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Abstract

We present a submission to the CogALex 2016 shared task on the corpus-based identification
of semantic relations, using LexNET (Shwartz and Dagan, 2016), an integrated path-based and
distributional method for semantic relation classification. The reported results in the shared task
bring this submission to the third place on subtask 1 (word relatedness), and the first place on
subtask 2 (semantic relation classification), demonstrating the utility of integrating the comple-
mentary path-based and distributional information sources in recognizing concrete semantic rela-
tions. Combined with a common similarity measure, LexNET performs fairly good on the word
relatedness task (subtask 1). The relatively low performance of LexNET and all other systems
on subtask 2, however, confirms the difficulty of the semantic relation classification task, and
stresses the need to develop additional methods for this task.

1 Introduction

Discovering whether words are semantically related and identifying the specific semantic relation that
holds between them is a key component in many NLP applications, such as question answering and rec-
ognizing textual entailment (Dagan et al., 2013). Automated methods for semantic relation identification
are commonly corpus-based, and mainly rely on the distributional representation of each word.

The CogALex shared task on the corpus-based identification of semantic relations consists of two
subtasks. In the first task, the system needs to identify for a word pair whether the words are semantically
related or not (e.g. True:(dog, cat), False:(dog, fruit)). In the second task, the goal is to determine the
specific semantic relation that holds for a given pair, if any (PART OF:(tail, cat), HYPER:(cat, animal)).

In this paper we describe our approach and system setup for the shared task. We use LexNET (Shwartz
and Dagan, 2016), an integrated path-based and distributional method for semantic relation classification.
LexNET was the system with the overall best performance on subtask 2, and was ranked third on subtask
1, demonstrating the utility of integrating the complementary path-based and distributional information
sources in recognizing semantic relatedness.1

To aid in recognizing whether a pair of words are related at all (subtask 1), we combine LexNET
with a common similarity measure (cosine similarity), achieving fairly good performance, and a slight
improvement upon using cosine similarity alone. Subtask 2, however, has shown to be extremely diffi-
cult, with LexNET and all other systems achieving relatively low F1 scores. The conflict between the
mediocre performance and the recent success of distributional methods on several other common datasets
for semantic relation classification (Baroni et al., 2012; Weeds et al., 2014; Roller et al., 2014) could be
explained by the stricter evaluation setup in this subtask, which is supposed to demonstrate more closely
real-world application settings. The difficulty of the semantic relation classification task emphasizes the
need to develop better methods for this task.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/

1LexNET’s code is available at https://github.com/vered1986/LexNET, and the shared task results are avail-
able at https://sites.google.com/site/cogalex2016/home/shared-task/results
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2 Background

2.1 Word Relatedness

Recognizing word relatedness is typically addressed by distributional methods. To determine to what ex-
tent two terms x and y are related, a vector similarity or distance measure is applied to their distributional
representations: sim(~vwx , ~vwy). This is a straightforward application of the distributional hypothesis
(Harris, 1954), according to which related words occur in similar contexts, hence have similar vector
representations.

Most commonly, vector cosine is adopted as a similarity measure (Turney et al., 2010). Many other
measures exist, including but not limited to Euclidean distance, KL divergence (Cover and Thomas,
2012), Jaccard’s coefficient (Salton and McGill, 1986), and more recently neighbor rank (Hare et al.,
2009; Lapesa and Evert, 2013) and APSyn (Santus et al., 2016a).2 To turn this task into a binary clas-
sification task, where x and y are classified as either related or not, one can set a threshold to separate
similarity scores of related and unrelated word pairs.

2.2 Semantic Relation Classification

Recognizing lexical semantic relations between words is valuable for many NLP applications, such as
ontology learning, question answering, and recognizing textual entailment. Most corpus-based methods
classify the relation between a pair of words x and y based on the distributional representation of each
word (Baroni et al., 2012; Roller et al., 2014; Fu et al., 2014; Weeds et al., 2014). Earlier methods
utilized the dependency paths that connect the joint occurrences of x and y in the corpus as a cue to
the relation between the words (A. Hearst, 1992; Snow et al., 2004; Nakashole et al., 2012). Recently,
Shwartz and Dagan (2016) presented LexNET, an extension of HypeNET (Shwartz et al., 2016). This
method integrates both path-based and distributional information for semantic relation classification,
which outperformed approaches that rely on a single information source, on several common datasets
(Baroni and Lenci, 2011; Necsulescu et al., 2015; Santus et al., 2015; Santus et al., 2016b).

