
Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity,
pages 23–31, Osaka, Japan, December 11-17 2016.

CoCoGen - Complexity Contour Generator: Automatic Assessment of 

Linguistic Complexity Using a Sliding-Window Technique 

 

 

Marcus Ströbel 

Department of English Linguistics 

RWTH Aachen University 

stroebel@anglistik.rwth-

aachen.de 

Elma Kerz 

Department of English Linguistics 

RWTH Aachen University 

kerz@anglistik.rwth-

aachen.de 

  

Daniel Wiechmann 

Institute for Language Logic and Computation 

University of Amsterdam 
d.wiechmann@uva.nl 

Stella  Neumann 

Department of English Linguistics 

RWTH Aachen University 
neumann@anglistik.rwth-

aachen.de 

 

  

 

Abstract 

We present a novel approach to the automatic assessment of text complexity based on a sliding-

window technique that tracks the distribution of complexity within a text. Such distribution is 

captured by what we term complexity contours derived from a series of measurements for a 

given linguistic complexity measure. This approach is implemented in an automatic 

computational tool, CoCoGen – Complexity Contour Generator, which in its current version 

supports 32 indices of linguistic complexity. The goal of the paper is twofold: (1) to introduce 

the design of our computational tool based on a sliding-window technique and (2) to showcase 

this approach in the area of second language (L2) learning, i.e. more specifically, in the area of 

L2 writing. 

1 Introduction 

Linguistic complexity has attracted a lot of attention in many research areas, including text readability, 

first and second language learning, discourse processing and translation studies. Advances in natural 

language processing have paved the way for the development of computational tools designed to 

automatically assess the linguistic complexity of spoken and written language samples. There are a 

variety of computational tools available which measure a large number of indices of linguistic 

complexity. Such tools afford speed, flexibility and reliability and permit the direct comparison of 

numerous indices of linguistic complexity. Coh-Metrix is a well-known computational tool that 

measures cohesion and linguistic complexity at various levels of language, discourse and conceptual 

analysis (McNamara, Graesser, McCarthy & Cai, 2014). Considerable gains have been made from the 

use of Coh-Metrix. In particular, an important contribution has been made to the identification of reliable 

and valid measures or proxies of linguistic complexity and their relation to text readability (Crossley, 

Greenfield, & McNamara, 2008), writing quality (Crossley & McNamara, 2012) and speaking 

proficiency (Crossley, Clevinger, & Kim, 2014). Coh-Metrix measures are also shown to serve as proxy 

for more complex features of language processing and comprehension (cf. McNamara et al. 2014). More 

recently, a number of tools have been developed that feature a large number of classic and recently 

proposed indices of syntactic complexity (Syntactic Complexity Analyzer, Lu, 2010; TAASSC, Kyle, 
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2016) and lexical sophistication (Lexical Complexity Analyzer, Lu 2012; TAALES, Kyle & Crossley, 

2015). These tools provide comprehensive assessments of text complexity at a global level. They 

provide as output for each measure a single score that represents the complexity of a text, i.e. a summary 

statistics. We present a novel approach to the assessment of linguistic complexity that enables tracking 

the progression of complexity within a text. In contrast to a global assessment of text complexity based 

on summary statistics, the approach presented here provides a series of measurements for a given 

complexity dimension and in this way allows for a local assessment of within-text complexity. The goal 

of the paper is twofold: (1) to introduce the design of our computational tool which implements such an 

approach by using a sliding-window technique and (2) to showcase this approach in the area of second 

language (L2) learning. 

2 Automatic Assessment of Linguistic Complexity Using a Sliding-Window Technique  

The present paper introduces a computational tool – Complexity Contour Generator (CoCoGen) – 

designed to automatically track the changes in linguistic complexity within a target text. CoCoGen uses 

a sliding-window technique to generate a series of measurements for a given complexity dimension 

allowing for a local assessment of complexity within a text. A sliding window can be conceived of as a 

window with a certain size that is moved across a text. The window size (ws) is defined by the number 

of sentences it contains. The window is moved across a text sentence-by-sentence, computing one value 

per window for a given complexity measure. For a text comprising n sentences, there are w = n−ws+1 

windows. Given the constraint that there has to be at least one window, a text has to comprise at least as 

many sentences at the ws is wide (n  ws). Figure 1 illustrates how sliding windows of two exemplary 

ws (2 and 3) are mapped to sentences within a text.  

