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Abstract

The article presents results of entropy rate estimation for human languages across six languages
by using large, state-of-the-art corpora of up to 7.8 gigabytes. To obtain the estimates for data
length tending to infinity, we use an extrapolation function given by an ansatz. Whereas some
ansatzes of this kind were proposed in previous research papers, here we introduce a stretched
exponential extrapolation function that has a smaller error of fit. In this way, we uncover a
possibility that the entropy rates of human languages are positive but 20% smaller than previously
reported.

1 Introduction

Estimation of the entropy rate of natural language is a challenge originally set up by Shannon (Shannon,
1948; Shannon, 1951). The entropy rate quantifies the complexity of language, precisely the rate how fast
the amount of information grows in our communication with respect to the text length. Today, the entropy
rate provides an important target for data compression algorithms, where the speed of convergence of
the compression rate to the entropy rate is an informative benchmark. Measuring the entropy rate is also
the first step in answering what kind of a stochastic process can model generation of texts in natural
language, an important question for many practical tasks of natural language engineering.

An important theoretical question concerning the entropy rate, which has also been noted in the do-
mains of computational linguistics (Genzel and Charniak, 2002) and speech processing (Levy and Jaeger,
2007), is whether the entropy rate of human language is a strictly positive constant. The overwhelming
evidence collected so far suggests that it is so—in particular, the amount of information communicated
per unit time in English text is generally agreed to be about 1 bpc (bit per character) (Shannon, 1951;
Cover and King, 1978; Brown et al., 1983; Schümann and Grassberger, 1996). Although this is what
we might intuitively expect, Hilberg formulated a hypothesis that the entropy rate of natural language
is zero (Hilberg, 1990). Zero entropy rate does not imply that the amount of information in texts is not
growing, but that it grows with a speed slower than linear. From this perspective we want to provide as
exact estimates of the entropy rate for natural language as possible.

Precise estimation of the entropy rate is a challenging task mainly because, mathematically speaking,
the sought parameter is a limit for text length tending to infinity. To alleviate this problem, previous great
minds proposed estimation methods based on human cognitive testing (Shannon, 1951; Cover and King,
1978). Since human testing is costly, however, such attempts remain limited in terms of the scale and
number of tested languages. In contrast, although any conceivable data size can only be finite, today’s
language data have become so large in scale that we may reconsider estimation of the entropy rate using
big data computation. This point was already raised by (Shannon, 1948), which led to important previous
works such as (Brown et al., 1983) in the domain of computational linguistics. Both of these articles and
many other that followed, however, mostly considered the English language only.

In contrast, in this article, we present the results of entropy rate estimation using state-of-the-art large
data sets in six different languages, including up to 7.8 gigabytes of data in English. We try to estimate
the entropy rate by compressing these data sets using the PPM algorithm and extrapolating the data
points with a carefully selected ansatz function. Whereas a couple of ansatz functions were previously
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proposed in (Hilberg, 1990; Crutchfield and Feldman, 2003; Ebeling and Nicolis, 1991; Schümann and
Grassberger, 1996), here we introduce another function, which is a stretched exponential function and
enjoys the same number of parameters as previous proposals. The new functions yields a smaller error of
fit. As a result, we arrive at the entropy rate estimates which are positive but 20% smaller than previously
reported.

2 Entropy Rate

Let X∞
1 be a stochastic process, i.e., an infinite sequence of random variables X = X1, X2, X3, . . . with

each random variable Xi assuming values x ∈ X, where X is a certain set of countably many symbols.
For natural language, for instance, X can be a set of characters, whereas X∞

1 is an infinite corpus of texts.
Let Xj

i , where i ≤ j, denote a finite subsequence Xj
i = Xi, Xi+1, . . . , Xj of X∞

1 and let P (Xj
i = xj

i )
denote a probability function of the subsequence Xj

i . The Shannon entropy of a finite subsequence Xj
i

is defined as:
H(Xj

i ) = −
∑
xj

i

P (Xj
i = xj

i ) log2 P (Xj
i = xj

i ), (1)

where sequences xj
i are instances of Xj

i (Shannon, 1948). In contrast, the entropy rate of the infinite
sequence X is defined as (Cover and Thomas, 2006):

h = lim
n→∞

H(Xn
1 )

n
. (2)

The entropy rate is the amount of information per element for the data length tending to infinity.
Let us note that the entropy rate quantifies the asymptotic growth of the number of possible values

of an infinite sequence X∞
1 . Roughly speaking, there are effectively only 2nh possible values for a

subsequence Xn
1 , where n is the sequence length. In other words, condition h > 0 is tantamount to

an exponential growth of the number of possible sequences with respect to n. Value h = 0 need not
mean that the number of possibilities does not grow. For instance, for a sequence Xn

1 whose number of
possibilities grows like 2A

√
n, as supposed by Hilberg (1990), we have h = 0. Although the number of

possibilities for such a sequence of random variables grows quite fast, the speed of the growth cannot be
properly measured by the entropy rate.