3 System Description

In LexNET, a word-pair (x, y) is represented as a feature vector, consisting of a concatenation of distri-
butional and path-based features: ~vxy = [~vwx , ~vpaths(x,y), ~vwy ], where ~vwx and ~vwy are x and y’s word
embeddings, providing their distributional representation, and ~vpaths(x,y) is the average embedding vec-
tor of all the dependency paths that connect x and y in the corpus. Dependency paths are embedded
using a LSTM (Hochreiter and Schmidhuber, 1997), as described in Shwartz et al. (2016). This vector
is then fed into a neural network that outputs the class distribution ~c, and then the pair is classified to the
relation with the highest score r:

~c = softmax(MLP(~vxy)) (1a)

r = argmaxi ~c[i] (1b)

MLP stands for Multi Layer Perceptron, and could be computed with or without a hidden layer (equations
2 and 3, respectively):

~h = tanh(W1 · ~vxy + b1) (2a)

MLP(~vxy) = W2 · ~h + b2 (2b)

MLP(~vxy) = W1 · ~vxy + b1 (3)

where Wi and bi are the network parameters and ~h is the hidden layer.

2See Lee (1999) for an extensive list of such measures.
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Method Hyper-parameters Corpus size P R F1

Subtask 1
Cos word2vec, t: 0.3 100B 0.759 0.795 0.776

LexNET hidden layers: 0, dropout: 0.0, epochs: 3 6B 0.780 0.561 0.652
LexNET+Cos word2vec, wL = 0.3, wC = 0.7, t = 0.29 ∼100B 0.814 0.854 0.833

Subtask 2 Dist dep-based, method: concat, classifier: SVM, L1 3B 0.611 0.598 0.600
LexNET hidden layers: 0, dropout: 0.0, epochs: 5 6B 0.658 0.646 0.642

Table 1: Performance scores on the validation set along with hyper-parameters and effective corpus size
(#tokens) used by each method. Subtask 2 results refer to the subset of related pairs, as detailed in § 4.2.

3.1 A Note About Word Relatedness
While path-based approaches have been commonly used for semantic relation classification (A. Hearst,
1992; Snow et al., 2004; Nakashole et al., 2012; Necsulescu et al., 2015), they have never been used
for word relatedness, which is considered a “classical” task for distributional methods. We argue that
path-based information can improve performance of word relatedness tasks as well (see Section 4.1). We
train LexNET to distinguish between two classes: RELATED and UNRELATED, and combine it with the
common cosine similarity measure to tackle subtask 1.

4 Experimental Settings

The shared task organizers provided a dataset extracted from EVALution 1.0 (Santus et al., 2015), which
was split into training and test sets. As instructed, we trained and tuned our method on the training set,
and evaluated it once on the test set. To tune the hyper-parameters, we split the training set to 90% train
and 10% validation sets. Since the dataset contains only 318 different words in the x slot, we performed
the split such that the train and the validation contain distinct x words.3

LexNET has several tunable hyper-parameters. Similarly to Shwartz and Dagan (2016), we used
the English Wikipedia dump from May 2015 as an underlying corpus (3B tokens), and initialized the
network’s word embeddings with the 50-dimensional pre-trained GloVe word embeddings (Pennington
et al., 2014), trained on Wikipedia and Gigaword 5 (6B tokens). We fixed this hyper-parameter due to
computational limitations with higher-dimensional embeddings. For each subtask, we tuned LexNET’s
hyper-parameters on the validation set: the number of hidden layers (0 or 1), the number of training
epochs, and the word dropout rate (see Shwartz et al. (2016) for technical details). Table 1 displays
the best performing hyper-parameters in each subtask, along with the performance on the validation set,
which is detailed below.

4.1 Subtask 1: Word Relatedness
We tuned LexNET’s hyper-parameters on the validation set, disregarding the similarity measure at this
point, and then chose the model that performed best on the validation set and combined it with the
similarity measure.

