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Abstract

Pause analysis of key-stroke logged translations is a hallmark of process based transla-
tion studies. However, an exact definition of what a cognitively effortful pause during
the translation process is has not been found yet (Saldanha and O’Brien, 2013). This
paper investigates the design of a key-stroke and participant- dependent identification
system of cognitive effort to track complexity in translation with keystroke logging
(cf. also (Dragsted, 2005) (Couto-Vale, in preparation)). It is an elastic measure
that takes into account idiosyncratic pause duration of translators as well as further
confounds such as bi-gram frequency, letter frequency and some motor tasks involved
in writing. The method is compared to a common static threshold of 1,000 ms in
an analysis of cognitive effort during the translation of grammatical functions from
English to German. Additionally, the results are combined with an eye-tracking
analysis for further validation. The findings show, that at least for smaller data sets
a dynamic pause assessment may lead to more accurate results than a generic static
pause threshold of similar duration.

1 Introduction

Translation studies can be grouped into two major fields of research: Product-based translation
studies and process-based translation studies. In the former, corpus based studies are currently
being used for example to find out what makes translation different from original texts in
a lingua-culture. Process based studies are rather interested in the emergent translation
and how it comes into being. The interest in process based translation research has been
growing exponentially in the past twenty years due to technological advances like affordable
eye-tracking equipment and key-stroke logging programs that allow researchers to analyze the
translators’ behavior while translating along with the emergent product. Both methods can
be used to operationalize cognitive effort during translation. Straightforwardly, reading times
of stretches of the source text can for example be operationalize processing difficulties during
the process of translation. For stretches of text with higher complexity longer reading times
would be expected (Shreve et al., 2010). Complexity in the process of translation does not only
encompass syntactic features of the source text but also typological differences between the
two languages in question modulating the possibilities of rendering the lexical-semantics of the
source to something equivalent in the target language. Also multiple translation possibilities
for words add to the complexity of the task of translation(Schaeffer et al., 2016). This is
also reflected in longer production times and thus pauses (Dragsted, 2005). However, what
exactly a pause is, is subject to debate in translation process research. Typical pause measures
that have been applied by scholars of translation process research, range from one (Jakobsen,
1998) to five seconds (cf. Saldanha and O’Brien (2013) for an overview). However, these
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pause limits were chosen relatively arbitrarily and it is hard to tell if they are too high or
too low to capture translation related cognitive effort (ibid., 121). Also, different translators
may have different baselines of production speed and an inter-keystroke span of 1,000 ms
(Jakobsen, 1998), for example, might be an indicator of increased cognitive effort for one
person but not for another. More recent approaches have been modelling translator dependent
baselines for identifying a minimal pause length of cognitive effort (cf. Dragsted, 2005 and
Couto-Vale, in preparation) thus neutralizing a confounding factor like participant-specific
baselines of pausing behavior. Dragsted manually searched for a plausible pause value for one
participant. This allowed her to develop a relative measure for pause length across subjects.
She divided the randomly selected participant’s production speed minus the time spent on
revision by the identified pause value (Dragsted, 2005). While superior too a very rigid pause
identification measure, Couto-Vale, (in preparation) rightly notes that Dragsted’s measure
can still be improved upon. Couto-Vale’s method involves a further adjustment of a minimal
cognitively effortful pause based on the type of character produced. This means he employs
a classification system for characters that need one or more action keys like ’shift’ to be
produced. He classifies characters by means of the action key combinations first and then
classifies them into categories of pauses 32 ms, which is a custom threshold . The category
with the highest number of pauses is multiplied by two and additional 128 ms (also arbitrarily)
are added to the threshold. Inter-key spans of a character of a respective key-combination
higher than this threshold are considered to be cognitively effortful. Couto-Vale, (in prepa-
ration) suggests to combine participant specific and key combination specific thresholds. This
appears reasonable and useful, however, why exactly this formula should yield cognitively
effortful pauses does not become clear. There is, thus, still a need for further differentiation
between mere typing related inter key spans (which are essentially confounds) and cognitively
effortful pauses. Among such confounding factors are not only key combinations such as those
considered by Couto-Vale, (in preparation) but also frequency effects of letters and letter
bigrams which should be accounted for when assessing cognitive effort during text production.
Their influence on inter key spans is at the heart of this article an will be discussed further below.

