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Abstract

When translating formal documents, capturing the sentence structure specific to the sublanguage
is extremely necessary to obtain high-quality translations. This paper proposes a novel global
reordering method with particular focus on long-distance reordering for capturing the global
sentence structure of a sublanguage. The proposed method learns global reordering models from
a non-annotated parallel corpus and works in conjunction with conventional syntactic reordering.
Experimental results on the patent abstract sublanguage show substantial gains of more than
25 points in the RIBES metric and comparable BLEU scores both for Japanese-to-English and
English-to-Japanese translations.

1 Introduction

Formal documents such as legal and technical documents often form sublanguages. Previous studies
have highlighted that capturing the sentence structure specific to the sublanguage is extremely necessary
for obtaining high-quality translations especially between distant languages (Buchmann et al., 1984;
Luckhardt, 1991; Marcu et al., 2000). Figure 1 illustrates two pairs of bilingual sentences specific to the
sublanguage of patent abstracts. In both sentence pairs, the global sentence structure ABC in the source
sentences must be reordered to CBA in the target sentences to produce a structurally appropriate trans-
lation. Each of the components ABC must then be syntactically reordered to complete the reordering.

Various attempts have been made along this line of research. One such method is the skeleton-based
statistical machine translation (SMT) which uses a syntactic parser to extract the global sentence struc-
ture, or the skeleton, from syntactic trees and uses conventional SMT to train global reordering (Melle-
beek et al., 2006; Xiao et al., 2014). However, the performance of this method is limited by syntactic
parsing, therefore the global reordering has low accuracy where the accuracy of syntactic parsing is low.
Another approach involves manually preparing synchronous context-free grammar rules for capturing
the global sentence structure of the target sublanguage (Fuji et al., 2015). However, this method requires
manual preparation of rules. Both methods are unsuitable for formal documents such as patent abstracts,
because they fail to adapt to sentences with various expressions, for which manual preparation of rules
is complex.

This paper describes a novel global reordering method for capturing sublanguage-specific global sen-
tence structure to supplement the performance of conventional syntactic reordering. The method learns
a global pre-ordering model from non-annotated corpora without using syntactic parsing and uses this
model to perform global pre-ordering on newly inputted sentences. As the global pre-ordering method
does not rely on syntactic parsing, it is not affected by the degradation of parsing accuracy, and is readily
applicable to new sublanguages. Globally pre-ordered sentence segments are then syntactically reordered
before being translated by SMT.

In this empirical study on the patent abstract sublanguage in Japanese-to-English and English-to-
Japanese translations, the translation quality of the sublanguage was improved when global pre-ordering
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Pair 1 Japanese [[Aアンテナ資源を有効に活用して信頼性の高い通信を行うことが
できる ][B 通信装置を ][C 提供すること。]]

Japanese (word-for-
word translation)

[[A Antenna resources effectively utilizing reliability high communica-
tion perform capable][B communication apparatus][C to provide.]]

English [[C To provide][B a communication apparatus][A capable of perform-
ing highly reliable communication by effectively utilizing antenna re-
sources.]]

Pair 2 Japanese [[A高画質な画像を形成できる ][B 画像形成装置を ][C 提供する。]]
Japanese (word-for-
word translation)

[[A High quality images form enable][B image formation device][C to
provide.]]

English [[C To provide][B an image formation device][A which enables high
quality images to be formed.]]

Figure 1: Example of sublanguage-specific bilingual sentences requiring global reordering. A, B, C are
the sentence segments constituting global sentence structures.

was combined with syntactic pre-ordering. A statistically significant improvement was observed against
the syntactic pre-ordering alone, and a substantial gain of more than 25 points in RIBES score against the
baseline was observed for both Japanese-to-English and English-to-Japanese translations, and the BLEU
scores remained comparable.

2 Related Work

The hierarchical phrase-based method (Chiang, 2005) is one of the early attempts at reordering for SMT.
In this method, reordering rules are automatically extracted from non-annotated text corpora during the
training phase, and the reordering rules are applied in decoding. As the method does not require syntactic
parsing and learns from raw text corpora, it is highly portable. However, this method does not specifically
capture global sentence structures.

The tree-to-string and string-to-tree SMTs are the methods which employ syntactic parsing, whenever
it is available, either for the source or for the target language to improve the translation of the language
pair (Yamada and Knight, 2001; Ambati and Chen, 2007). However, these methods too are not specifi-
cally designed for capturing global sentence structures.

