database format. From what we can
ascertain from personal communication and examina-
tion of errors in converted dictionaries, what is usually
done is to process such data using a chain of scripts,
using regular expressions to convert whatever informa-
tion is available into a target format, generally SGML
or (more recently) XML.
There is one documented project that developed

a more general means of importing OCRed dictio-
naries. This is the earlier University of Maryland
project, BRIDGE (Karagol-Ayan, D. Doermann, and
Dorr 2003; Ma et al. 2003). Unfortunately, the software
developed under that project hadmultiple dependencies
which are no longer readily available, so the tools are
not working; our attempts to re-create the workflow us-
ing more modern, freely available software did not suc-
ceed. Also, while that project relied heavily onmachine
learning, we are creating a more manual process, which
we expect to be easier to maintain and modify.
In a series of papers, Zajic and his collaborators at

our institution have explored error detection in digital
dictionaries (Zajic, Bloodgood, et al. 2015; Zajic, D. S.
Doermann, Bloodgood, et al. 2012; Zajic, D. S. Doer-
mann, Rodrigues, et al. 2013; Zajic, M. Maxwell, et al.
2011). This work will inform our work on the parsing
of lexical entries (4); as mentioned in section 5, we may
also incorporate the specialized XML editor that group
has developed.

90

9 Availability
We will make our software available as open source,
although the exact license has not been determined.

References
Bartholomew, Doris A. and Louise C. Schoenhals.
(1983). Bilingual dictionaries for indigenous lan-
guages. Mexico: Summer Institute of Linguistics.

Bird, Steven and Gary Simons (2003). “Seven dimen-
sions of portability for language documentation and
description.” In: Language 79.3, pp. 557–582.

Borghoff, U.M., P. Rödig, J. Scheffczyk, and L.
Schmitz (2006). Long-Term Preservation of Dig-
ital Documents: Principles and Practices. Berlin:
Springer.

Cruz, Manuel A., Florence L. Gerdel, and Mari-
anna C. Slocum (1999). Diccionario tzeltal de
Bachajón, Chiapas. Serie de vocabularios y dic-
cionarios indígenas “Mariano Silva y Aceves” 40.
Coyoacán, D.F., Mexico: Instituto Lingüístico de
Verano, A.C. : http : / / www . sil . org /
system / files / reapdata / 52 / 85 / 76 /
52857610164780871251544555610851968393 /
S040_DicTzeltalFacs_tzh.pdf.

Francopoulo, Gil, ed. (2013). LMF: Lexical Markup
Framework. Hoboken, NJ: Wiley.

Govindaraju, Venu and Srirangaraj Setlur, eds. (2009).
Guide to OCR for Indic Scripts: Document Recogni-
tion and Retrieval. London: Springer.

Grimes, Joseph E. (1970). “Computing in Lexicogra-
phy.” In: The Linguistic Reporter 12.5–6, pp. 1–
5. : http : / / citeseerx . ist . psu . edu /
viewdoc/download;?doi=10.1.1.620.9976&
rep=rep1&type=pdf.

ISO TC37 (2008). Language resource management —
Lexical markup framework (LMF). Technical Report
ISO 24613:2008.

Karagol-Ayan, Burcu, David Doermann, and Bonnie
Dorr (2003). “Acquisition of Bilingual MT Lexicons
from OCRed Dictionaries.” In:Machine Translation
Summit IX.

Ma, Huanfeng, Burcu Karagol-Ayan, David Doermann,
Doug Oard, and Jianqiang Wang (2003). “Parsing
and Tagging of Bilingual Dictionaries.” In: Traite-
ment Automatique Des Langues 44, pp. 125–150.

Morse, Nancy L., Jr. Jay K. Salser, and Neva de Salser
(1999). Diccionario Ilustrado Bilingüe: cubeo–
español,español–cubeo. Bogotá: Editorial Alberto
Lleras Camargo. : https://www.sil.org/
resources/publications/entry/19008.

Morse, Nancy L. and Michael B. Maxwell (1999).
Cubeo Grammar. Studies in the Languages of
Colombia 5. Dallas: Summer Institute of Linguistics.

Slocum, Marianna C. and Florence L. Gerdel (1976).
Diccionario tzeltal de Bachajón: castellano – tzeltal,
tzeltal – castellano. Serie de vocabularios y dic-

cionarios indígenas “Mariano Silva y Aceves” 13.
México, D.F.: Instituto Lingüístico de Verano.

Smith, Ray, Daria Antonova, and Dar-Shyang Lee
(2009). “Adapting the Tesseract open source OCR
engine for multilingual OCR.” In: MOCR ’09: Pro-
ceedings of the International Workshop on Multilin-
gual OCR. New York: ACM. : http://doi.
acm.org/10/1145/1577802.1577804.

TEI Consortium (2016). TEI P5: Guidelines for Elec-
tronic Text Encoding and Interchange. Technical Re-
port. Charlottesville, Virginia. : http://www.
tei-c.org/Guidelines/P5/.

Walton, James W., Janice P. Walton, and Clementina
Pakky de Buenaventura (1997). Diccionario Bil-
ingüe muinane–español, español–muinane. Bogotá:
Editorial Alberto Lleras Camargo.

Zajic, David M., Michael Bloodgood, Benjamin
Strauss, and Elena Zotkina (2015). Faster, More
Thorough Error Detection in Electronic Dictionar-
ies. Technical Report. University of Maryland: Cen-
ter for Advanced Study of Language.

Zajic, David M., David S. Doermann, Michael Blood-
good, Paul Rodrigues, Peng Ye, Dustin Foley, and
Elena Zotkina (2012). AHybrid System for Error De-
tection in Electronic Dictionaries. Technical Report.
University of Maryland: Center for Advanced Study
of Language.

Zajic, David M., David S. Doermann, Paul Rodrigues,
Peng Ye, and Elena Zotkina (2013). Faster, More
Accurate Repair of Electronic Dictionaries. Techni-
cal Report. University of Maryland: Center for Ad-
vanced Study of Language.

Zajic, David M., Michael Maxwell, David S. Do-
ermann, Paul Rodrigues, and Michael Bloodgood
(2011). “Correcting Errors in Digital Lexicographic
Resources Using a Dictionary Manipulation Lan-
guage.” In: Proceedings of Electronic Lexicography
in the 21st Century (eLex). Vol. abs/1410.7787. :
http://arxiv.org/abs/1410.7787.

91