The entropy rate thus quantifies, to some extent, the degree of randomness or freedom underlying
the text characters to follow one another. For human languages, the occurrence of a linguistic element,
such as a word or character, depends on the previous elements, and there are many long repetitions.
This results in a lower value of the entropy rate than for a random sequence, but the ultimate degree of
randomness in natural language is hard to simply guess. Whereas Hilberg (1990) supposed that h = 0
holds for natural language, this is only a minority view. According to the overwhelming experimental
evidence the entropy of natural language is strictly positive (Shannon, 1951; Cover and King, 1978;
Brown et al., 1983; Schümann and Grassberger, 1996). We may ask however whether these known
estimates are credible. In fact, if convergence of H(Xn

1 )/n to the entropy rate is very slow, this need not
be so. For this reason, while estimating the entropy rate, it is important to investigate the speed of the
estimate convergence.

3 Direct estimation methods

There are several methods to estimate the entropy rate of natural language. These can be largely divided
into methods based on human cognitive testing and methods based on machine computation. Estimation
via human cognitive testing is mainly conducted by showing a substring of a text to a human examinee
and having him or her guess the character to follow the substring. This method was introduced by Shan-
non (1951). He tested an unmentioned number of examinees with the text of Dumas Malone’s “Jefferson

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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the Virginian” and obtained h ≈ 1.3 bpc. This method was improved by Cover and King (1978) as a sort
of gambling. The results with 12 examinees produced an average of h ≈ 1.34 bpc. Human cognitive
testing has the advantage over methods based on machine computations that the estimates of entropy
rate converge faster. Unfortunately, such human cognitive testing is costly, so the number of examinees
involved is small and the samples are rather short. It is also unclear whether human examinees guess the
text characters according to the true probability distribution.

In contrast, today, estimation of the entropy rate can be performed by big data computation. For this
paradigm, two specific approaches have been considered so far.

1. The first approach is to estimate the probabilistic language models underlying formula (2). A rep-
resentative classic work is (Brown et al., 1983), who reported h ≈ 1.75 bpc, by estimating the
probability of trigrams in the Brown National Corpus.

2. The second approach is to compress the text using a data compression algorithm. Let R(Xn
1 ) denote

the size in bits of text Xn
1 after the compression. Then the code length per unit, r(n) = R(Xn

1 )/n,
is always larger than the entropy rate (Cover and Thomas, 2006),

r(n) ≥ h. (3)

We call r(n) the encoding rate in the rest of this article.

In the following we will apply the second approach. In fact, there are various algorithms to compress
texts. Within our context we are interested in universal methods. A universal text compressor guarantees
that the encoding rate converges to the entropy rate, provided that the stochastic process X∞

1 is stationary
and ergodic, i.e., equality

lim
n→∞ r(n) = h (4)

holds with probability 1. Among the important known universal compressors we can name: the Lempel-
Ziv (LZ) code (Ziv and Lempel, 1977), the PPM code (Bell et al., 1990), and a wide class of grammar-
based codes (Kieffer and Yang, 2000), with many particular instances such as SEQUITUR (Nevill-
Manning and Witten, 1997) and NSRPS (Non-Sequential Recursive Pair Substitution) (Ebeling and
Nicolis, 1991; Grassberger, 2002). Whereas all these codes are universal, they are not equal. Let us
briefly describe some properties of these compressors. First of all, they are based on different principles.
The LZ code and the grammar-based codes compress texts roughly by detecting repeated substrings and
replacing them with shorter identifiers. A proof of universality of the LZ code can be found in (Cover
and Thomas, 2006), whereas the proof of universality of grammar-based codes can be found in (Kieffer
and Yang, 2000). In contrast, the PPM code is an n-gram based language modeling method (Bell et al.,
1990) which applies variable length n-grams and arithmetic coding. The PPM code is guaranteed to be
universal when the length of the n-gram is considered up to infinity (Ryabko, 2010).