The skeleton-based SMT is a method particularly focusing on the reordering of global sentence struc-
ture (Mellebeek et al., 2006; Xiao et al., 2014). It uses a syntactic parser to extract the global sentence
structure, or the skeleton, from syntactic trees, and uses conventional SMT to train global reordering.
Another related approach is the reordering method based on predicate-argument structure (Komachi et
al., 2006). However, the performance of sentence structure extraction tends to be low when the accuracy
of the syntactic parsing is low.

The syntactic pre-ordering is the state-of-the-art method which has substantially improved reordering
accuracy, and hence the translation quality (Isozaki et al., 2010b; Goto et al., 2015; de Gispert et al.,
2015; Hoshino et al., 2015). However, the adaptation of this method to a new domain requires manually
parsed corpora for the target domains. In addition, the method does not have a specific function for
capturing global sentence structure. Thus, we apply here our proposed global reordering model as a
preprocessor to this syntactic reordering method to ensure the capturing of global sentence structures.

3 Global Pre-ordering Method

We propose a novel global reordering method for capturing sublanguage-specific global sentence struc-
ture. On the basis of the finding that sublanguage-specific global structures can be detected using rela-
tively shallow analysis of sentences (Buchmann et al., 1984), we extract from the training set the n-grams
frequently occurring in sentences involving global reordering and use these n-grams to detect the global
structure of newly inputted sentences.
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Figure 2: An example of segments arranged in swap orientations for English to Japanese translation

For example, Figure 1 shows two sentence pairs in the training set that contain global reordering, where
the segments ABC in the source sentence must be reordered globally to CBA in the target sentence to
obtain structurally appropriate translations. With segment boundaries represented by the symbol ”|”, the
extraction of unigrams on both sides of the two segment boundaries of sentence E1 of Figure 1 yields

{provide, |, a} {apparatus, |, capable}.

When we input the sentence ”To provide a heating apparatus capable of maintaining the temperature,”
this is matched against the above unigrams. Thus, the segment boundary positions are detected as ”To
provide | a heating apparatus | capable of maintaining the temperature.” The detected segments are then
reordered globally to yield the sentence ”Capable of maintaining the temperature | a heating apparatus
| to provide,” which has the appropriate global sentence structure for the target Japanese sentence. Each
segment is then syntactically reordered before inputting to English-to-Japanese SMT.

The method consists of two steps. Step (i): we extract sentence pairs containing global reordering
from the training corpus. We call this subset of the training corpus the global reordering corpus. Step
(ii): we extract features from the source sentences of the global reordering corpus, and use these features
to detect the segments of newly inputted sentences. We then reorder these detected segments globally.
In step (ii), we experiment with a detection method based on heuristics, as well as a method based on
machine learning. Steps (i) and (ii) are described in the following subsections.

3.1 Extraction of Sentence Pairs Containing Global Reordering
We extract sentences containing global reordering from the training corpus and store them in the global
reordering corpus; they can subsequently be used for training and prediction. We consider that a sentence
pair contains global reordering if the segments in the target sentence appear in swap orientation (Galley
and Manning, 2008) to the source segments, when the sentences are divided into two or three segments
each. Figure 2 shows an example of a sentence pair involving global reordering with the sentence divided
into three segments. We take the following steps:

1. We divide each source and target sentence into two or three segments. The candidate segments start
at all possible word positions in the sentence. Here, a sentence pair consisting of K segments is
represented as (ϕ1, ϕ2 · · ·ϕK), where ϕk consists of the kth phrase of the source sentence and αk

th

phrase of the target sentence. These segments meet the standard phrase extraction constraint.
2. By referring to the alignment table, the source and target phrases of ϕk are considered to be in swap

orientation if αk = αk+1 + 1.
3. From the candidates produced in step1, we select all segments satisfying the conditions of step 2. If

there is more than one candidate, we select the segment candidate based on the head directionality of
the source sentence. For a head-initial language, such as English, we select the candidate for which
ϕK has the largest length. For a head-final language, such as Japanese, we select the candidate for
which ϕ1 has the largest length.
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ID n-grams len freq
m1 prevent, | 1 2217
m2 To, prevent, | 2 1002
m3 To, prevent, |, imperfect 3 120
m4 To, prevent, |, imperfect, coating 4 18

Figure 3: Example of n-gram matching against an input sentence containing two segments. The input
sentence is “To prevent imperfect coating and painting.”