 

 
Figure 1: Mapping of windows for ws = 2 and ws = 3 to sentences 

The series of measurements obtained by the sliding-window technique represents the distribution of 

linguistic complexity within a text for a given measure and is referred here to as a complexity contour. 

The shape of a complexity contour is affected by the ws, a user-definable parameter. Setting the ws 

parameter to n will yield a single value representing the average global complexity of the text. To track 

the progression of complexity within a text there has to be a sufficient number of windows. As a rule of 

thumb, there should be at least ten times as many sentences as the window is wide to have at least ten 

completely distinct (i.e. non-overlapping) windows. Figure 2 illustrates the smoothed curve produced 

by CoCoGen’s sliding window approach for a sequence of 50 random numbers between 0 and 10 

presents complexity contours for ws of 5 and 10 compared to raw data. 

24



 

 
Figure 2: Sliding windows for window sizes 5 and 10 compared to raw data 

In what follows, we address how a value for a window is obtained and how the comparison of texts of 

different sizes is afforded by a text-time scaling technique. There are different methods of obtaining a 

value for a window: One method is similar to using simple moving averages with a length equal to the 

ws over a set of measurements for all sentences in a text. This way the value is computed once per 

sentence and can be cached and reused in other windows that include that particular sentence. In 

addition, the values obtained for individual sentences can be cached for recalculating the window values 

for different ws. Another method is to apply the measure function directly to the contents of a window 

rather than a single sentence. As the number of windows can never exceed the number of sentences, 

compared to the first method, fewer calls to a measure function are needed, however, the number of the 

calls is greater. Furthermore, with this method it is not possible to reuse the values for different ws. 

Another disadvantage is that the ws may directly influence the resulting values for simple counting 

measures like word counts. The method implemented in CoCoGen is a compromise between the two 

methods discussed above: the measure function is called for each sentence, but it returns a fraction rather 

than a fixed value. The denominators and numerators of those fractions are then added to form the 

denominator and numerator of the resulting value. For complexity measures based on ratios, the result 

is the same as when the measure function is directly applied to the contents of a window. For counting 

measures, a fixed denominator of 1 is used, resulting in the arithmetic mean of the results for the 

sentences in the window. The idea behind this method is to obtain values for windows that do not depend 

on the ws chosen, allowing comparison of results for different window sizes.  

 

(1) 𝑤𝑖𝑛𝑑𝑜𝑤𝑛 =  
𝑛𝑢𝑚𝑛 + 𝑛𝑢𝑚𝑛+1 + … +𝑛𝑢𝑚𝑛+𝑤𝑠
𝑑𝑒𝑛𝑛 + 𝑑𝑒𝑛𝑛+1 + … + 𝑑𝑒𝑛𝑛+𝑤𝑠

 

 

A scaling technique is implemented in the tool to allow comparing complexity contours across texts. As 

texts tend to vary in length given in number of sentences, the number of available windows will differ 

across texts. The scaling algorithm fits the number of windows wT for a text T into a user-defined number 

of windows wscaled. It is recommended to adjust the number of scaled windows to be at most as high as 

the largest number of windows in a text. In case the number of scaled windows is exceeded, the scaling 

algorithm will still work by linearly interpolating the missing information. However, the interpolated 

information will not contain actual data and thus won’t be of much use. For that reason, the program 

issues a warning message if the number of scaled windows is higher than the window count for one of 

the input text files. 