2 Modeling dynamic thresholds

For the method of pause identification, we draw upon Couto-Vale’s (in preparation) category
based classification system. In order to identify a cognitively effortful pause, we assign a charac-
ter to the subcategories of participant, case, bigram frequency and character frequency first and
then combined these to a supercategory. A character like ’a’, typed by participant A1 in the
German word haben (’have’) would thus be categorized by means of the ID of the participant,
the type of key pressed and frequency information which then combined to a super category with
the label: ’participantA1|lower-case|high bigram frequency| high character frequency’. A script
classifies characters as upper case (shift-key + character-key), lower case , space or deletions.
Deletions and space characters are grouped separately from the character keys. Especially dele-
tions behave very differently since they almost always occur with an inter-key span of below 10
ms. The reason for this is that the backspace-key was kept pressed until the mistyped word was
deleted. The keystroke logger Translog-II (Carl, 2012), which was used to record the keystrokes
for the data at hand, recognizes this event as multiple key presses with a minimal inter-key
span. These minimal spans would have skewed the pause analysis due to a large number of very
low values. For alphabetical characters, each character press is also characterized as belonging
to a high frequency group of German letters or a low frequency group. Characters receiving
the same classification are grouped into the same category along with their inter-key spans in
milliseconds. If an inter-key span exceeded 10,000 milliseconds, it was excluded beforehand since
this pause was deemed unlikely to be linked to the complexity of the input, but rather lexical
decision problems or dictionary look-ups. Inter-key spans in a super category consisting of par-
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ticipant, case and frequency classifications were tagged as a cognitively effortful pause when
they were higher than the third quartile + three times the interquartile range of that category.
Such values can be considered extreme outliers (Norman and Streiner, 2007) and it is thus likely
that most of the inter-key spans below this threshold are related to normal typing activity. For
the frequency classifications, character frequencies below the median of the character frequency
lists are classified as ’low frequency’ and above as ’high frequency’. The same is done for bi-
gram frequencies. However, keeping the frequency types apart led to super-categories with the
frequency classification of low|low, low|high, high|high or high|low. Due to the very fine grained
distinctions some categories did not receive many data points. This would have made it difficult
to make a reliable judgement with respect to outliers. Therefore a way to combine bigram and
character frequencies was devised to reduce the number of subcategories and thus attenuate this
problem.

3 Assessing possible interaction effects of frequency types

The formation of a sum score could have distorted the effects frequency on processing effort
of either if character frequency would be modulating the effect bigram frequency on inter-key
spans (or vice versa). In order to avoid this, a possible interaction effect of both was explored.
Five translations of the same text by five different translators were analyzed statistically. Their
keystrokes were logged with Translog-II (Carl, 2012). The participants were allowed to use an
online dictionary, though this might affect pausing behavior and may be responsible for very
long pauses not related to the processing of linguistic complexity but vocabulary problems. The
five participants were German students of English linguistics enrolled in their master’s and the
source text was an abridged popular scientific text written in English. Prior to the translation,
the participants were asked to copy a short German text, in order to familiarize themselves
with the keyboard. The data consists of the participants’ keystrokes and the inter-key spans
associated with them. Only inter-keyspans between two characters were taken into account.
Pauses after mouse-events or arrow-keys were excluded. The term inter-key span will be used
instead of pause in order to differentiate it from time spans signifying a possible cognitively
effortful pause (cf. the KD-files of the CRITT Translation Process Database for a similar data
structure (Schaeffer et al., 2016).)

The data was analyzed by means of linear mixed regression model in R using the R-package
lme4 (Bates et al., 2015). Mixed regression models allow to control against item-specific
variation. We applied the R-package lmer-test which calculates p-values with a combination
of F-tests and likelihood ratio tests through Satterthwaite approximations (Kuznetsova et
al., 2015). Cognitive effort was operationalized by the inter-keyspans for preceding each
character in milliseconds. This measure was log-scaled in order to approximate a normal
distribution. The model was enriched with case information (upper, lower), bigram-frequency
and character-frequency (interval data) sourced from the ’Wortschatz’ project (UniLeipzig,
2012) (Lyon, 2012). Since no data was available for bigram frequencies for characters preceded
by ’space’, the mean bigram frequency was used as a proxy for these cases. Punctuation marks
and spaces were excluded from the analysis as were deletions. Since no bigram information
was available for word initial characters, these were assessed with the character frequency only.
Both were modelled as an interaction effect. The frequencies were log-scaled and z-scored.
Each source text token was given a unique ID to control against item-specific variation in
the form of a random effect. Participant specific variation was factored in by modeling
each participant as a random effect as well. The final model was: Pausetime per character
˜ bigram frequency * Character Frequency + Case+ (1|Unique Source Text ID)+ (1|Participant)
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Figure 1: The interaction effect of bigram fre-
quency and character frequency on the inter-
key span. High frequency characters occuring
in high frequency bigrams lead to shorter inter-
key spans.