3.2 Training and Prediction of Global Reordering

3.2.1 Heuristics-based Method
In the heuristics-based method, we extract n-grams from the source sentences of the global reordering
corpus and match these n-grams against a newly inputted sentence to perform global reordering. We
call this method heuristics-based, because automatic learning is not used for optimizing the extraction
and matching processes of the n-grams, but rather, we heuristically find the optimal setting for the given
training data. Below, we describe the extraction and matching processes.

N-gram extraction We extract n-grams occurring on both sides of the segment boundary between ad-
jacent segments ϕk and ϕk+1. In the heuristic-based method, n can assume different values in the
left- and right-hand sides of the segment boundary. Let B be the index of the first word in ϕk+1,
and f be the source sentence. Then the range of n-grams extracted on the left-hand side of f is as
follows where nL is the value n of the n-gram.

(fB−nL, fB−nL+1 · · · fB−1) (1)
Likewise, the range of n-grams extracted from the right-hand side of f is as follows where nR
denotes the value n of the n-gram.

(fB · · · fB+nR−2, fB+nR−1) (2)
Decoding The decoding process of our global reordering is based on n-gram matching. We hypothesize

that the matching candidate is more reliable (i) when the length of the n-gram matching is larger
and/or (ii) when the occurrence frequency of the n-grams is higher. Thus, we heuristically deter-
mine the following score where len denotes the length of n-gram matching and freq denotes the
occurrence frequency of the n-grams. We calculate the score for all matching candidates and select
the candidate that has the highest score.

log(freq) × len (3)
Figure 3 shows an example of the decoding process for an input sentence containing two segments,
i.e., K = 2, with one segment boundary. m1 through m4 are the n-grams matching the input
sentence “To prevent imperfect coating and painting,” where “|” denotes the position of the segment
boundary. The matching length is indicated by len which is the sum of nL and nR on both sides
of the segment boundary. For example, for m3, the occurrence frequency is given as 120 and len is
calculated such that len = nL + nR = 2 + 1 = 3. A score is calculated using equation 3 for all
candidates, m1 through m4, and the candidate obtaining the highest score is used to determine the
segment boundary.

3.2.2 Machine Learning-based Method
As the heuristic method involves intuitive determination of settings, which makes it difficult to optimize
the performance of the system, we introduce machine learning to facilitate the optimization of segment
detection. We regard segment boundary prediction as a binary classification task and use support vector
machine (SVM) models to perform training and prediction. We train an SVM model to predict whether
each of the word positions in the input sentence is a segment boundary by providing the features relating
to the word in question. We use two types of features, as described below, for SVMs, both for training
and prediction.
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Figure 4: Variation in the boundary prediction
accuracy for Japanese input
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Figure 5: Variation in the boundary prediction
accuracy for English input

• N-grams: Here, n-grams are extracted from both sides of the word under training/prediction. In
contrast to the heuristics-based method, for simplicity, we use here the same value of n for n-grams
in the left- and right-hand sides of the examined word. The n-grams used are as follows, where f is
the sentence, i is the index of the word in question, and n is the value n of n-grams.

(fi−n+1, fi−n+2 · · · fi · · · fi+n−1, fi+n) (4)
• Position in the sentence: The position of the word under training/prediction is provided as a feature.

This feature is introduced to differentiate multiple occurrences of identical n-grams within the same
sentence. The position value is calculated as the position of the word counted from the beginning of
the sentence divided by the number of words contained in the sentence. This is shown as follows,
where i denotes the index of the word in question and F is the number of words contained in the
sentence.

i

F
(5)

In the prediction process, we extract the features corresponding to the word position i and then input
these features to the SVM model to make a prediction for i. By repeating this prediction process for
every i in the sentence, we obtain a sentence with each position i marked either as a segment boundary
or as not a segment boundary. These predicted segments are then reordered globally to produce the
global sentence structure of the target language.

4 Experiments

In this section, we first describe the reordering configuration for depicting the effect of global pre-
ordering. We then describe the primary preparation of global reordering, followed by a description
of the settings used in our translation experiment.

4.1 Reordering Configuration
To illustrate the effect of introducing global pre-ordering, we evaluate the following four reordering
configurations: (T1) Baseline SMT without any reordering; (T2) T1 with global pre-ordering only. The
input sentence is globally pre-ordered, and this reordered sentence is translated and evaluated; (T3) T1
with conventional syntactic pre-ordering (Goto et al., 2015). The input sentence is pre-ordered using
conventional syntactic pre-ordering and the reordered sentence is translated and evaluated; and (T4) T1
with a combination of syntactic and global pre-ordering. The input sentence is globally pre-ordered, each
segment is reordered using syntactic pre-ordering and the reordered sentence is translated and evaluated.