A very important question for our application is the scaling of the encoding rate of universal codes
for finite real data. Since the probabilistic model of natural language remains unknown, the notion
of universality may serve only as a possible standard to obtain a stringent upper bound. One may raise
some doubt that natural language is strictly stationary since the word probabilities do vary across time, as
indicated by (Baayen, 2001). Moreover, many off-the-shelf compressors are not strictly universal, since
they are truncated in various ways to gain the computational speed. Therefore, a suitable compressor can
only be chosen through experimental inspection.

Among state-of-the-art compressors, we have considered zip, lzh, tar.xz, and 7-zip LZMA for the
LZ methods and 7-zip PPMd for the PPM code. In Figure 1 (right panel) we show how the encoding
rate depends on the data length for a Bernoulli process with p = 0.5 (left panel, listed later in the first
line of the third block of Table 1) and for natural language data of Wall Street Journal corpus (right
panel, listed in the third line of the third block of Table 1). First, let us consider the Bernoulli process,
which is a simple artificial source. Formally, the Bernoulli process is a sequence of independent random
variables taking the value of 1 with probability p and 0 with probability 1 − p. There are two known
theoretical results for this process: The theoretically proven encoding rate of the LZ code is as much as
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Figure 1: Compression results for a Bernoulli process (p = 0.5, left panel) and Wall Street Journal (right
panel) for LZ, PPM, and SEQUITUR.

r(n) = A/(log n) + h (Louchard and Szpankowski, 1997), whereas the encoding rate for the PPM code
is proved to be only r(n) = A(log n)/n + h (Barron et al., 1998; Atteson, 1999). Thus the convergence
is extremely slow for the LZ code and quite fast for the PPM code. This exactly can be seen in Figure 1
(left panel), where all data points for the LZ code remain way above 1.0 bpc, the true entropy rate, while
the data points for the PPM code practically converge to 1.0 bpc.

As for natural language data, whereas the empirical speed of convergence is much slower for the
Wall Street Journal, the gradation of the compression algorithms remains the same. Algorithms such as
zip and lzh get saturated probably because they are truncated in some way, whereas SEQUITUR, 7-zip
LZMA and 7-zip PPMd gradually improve their compression rate the more data they read in. Since the
encoding rate is visibly the smallest for 7-zip PPMd, in the following, we will use this compressor to
estimate the entropy rate for other natural language data.

4 Extrapolation Functions

Many have attempted to estimate the entropy rate via compression. For example, paper (Bell et al.,
1990) reported h ≈ 1.45 bpc for the collected works of Shakespeare in English. Majority of the previous
works, however, reported only a single value of the encoding rate for the maximal size of the available
data. Whereas any computation can handle only a finite amount of data, the true entropy rate is defined
in formula (2) as a limit for infinite data. The later fact should be somehow taken into consideration,
especially if convergence (4) is slow, which is the case of natural language. One way to fill this gap
between the finite data and the infinite limit is to use extrapolation. In other words, the encoding rate r(n)
is calculated for many n and the plots are extrapolated using some function f(n). Since the probabilistic
model of natural language is unknown, function f(n) has been considered so far in form of an ansatz.

Previously, two ansatzes have been proposed, to the best of our knowledge. The first one was proposed
by Hilberg (1990). He examined the original paper of (Shannon, 1951), which gives a plot of some upper
bounds of H(Xn

1 )/n. Since Hilberg believed that the entropy rate vanishes, h = 0, his ansatz was

f0(n) = Anβ−1, (5)

with β ≈ 0.5, according to Hilberg. If we do not believe in a vanishing entropy rate, the above formula
can be easily modified as

f1(n) = Anβ−1 + h, (6)

so that it converges to an arbitrary value of the entropy rate, cf., (Crutchfield and Feldman, 2003). An-
other ansatz was given in papers (Ebeling and Nicolis, 1991) and (Schümann and Grassberger, 1996). It
reads

f2(n) = Anβ−1 ln n + h. (7)
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Table 1: Data used in this work, its size, its encoding rate, entropy rate and the error
encoding f1(n) f3(n)