The model retreived a highly significant
effect for the interaction between bigram fre-
quency and Character Frequency (b=0.08,
p<0.001). Also the main effects for Char-
acter Frequency (b=-0.21, p<0.001) and bi-
gram frequency (b=-0.17, p<0.001) were sig-
nificant as was Case (b=-2.04, p<0.001).
These findings for case corroborate Couto-
Vale, (in preparation) suggestion to use key
combination-dependent thresholds when de-
termining pauses. However, the results
obtained here may be confounded by the
fact that almost every upper case letter is
also located word-initially which alone leads
to longer inter-key spans (Immonen and
Mäkisalo, 2010) so that it is hard to differen-
tiate between the effect of upper case letters
and word-initial characters. While the es-
timate of both frequency types is distinctly
weaker than that of case, the results show that the higher the letter and bigram frequency,
the smaller the inter-key spans. This is especially pronounced for high frequency letters in high
frequency bigrams, as can be determined from the significant interaction between these two vari-
ables. These differences may become the decisive factor for being either correctly within a static
pause threshold or erroneously above it. In order to account for this interaction effect the com-
bined frequency category was formed by multiplying the z-scored frequencies for a character by
the z-scored frequencies of a bigram it occured in at second position. The super-categories thus
consisted of inter-key spans of key presses classified by ’participant|case|combined frequency’.1

4 Comparison with a static threshold

To test if the dynamic method performs better than the static one, the cognitive effort during
the translation of grammatical subjects from English into German was compared with the effort
during the translation of other grammatical functions. The same materials and participants
from section 2 were used. Additionally, the source texts were annotated with grammatical
functions following the Cardiff Grammar (Fawcett, 2008) and aligned with the productions. For
the analyses, cognitive effort was operationalized by the average time per pause while translating
a grammatical function from an English source text to a German target text. This means, that
the time associated with each identified pause for the translation of a grammatical element in the
source text was summed up and then divided by the number of identified pauses. The minimum
threshold to identify a pause for the static method was set to 1,000 ms which is an often used
customary threshold (Carl and Kay, 2011), (Jakobsen, 1998). The minimum threshold for the
dynamic method of pause identification was calculated in the way described above i.e. by means
of category- dependent outlier identification. Inter-key spans of > 20 seconds were excluded,
since they were likely to be caused by dictionary look-ups and not linguistic complexity. The
participants and materials were the same as in Section 2. Eye-tracking data in form of the
total reading time for the grammatical functions was used to triangulate the findings. Again
linear mixed models were employed. For the pause-related models we controlled for the length
of the translation of a grammatical function by counting the number of typed and deleted
characters (’TT item length’). For the reading related model the length (in characters) of the
grammatical functions of the source text was controlled for (’ST item length’). participant and

1In order to classify a key as high or low frequency, the median frequency of the combined frequency category
was used as the decisive criterion as before
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item-specific variation were modeled as random effects: Operationalization of ’Cognitive Effort’
˜ Grammatical Functions + Item Length (count data)+ (1|Participant)+(1|Unique Source Text
ID)

The dynamic measure of the average time spend in pause found significantly higher average
pause time for the translation of conjunctions (b=1611.69, p< 0.05) and the translations of
main verbs (b=1213.79, p< 0.05). compared to that of grammatical subjects.2 The static
measure, however, did not find significant effects for the translation of coordinating conjunctions
(b=1286.64, p= 0.15) or main verbs (b=1213.79, p= 0.06). The eye-tracking data corroborates
the results of the dynamic but not the static method of pause identification since the results
for the measure of Total Reading Time for the variables Coordinators (b=-0.42, p<0.05) and
Main Verb (b=-0.52, p<0.0001) are significant here, too3. Still, the static measurement found
marginally significant results for the translations of main verbs and it is possible that with
more datapoints, the static measure would have found similar results to that of the dynamic
measurement. Another interesting observation is that the estimates for Coordinators and Main
Verbs in the reading time measure are negative and not positive as in the pause measures.
Usually, longer reading times are associated with higher processing effort in monolingual reading.
However this relationship of reading time to cognitive effort does not necessarily hold true
for translation since it is a very complex task. It is more likely that the translation of these
grammatical functions requires excessive target text monitoring and local decision making that
is not bound to the source text any more - once the necessary information is acquired. This
case highlights the need to look at both eye-tracking data and keystroke logging data to draw
conclusions about cognitive effort in translation.

5 Conclusion

This paper shows that additionally to participant-specific and key-combination dependent
thresholds, it is worthwhile to also include frequency information for letters and bigrams in
the target language to identify cognitive effort in translation, since they have a significant inter-
action effect on inter-key spans.
While the static threshold did not show the significant results of the eye-tracking data and the
dynamic pause measure, it is very possible, that with more data points the static threshold
would have found similar results. Using static thresholds with larger amounts of data might
thus still be a useful approach to identify cognitive effort in translation if time and resources are
scarce. For smaller data sets a dynamic pause measure seems to be a more appropriate solution
to identify cognitive effort and linguistic complexity along with it.
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