4.2 Preparation of Global Reordering
In preparation for global pre-ordering, we calibrated the machine learning-based detection to determine
the optimal feature set for detecting segments. To determine the optimal feature set, we plotted the
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prediction accuracy with respect to the size of the global reordering corpus and value n of n-grams. As
our support vector machines, we used liblinear 1.94 (Fan et al., 2008) for training and prediction.

Figure 4 shows the variation in the prediction accuracy with respect to the size of the global reordering
corpus and the order of an n-gram for Japanese input. Figure 5 shows the same for English input. The
accuracy is the average accuracy of a ten-fold cross-validation for the global reordering corpus. From the
calibration shown in the tables, we select the settings producing the highest prediction accuracy, namely,
a value of five for the n of n-grams and a size of 100k for the global reordering corpus, for both Japanese
and English inputs.

4.3 Translation Experiment Setup
Data As our experimental data, we use the Patent Abstracts of Japan (PAJ), the English translations

of Japanese patent abstracts. We automatically align (Utiyama and Isahara, 2007) PAJ with the
corresponding original Japanese abstracts, from which we randomly select 1,000,000 sentence pairs
for training, 1,000 for development and 1,000 for testing. This training data for the translation
experiment are also used for training global reordering as described in the previous subsection. Out
of the 1,000 sentences in the test set, we extract the sentences that show any matching with the
n-grams and use these sentences for our evaluation. In our experiments, the number of sentences
actually used for evaluation is 300.

Baseline SMT The baseline system for our experiment is Moses phrase-based SMT (Koehn et al., 2007)
with the default distortion limit of six. We use KenLM (Heafield et al., 2013) for training language
models and SyMGIZA++ (Junczys-Dowmunt and Szal, 2010) for word alignment. The weights of
the models are tuned with the n-best batch MIRA (Cherry and Foster, 2012). As variants of the
baseline, we also evaluate the translation output of the Moses phrase-based SMT with a distortion
limit of 20, as well as that of the Moses hierarchical phrase-based (Chiang, 2005) SMT with the
default maximum chart span of ten.

Conventional syntactic pre-ordering Syntactic pre-ordering is implemented on the Berkeley Parser.
The input sentences are parsed using the Berkeley Parser, and the binary nodes are swapped by
the classifier (Goto et al., 2015). As a variant of conventional reordering, we also use a reordering
model based on the top-down bracketing transducer grammar (TDBTG) (Nakagawa, 2015). We
use the output of mkcls and SyMGIZA++ obtained during the preparation of the baseline SMT for
training TDBTG-based reordering.

Global pre-ordering Global pre-ordering consists of the detection of segment boundaries and the re-
ordering of the detected segments. Out of the 1,000,000 phrase-aligned sentence pairs in the train-
ing set for SMT, we use the first 100,000 sentence pairs for extracting the sentence pairs containing
global reordering. We only use a portion of the SMT training data due to the slow execution speed of
the current implementation of the software program for extracting sentence pairs containing global
reordering. We evaluate both the heuristic and the machine learning-based methods for comparison.

Evaluation metrics We use the RIBES (Isozaki et al., 2010a) and the BLEU (Papineni et al., 2002)
scores as evaluation metrics. We use both metrics because n-gram-based metrics such as BLEU
alone cannot fully illustrate the effects of global reordering. RIBES is an evaluation metric based
on rank correlation which measures long-range relationships and is reported to show much higher
correlation with human evaluation than BLEU for evaluating document translations between distant
languages (Isozaki and Kouchi, 2015).

5 Results

The evaluation results based on the present translation experiment are shown in Tables 1 and 2 for
Japanese-to-English and English-to-Japanese translations respectively, listing the RIBES and BLEU
scores computed for each of the four reordering configurations. The numbers in the brackets refer to
the improvement over the baseline phrase-based SMT with a distortion limit of six.