Text Language Size rate h error h error
(chars) (bit) (bit) ×10−2 (bit) ×10−2

Large Scale Random Document Data
Agence France-Presse English 4096003895 1.402 1.249 1.078 1.033 0.757
Associated Press Worldstream English 6524279444 1.439 1.311 1.485 1.128 1.070
Los Angeles Times/Washington Post English 1545238421 1.572 1.481 1.108 1.301 0.622
New York Times English 7827873832 1.599 1.500 0.961 1.342 0.616
Washington Post/Bloomberg English 97411747 1.535 1.389 1.429 1.121 0.991
Xinhua News Agency English 1929885224 1.317 1.158 0.906 0.919 0.619
Wall Street Journal English 112868008 1.456 1.320 1.301 1.061 0.812
Central News Agency of Taiwan Chinese 678182152 5.053 4.459 1.055 3.833 0.888
Xinhua News Agency of Beijing Chinese 383836212 4.725 3.810 0.751 2.924 0.545
People’s Daily (1991-95) Chinese 101507796 4.927 3.805 0.413 2.722 0.188
Mainichi Japanese 847606070 3.947 3.339 0.571 2.634 0.451
Le Monde French 727348826 1.489 1.323 1.103 1.075 0.711
KAIST Raw Corpus Korean 130873485 3.670 3.661 0.827 3.327 1.158
Mainichi (Romanized) Japanese 1916108161 1.766 1.620 2.372 1.476 2.067
People’s Daily (pinyin) Chinese 247551301 1.850 1.857 1.651 1.667 1.136

Small Scale Data
Ulysses (by James Joyce) English 1510885 2.271 2.155 0.811 1.947 1.104
À la recherche du temps perdu French 7255271 1.660 1.414 0.770 1.078 0.506
(by Marcel Proust)
The Brothers Karamazov Russian 1824096 2.223 1.983 0.566 1.598 0.839
(by Fyodor Dostoyevskiy)
Daibosatsu toge (by Nakazato Kaizan) Japanese 4548008 4.296 3.503 1.006 2.630 0.875
Dang Kou Zhi (by by Wan-Chun Yu) Chinese 665591 6.739 4.479 1.344 2.988 1.335

Using this ansatz, paper (Schümann and Grassberger, 1996) obtained h ≈ 1.7 bpc for the collected works
of Shakespeare and h ≈ 1.25 bpc for the LOB corpus of English.

We have used up to 7.8 gigabytes of data for six different languages and quite many plots were avail-
able for fitting, as compared to previous works. As will be shown in §6.1, function f1(n) does not fit
well to our plots. Function f1(n), however, is no more than some ansatz. If we can devise another ansatz
that fits better, then this should rather be used to estimate the entropy rate. In fact we have come across
a better ansatz. The function we consider in this article is a stretched exponential function,

f3(n) = exp(Anβ−1 + h′), (8)

which embeds function f1(n) in an exponential function and yields the entropy rate h = exp h′. In fact,
function f3(n) converges to h slower than f1(n). In a way, this is desirable since slow convergence of
the encoding rate is some general tendency of the natural language data. As a by-product, using function
f3(n) we will obtain smaller estimates of the entropy rate than using function f1(n).

5 Experimental Procedure

5.1 Data preparation
Table 1 lists our data, including each text, its language and size in the number of characters, its encoding
rate using the full data set (the minimal observed encoding rate), and the extrapolation results for the
entropy rate h, including the error of the estimates—as defined in §5.2 and analyzed later. We carefully
chose our data by examining the redundancies. Many of the freely available large-scale corpora suffer
from poor quality. In particular, they often contain artificially long repetitions. Since such repetitions
affect the entropy rate estimates, we have only used corpora of a carefully checked quality, making sure
that they do not contain large chunks of a repeated text.

The table contains two blocks. The first block contains state-of-the-art large-scale corpora of texts. As
will be shown in our experiments, the plots for the raw corpora often oscillated due to the topic change.
To overcome this problem we have performed randomization and averaging. First, we have shuffled the
corpora at the level of documents and, second, we have averaged ten different random permutations for

217



each corpus. The experimental results shown from the 4th column to the last one of Table 1 pertain to
so processed language data. As for the Japanese and Chinese data, in addition to the original texts of
the Mainichi and People’s Daily newspapers, the Romanized versions were generated.1 In contrast, the
second block of Table 1 contains long literary works in five different languages. These data have not
been randomized. The data in the first and second blocks encompass six different languages.