We computed cosine similarity for each (x, y) pair in the dataset: cos(~vwx , ~vwy) = ~vwx ·~vwy

‖~vwx‖·‖~vwy‖ , and
normalized it to the range [0, 1]. We scored each (x, y) pair by a combination of LexNET’s score for the
RELATED class and the cosine similarity score:

Rel(x, y) = wC · cos(~vwx , ~vwy) + wL · ~c[RELATED] (4)

where wC , wL are the weights assigned to cosine similarity and LexNET’s scores respectively, such that
wC + wL = 1. We tuned the weights and a threshold t using the validation set, and classified (x, y)
as related if Rel(x, y) ≥ t. The word vectors used to compute the cosine similarity scores were chosen
among several available pre-trained embeddings.4 For completeness we also report the performance of
two baselines: cosine similarity (wC = 1) and LexNET (wL = 1, fixed t = 0.5).

3A random split yielded perfect results on the validation set, which were due to lexical memorization (Levy et al., 2015).
4word2vec (300 dimensions, SGNS, trained on GoogleNews, 100B tokens) (Mikolov et al., 2013), GloVe (50-300 dimen-

sions, trained on Wikipedia and Gigaword 5, 6B tokens) (Pennington et al., 2014), and dependency-based embeddings (300
dimensions, trained on Wikipedia, 3B tokens) (Levy and Goldberg, 2014).
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Method P R F1

Subtask 1

Random Baseline 0.283 0.503 0.362
Majority Baseline 0.000 0.000 0.000

Cos 0.841 0.672 0.747
LexNET+Cos 0.754 0.777 0.765

Subtask 2

Random Baseline 0.073 0.201 0.106
Majority Baseline 0.000 0.000 0.000

Dist 0.469 0.371 0.411
LexNET 0.480 0.418 0.445

Table 2: Performance scores on the test set in each subtask, of the selected methods and the baselines.

4.2 Subtask 2: Semantic Relation Classification
The subtask’s train set is highly imbalanced towards random instances (roughly 10 times more than any
other relation), and training any supervised method leads to overfitting to the random class. We therefore
trained the model only on the related classes (excluding RANDOM pairs), for which the classes are more
balanced. During inference time, we used the model from subtask 1 to assign a relatedness score to each
pair, Rel(x, y), and computed the class distribution using the model from subtask 2, only for pairs that
were related according to this score.

Finally, we applied a heuristic that if for a word pair (x, y), the difference in scores between the top
scoring classes is low (< 0.2), and the top class is SYN, then it is only classified as SYN if the number of
paths between x and y is smaller than 3. This is due to the fact that synonyms are hard to recognize with
both distributional and path-based approaches (Shwartz and Dagan, 2016), but it is known that they do
not tend to co-occur.

To compare LexNET’s performance on the validation set with other methods’ performances, we
adapted the distributional baseline employed by Shwartz et al. (2016) and Shwartz and Dagan (2016),
where a classifier is trained on the combination of x and y’s word embeddings. We experimented with
several combination methods (concatenation (Baroni et al., 2012), difference (Fu et al., 2014; Weeds et
al., 2014), and ASYM (Roller et al., 2014)), regularization factors, and pre-trained word embeddings
(Mikolov et al., 2013; Pennington et al., 2014; Levy and Goldberg, 2014). This time, we used cosine
similarity (subtask 1) to separate related from unrelated pairs, and trained the classifier only to distinguish
between the related classes. Similarly to subtask 1, we tune LexNET and the baseline’s hyper-parameters
on the validation set. The best performance is reported in Table 1.

5 Results and Analysis

Table 2 displays the performance of our methods and the baselines on the test set. In addition to the
two baselines provided by the shared task organizers (majority and random), we report also the results
of our baselines detailed in Section 4. The majority baseline classifies all the instances as UNREALTED

(subtask 1) or RANDOM (subtask 2). Since these labels are excluded from the averaged F1 computation,
this baseline’s performance metrics are all zero.