A substantial gain of more than 25 points in the RIBES scores compared to the baseline is observed for
both Japanese-to-English and English-to-Japanese translations, when global pre-ordering is used in con-
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Table 1: Evaluation of Japanese-to-English translation where glob-pre denotes global pre-ordering and
pre denotes conventional syntactic pre-ordering, dl denotes distortion limit, HPB denotes hierarchical
phrase-based SMT and TDBTG denotes reordering based on top-down bracketing transduction gram-
mar. The bold numbers indicate a statistically insignificant difference from the best system performance
according to the bootstrap resampling method at p = 0.05 (Koehn, 2004).

Reordering config Settings Results
glob-pre pre SMT glob-pre pre RIBES BLEU

T1
PB dl=6 44.9 17.9

PB dl=20 53.7 (+8.8) 21.3 (+3.4)
HPB 54.9 (+10.0) 23.1 (+5.2)

T2
√ PB dl=6 heuristic 61.7 (+16.8) 19.6 (+1.7)

PB dl=6 SVM 61.0 (+16.1) 19.3 (+1.4)

T3
√ PB dl=6 TDBTG 64.6 (+19.7) 22.3 (+4.4)

PB dl=6 syntactic 64.9 (+20.0) 25.5 (+7.6)

T4
√ √ PB dl=6 heuristic syntactic 71.3 (+26.4) 25.3 (+7.4)

PB dl=6 SVM syntactic 72.1 (+27.2) 25.6 (+7.7)

Table 2: Evaluation of English-to-Japanese translation
Reordering config Settings Results

glob-pre pre SMT glob-pre pre RIBES BLEU

T1
PB dl=6 43.2 27.9

PB dl=20 54.4 (+11.1) 29.0 (+1.1)
HPB 59.1 (+15.8) 32.1 (+4.2)

T2
√ PB dl=6 heuristic 59.5 (+16.2) 28.4 (+0.5)

PB dl=6 SVM 65.3 (+22.1) 29.1 (+1.2)

T3
√ PB dl=6 TDBTG 77.7 (+34.5) 34.9 (+7.0)

PB dl=6 syntactic 76.1 (+32.8) 36.9 (+9.0)

T4
√ √ PB dl=6 heuristic syntactic 77.3 (+34.1) 36.5 (+8.6)

PB dl=6 SVM syntactic 77.7 (+34.5) 36.5 (+8.6)

junction with conventional pre-ordering. Also, the combination of global syntactic pre-ordering performs
significantly better than syntactic pre-ordering alone. The BLEU score is not as sensitive to the intro-
duction of global reordering, probably because the improvement is mainly concerned with long-distance
reordering. We will further discuss the matter of evaluation metrics in the following section.

Figure 6 shows typical translations of the four reordering configurations: T1, T2, T3 and T4. Com-
pared with the reference, the baseline (T1) fails to produce segment A and fails to output segments B and
C in the correct order. In addition, the word order within each segment is not appropriate. The baseline
with global pre-ordering (T2) successfully produces all three segments in the correct order, although the
quality within each segment is not improved. The translation using conventional pre-ordering alone (T3)
improves the local word order, while it fails to arrange the segments in the correct order. The transla-
tion with global and syntactic pre-ordering (T4) successfully produces the segments in the correct order,
while at the same time improving the word order in each of the segments.

6 Analysis

To evaluate the ability of our proposed method to produce appropriate sentence structures in translated
sentences, we count the number of sentences with correct global sentence structures among the translated
test sentences. We think this is an important figure because the failure to produce the correct global sen-
tence structure leads to inappropriate translation in most sublanguage-specific translations. We consider
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Reference: [A To provide] [B a toner cake layer forming apparatus] [C which forms a toner cake
layer having a high solid content and which can be actuated by an electrostatic printing engine.]
T1: [C Solid content of high toner cake layer for generating an electrostatic print engine operates
in] [B a toner cake layer forming device.]
T2: [A To provide] [B toner cake layer forming apparatus] [C of the solid content of high toner
cake layer for generating an electrostatic print engine can be operated.]
T3: [C For generating toner cake layer having a high solids content and] [A to provide] [B a toner
cake layer forming device] [C which can be operated by an electrostatic printing engine.]
T4: [A To provide] [B a toner cake layer forming device] [C for generating toner cake layer having
a high solid content, and operable by an electrostatic printing engine.]