5.2 Detailed procedure
To estimate the entropy rate, we have used the 7-zip compressor, which implements the PPMd algorithm.
As discussed in §3, this compressor seems the best among state-of-the-art methods. It compresses best
not only the real Wall Street Journal corpus but also the artificial Bernoulli process. For this reason,
we have used this compressor. Further detailed options of the PPMd algorithm were carefully chosen.
Since the 7-zip program compresses by recording statistics for file names as well, the input text was fed
to the compressor via a Unix pipe so that the compression was conducted without a file name. We also
carefully excluded the header of the compressed file (which includes the name of the compressor etc.).
This header is included in the compressed file but does not count to the proper compression length.

Another important option of the 7-zip program concerns the maximal n-gram length used by the PPM,
called here MAX. As noted in §3, when MAX is infinite the compression method is universal. But the
larger MAX is, the slower the compression procedure becomes. Therefore, any available compressor
sets an upper bound on MAX, whereas the user can choose the MAX value smaller than this bound (the
bound equals 32 in the case of 7-zip PPMd). However, even within this preset range, it was not always
the case that a larger MAX resulted in a better encoding rate. Therefore, in our work, for each full data
set, we searched for the value of MAX that achieved the best encoding rate and consistently used those
best encoding rates for different subsets of the full data set.

Having clarified these specific issues, our detailed experimental procedure, applied to each data set
from Table 1, was as follows. First, for every n = 2k, where k = 6, 7, . . . , log2(data size), the first n
characters of the full text were taken. This subsequence, denoted Xn

1 , was then compressed using the 7-
zip program, and its size R(Xn

1 ) in bits was measured to calculate the encoding rate r(n) = R(Xn
1 )/n.

The obtained encoding rates for different n were fitted to the ansatz functions f(n) = fj(n), where
j = 1, 2, 3, 4. When encoding rates r(ni) = R(Xni

1 )/ni for K distinct values of ni were obtained, the
fit was conducted by minimizing the square error as follows:

error =

√∑K
i=1(ln r(ni)− ln f(ni))2

K
. (9)

The logarithm was taken here to ascribe a larger weight to the errors of the larger n, since we were
particularly interested in the tail behavior of the data points.

6 Experimental Results

6.1 Fitting Results
Figure 2 shows our results for the Wall Street Journal (WSJ) corpus (Table 1, first block, seventh line),
which is the benchmark corpus most typically used in the computational processing of human language.
The figure shows the encoding rate r(n) (vertical axis) as a function of the text size in characters n (hor-
izontal axis). The left panel of Figure 2 shows the results obtained from the original text. The encoding
rates tend to oscillate, which is due to topic changes in the corpus. Such oscillation is visible in majority
of the natural language data, where some data can oscillate much worse than WSJ. In the context of en-
tropy rate estimation such oscillation was already reported in paper (Schümann and Grassberger, 1996).
Some possible way to cope with this problem is to shuffle the text at the level of documents. The right
panel of Figure 2 shows the average encoding rate for the data 10-fold shuffled by documents. The data
points in the right panel oscillate less than in the left panel. At the same time, since shuffling the docu-
ments introduces some randomness, the entropy rate estimate is about 1% larger for the randomized data

1KAKASI and Pinyin Python library software were used to Romanize Japanese and Chinese, respectively.
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Figure 2: Encoding rates for the Wall Street Journal corpus (in English). The left panel is for the original
data, whereas the right panel is the average of the data 10-fold shuffled by documents. To these results
we fit functions f1(n) and f3(n).

than for the original corpus. Both panels of Figure 2 show two fits of the encoding rate, to extrapolation
functions f1(n) and f3(n)—given by formulae (6) and (8), respectively. Whereas, visually, it is difficult
to say which of the functions fits better, we can decide on that using the value of error (9). The estimates
of the entropy rate are h = 1.32 with error being 0.0130 for f1(n) and h = 1.061 with error being
0.00812 for f3(n). We can suppose that function f3(n) yields both a smaller entropy rate estimate and a
smaller fitting error.

This hypothesis can be confirmed. We conducted the analogous fitting to all our data sets for three
ansatz functions f1(n), f2(n), and f3(n). The fitted values of h and error for f1(n) and f3(n), for both
10-fold randomized corpora and non-randomized texts are listed in Table 1 in the last four columns. The
average values of the error for f1(n), f2(n) and f3(n) were 0.0113, 0.0194, and 0.00842 across all data
sets, respectively. The plots therefore fit the best to f3(n). Among the three ansatz functions, function
f2(n) is the worst choice. In contrast, the stretched exponential function f3(n) seems better than the
modified Hilberg function f1(n) and it consistently yields smaller estimates of the entropy rate.