Subtask 1: Word Relatedness Cos achieves fairly good performance (F1 = 0.747), and
LexNET+Cos slightly improves upon it. To better understand LexNET’s contribution, we examined
pairs that were correctly classified by LexNET+Cos while being incorrectly classified by Cos. Out
of the 57 pairs that were true negative in LexNET and false positive in Cos, we judged only one as
somehow related ((death, man)).

We sampled 25 (from the 184) true positive pairs in LexNET+Cos that were false negatives in Cos,
and found that they were all connected via paths in the corpus, suggesting that LexNET’s contribution
comes also from the path-based component, rather than only from adding distributional information. 12
of the pairs contained a polysemous term, for which the relation holds in a specific sense (e.g. (fire,
shoot)). 5 other pairs had a weak relation, e.g. (compact, car). While a car can be compact, non of these
words is one of the most related words to the other.5 As noted by Shwartz and Dagan (2016), these are

5car is mostly related to driver, cars, and race, and compact to compactness and locally.
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predictions
ANT RANDOM HYPER PART OF SYN

go
ld

ANT 40.28 30.28 5.56 5.83 18.06
RANDOM 2.35 93.07 1.31 1.37 1.90

HYPER 10.21 22.77 45.81 6.02 15.18
PART OF 2.23 37.05 6.70 47.77 6.25

SYN 25.96 20.43 14.47 7.23 31.91

relation P R F1

ANT 0.450 0.403 0.425
RANDOM 0.897 0.931 0.914

HYPER 0.616 0.458 0.526
PART OF 0.510 0.478 0.493

SYN 0.278 0.319 0.297

Figure 1: Left: confusion matrix of LexNET’s predictions to the subtask 2 test set. Rows indicate gold
labels and columns indicate predictions. The value in [i, j] is the percentage of pairs classified to relation
j of those labeled i. Right: Per-relation F1 scores of LexNET’s predictions to the test set of subtask 2.

cases in which distributional methods may fail to identify the relation between the words, while even a
single meaningful path connecting x and y can capture the relation between them.

Subtask 2: Semantic Relation Classification We note that the overall results on this task are low,
in contrast to the success of several methods on common datasets (Baroni et al., 2012; Weeds et al.,
2014; Roller et al., 2014; Shwartz and Dagan, 2016). One possible explanation is the stricter and more
informative evaluation, that considers the RANDOM class as noise, discarding it from the F1 average.6

Additionally, the dataset is lexically split, disabling lexical memorization (Levy et al., 2015). However,
the strict evaluation spots a light on the difficulty of this task, which was somewhat obfuscated by the
strong results published so far, but might have been obtained thanks to dataset and evaluation peculiarities
(Levy et al., 2015; Santus et al., 2016b; Shwartz and Dagan, 2016).

Figure 1 displays LexNET’s per relation F1 scores on the test set, with the corresponding confusion
matrix. While the F1 scores of individual classes are relatively low, the confusion matrix shows that pairs
were always classified to the correct relation more than to any other class. A common error comes from
subtask 1’s model: while most unrelated pairs were classified as unrelated, many related pairs were also
classified as unrelated. This may be solved in the future by learning the two subtasks jointly rather than
applying a pipeline.

Among the other relations, the performance on synonyms was the worst. The path-based component
is weak in recognizing synonyms, which do not tend to co-occur. The distributional information causes
confusion between synonyms and antonyms, since both tend to occur in the same contexts. Moreover,
synonyms were also sometimes mistaken with hypernyms, as the difference between the two relations is
often subtle (Shwartz et al., 2016).

6 Conclusion

We have presented our submission to the CogALex 2016 shared task on corpus-based identification of
semantic relations. The submission is based on LexNET (Shwartz and Dagan, 2016), an integrated path-
based and distributional method for semantic relation classification. LexNET was the best-performing
system on subtask 2, demonstrating the utility of integrating the complementary path-based and distri-
butional information sources in recognizing semantic relatedness.

We have shown that subtask 1 (word relatedness) reaches reasonable performance with cosine simi-
larity, and is slightly improved when combined with LexNET, especially when the relation between the
words is non-prototypical. The performance on subtask 2, however, was relatively low for all systems
that participated in the shared task, including LexNET. This demonstrates the difficulty of the semantic
relation classification task, and emphasizes the need to develop improved methods for this task, possibly
using additional sources of information.
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