Figure 6: Typical translations

Table 3: Number of correct global reordering in 100 test sentences

Reordering config Settings
Correct global reordering

in 100 test sentences

glob-pre pre SMT glob-pre pre
Japanese-to

English
English-to
Japanese

T1
PB dl=6 4 6

PB dl=20 12 15
HPB 11 28

T2
√ PB dl=6 heuristic 24 23

PB dl=6 SVM 31 26

T3
√ PB dl=6 TDBTG 21 59

PB dl=6 syntactic 27 67

T4
√ √ PB dl=6 heuristic syntactic 46 68

PB dl=6 SVM syntactic 58 63

that a translated sentence has a correct global sentence structure if it meets the following two criteria:
(a) The translated sentence actually has the sentence structure CBA, where the source sentence struc-
ture ABC must be reordered to CBA in the target sentence. All the segments must be present in the
correct order in the translated sentence; (b) All the words in each of the ABC segments in the source
sentence must appear in an undivided segment in the target sentence. We randomly select a portion of
the translated test sentences and manually counted the number of sentences meeting these criteria.

Table 3 shows the number of correct global reordering in Japanese-to-English and English-to-Japanese
translations out of the 100 sentences randomly selected from the test set. The table shows that T4, which
combines global and syntactic reordering, has a largely improved sentence structure compared with T1
and T2. In case of Japanese-to-English translation, the performance of T4 is much higher than T3, the
state-of-the-art reordering alone. In case of an English-to-Japanese translation, the performance of the
syntactic reordering is already considerably higher than the baseline and hence the performance of T4
is comparable to that of T3. The prominent improvement in BLEU scores by HPB observed in Tables
1 and 2 do not appear as prominent in Table 3, probably because HPB deals with more local reordering
which is reflected well by BLEU score, but does not contribute much to global reordering.

7 Conclusion

In this paper, we proposed a global pre-ordering method that supplements conventional syntactic pre-
ordering and improves translation quality for sublanguages. The proposed method learns global reorder-
ing models without syntactic parsing from a non-annotated corpus. Our experimental results on the
patent abstract sublanguage show substantial gains of more than 25 points in RIBES and comparable
BLEU scores for Japanese-to-English and English-to-Japanese translations.
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Adrià de Gispert, Gonzalo Iglesias, and William Byrne. 2015. Fast and accurate preordering for SMT using
neural networks. In Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics - Human Language Technologies (NAACL HLT 2015), June.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A library
for large linear classification. Journal of Machine Learning Research, 9:1871–1874.

Masaru Fuji, Atsushi Fujita, Masao Utiyama, Eiichiro Sumita, and Yuji Matsumoto. 2015. Patent claim translation
based on sublanguage-specific sentence structure. In Proceedings of the 15th Machine Translation Summit,
pages 1–16.

Michel Galley and Christopher D. Manning. 2008. A simple and effective hierarchical phrase reordering model.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP ’08, pages
848–856, Stroudsburg, PA, USA. Association for Computational Linguistics.

Isao Goto, Masao Utiyama, Eiichiro Sumita, and Sadao Kurohashi. 2015. Preordering using a target-language
parser via cross-language syntactic projection for statistical machine translation. ACM Trans. Asian Low-
Resour. Lang. Inf. Process., 14(3):13:1–13:23, June.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H Clark, and Philipp Koehn. 2013. Scalable modified Kneser-Ney
language model estimation. In ACL (2), pages 690–696.

Sho Hoshino, Yusuke Miyao, Katsuhito Sudoh, Katsuhiko Hayashi, and Masaaki Nagata. 2015. Discriminative
preordering meets Kendall’s τ maximization. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume
2: Short Papers), pages 139–144, Beijing, China, July. Association for Computational Linguistics.

Hideki Isozaki and Natsume Kouchi. 2015. Dependency analysis of scrambled references for better evaluation of
Japanese translation. In Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 450–456,
Lisbon, Portugal, September. Association for Computational Linguistics.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh, and Hajime Tsukada. 2010a. Automatic evalu-
ation of translation quality for distant language pairs. In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, EMNLP ’10, pages 944–952, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Hideki Isozaki, Katsuhito Sudoh, Hajime Tsukada, and Kevin Duh. 2010b. Head finalization: A simple reordering
rule for SOV languages. In Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and
MetricsMATR, WMT ’10, pages 244–251, Stroudsburg, PA, USA. Association for Computational Linguistics.

Marcin Junczys-Dowmunt and Arkadiusz Szal. 2010. SyMGiza++: A tool for parallel computation of sym-
metrized word alignment models. In International Multiconference on Computer Science and Information
Technology - IMCSIT 2010, Wisla, Poland, 18-20 October 2010, Proceedings, pages 397–401.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke
Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan
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