6.2 A Linear Perspective
If the exponent β does not depend on a particular corpus of texts, i.e., if it is some language universal,
then for all three functions f1(n), f2(n), and f3(n) we can draw a diagnostic linear plot with axes:
Y = r(n) and X = nβ−1 for f1(n), Y = r(n) and X = nβ−1 ln n for f2(n), and Y = ln r(n) and
X = nβ−1 for f3(n), respectively. In these diagnostic plots, the entropy rate corresponds to the intercept
of the straight line on which the data points lie approximately. Since we observe that exponent β is
indeed some language universal, we use these plots to compare different text corpora.

In these plots, ansatzes f1(n), f2(n), and f3(n) can be analyzed as a form of linear regression. Let us
focus on f3(n), the function that yields the minimal fitting error. If we put Y = ln r(n) as the vertical
axis and X = nβ−1 as the horizontal axis where β = 0.884, the average value for the fit to f3(n), then
the plots for all large scale natural language data (first block of Table 1) can be transformed as shown in
Figure 3. It can be seen that each set of data points is roughly assembled in a linear manner.

In Figure 3, the black points are English, the white ones are Chinese, and the gray ones are other
languages including Romanized Chinese and Japanese. Two main groups of plots can be seen in Figure
3, one lower and one upper, where the lower plots in black are for English and the upper plots in white are
for Chinese . The results for other languages, shown in gray, are located somewhere between English and
Chinese. The gray plots appearing amidst the lower group indicate Romanized Japanese and Chinese.
These results show that the script type distinguishes the amount of information per character.

Two straight lines were obtained in Figure 3 for the English and Chinese groups by least squares fitting
to all data points from each group, respectively. Since the horizontal axis indicates variable X = nβ−1,
condition n → ∞ corresponds to condition X = 0. The intercept of a fitted straight line is thus the
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Figure 3: All large scale natural language data (first block of Table 1) from a linear perspective for
function f3(n).

logarithm of the entropy rate. The intercepts are h′ = 0.126 and h′ = 1.348, with the corresponding
entropy rates h = 1.134 bpc and h = 3.849 bpc, for the English and Chinese groups, respectively.
Compared to the values reported previously, the entropy rate estimate h is smaller by 20%. Interestingly,
a similar analysis can be conducted for ansatz f1(n). For this function, by using the average of β =
0.789, the final h was found to be 1.304 and 4.634 for English and Chinese, respectively, which is
similar to previous reports. Therefore, the estimate of the entropy rate depends on the used ansatz, with
the better fitting ansatz yielding estimates smaller than generally agreed.

Given our results, we may revisit the question whether the entropy rate of natural language is a strictly
positive constant. Our estimates of the entropy were obtained through extrapolation. Thus, the possibility
of a zero entropy rate cannot be completely excluded but it seems highly unlikely in view of the following
remark. Namely, if the entropy rate is zero, then the data points should head towards negative infinity
in Figure 3. However, the plots do not show such a rapid decrease for data size of the order of several
gigabytes. On the contrary, all endings of the plots for large data sizes are slightly bent upwards. Hence
we are inclined to believe that the true entropy rate of natural language is positive and close to our
estimates. Of course, a far larger amount of data would be required to witness the behavior of the plots
in the margin between the infinite limit and the largest data size considered in our experiment.

7 Conclusion

In this article, we have evaluated the entropy rates of several human languages by means of a state-of-the-
art compression method. Compared to previous works, our contribution can be summarized as follows.
First, we have calculated the compression rates for six different languages by using state-of-the-art cor-
pora with sizes of up to 7.8 gigabytes. Second, we have extrapolated the empirical compression rates
to some estimates of the entropy rate using a novel ansatz, which takes form of a stretched exponential
function. This new ansatz function fits better than the previously proposed ansatzes and predicts smaller
entropy rates than reported before. Especially for English, where the vast majority of previous works
suggested an entropy rate around 1.3 bpc, our new results suggest the possibility of a value around 1.1
bpc. Some future extension of our work might be to simply enlarge the data, but it will not be trivial to
obtain a uniform corpus of a larger scale. Hence, in the future work, it may be advisable to look for other
computational approaches to the problem of entropy estimation.
The complete version of this article is available at (Takahira et al., 2016)
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