In its current version, CoCoGen supports 32 measures of linguistic complexity mainly derived from 

language learning research (Table 1 provides an overview, cf. Ströbel 2014 for details). Importantly, 

CoCoGen was designed with extensibility in mind, so that additional complexity measures can easily 

be added. It uses an abstract MEASURE class for the implementation of complexity measures. 

Prior to the computation of complexity measures, CoCoGen pushes raw English text input through 

an annotation pipeline. While several open-source natural language analysis toolkits are available, 

CoCoGen uses several annotators from one of the most used toolkits, Stanford CoreNLP (Manning et 

al. 2014): tokenizer, sentence splitter, POS tagger, lemmatizer, named entity recognizer and syntactic 
parser. 
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Table 1: Overview of complexity measures currently implemented in CoCoGen 

3 Application Domain: Second Language Learning 

Linguistic complexity has received considerable attention in the assessment of second language (L2) 

performance and proficiency (cf., e.g., Ortega, 2003, 2012; Larsen-Freeman, 2006; Housen et al., 2012). 

It is assumed that with an increasing level of proficiency L2 writing becomes more complex and 

sophisticated, i.e. consisting of more advanced structures and vocabulary (Wolfe-Quinterno, Inagaki & 

Kim, 1998). For this reason, measures of linguistic complexity have been seen as basic descriptors of 

L2 performance and as indicators of L2 proficiency. While there is still much controversy as to how 

linguistic complexity should be defined, operationalized and measured (cf., Larsen-Freeman, 2009; 

Housen et al., 2012; Connor-Linton & Polio, 2014), there is a general consensus that it is a 

multidimensional construct affected by a number of dimensions at various levels of linguistic description 

(e.g. Bulté & Housen, 2014). 

As mentioned in the introduction, L2 learning research has benefited tremendously from the 

development of computational tools designed to automatically assess linguistic complexity of texts 

based on a wide range of indices. More specifically, the development of such tools has made an 

important contribution to the identification of reliable and valid measures of linguistic complexity and 

their relation to L2 written and spoken performance and proficiency. A number of studies have 

demonstrated that automatically computed indices of linguistic complexity can successfully predict 

human judgments of L2 text quality (e.g. McNamara, Crossley & McCarthy, 2009) and L2 speaking 

proficiency (e.g. Kyle & Crossley, 2015) and can be used to discriminate between L1 and L2 texts (e.g. 

Crossley & McNamara 2009). More recently, a number of computational tools have been developed 

featuring a wide range of classic indices, fine-grained indices as well as indices informed by recent 

Measure Label Formula 

Kolmogorov Deflate KOLMOGOROV Ehret & Szmrecsanyi 2011 

Lexical Density LEX.DEN Nlex/N 

Number of different words / sample  LEX.DIV.NDW Nw diff 

Number of diff. words / sample (cor.) LEX.DIV.CNDW Nw diff/Nw 

Type-Token Ratio LEX.DIV.TTR T/N 

Corrected Type-Token Ratio LEX.DIV.CTTR T/√2𝑁 

Root Type-Token Ratio LEX.DIV.RTTR T/√𝑁 
Sequences Academic Formula List LEX.SOPH.AFL SeqN AWL 

Lexical Sophistication (ANC) LEX.SOPH.ANC Nslex_ANC/Nlex 

Lexical Sophistication (BNC) LEX.SOPH.BNC Nslex_BNC/Nlex 

Words on New Academic Word List LEX.NAWL WN AWL 

Words not on General Service List LEX.NGSL WN GSL 

Morphological Kolmogorov Deflate MORPH.KOLMOGOROV Ehret & Szmrecsanyi 2011 

Mean Length of Words (characters) SYN.MLWC Nchar/Nw 

Mean Length of Words (syllables) SYN.MLWS Nsyl/Nw 

Noun Phrase Postmodification (words) SYN.NPPOSTMODW NNP Pre 

Noun Phrase Premodification (words) SYN.NPPREMODW NNP Post 

Clauses per Sentence SYN.CS NC/NS 

Clauses per T-Unit SYN.CT NC/NT 

Complex Nominals per Clause SYN.CNC NCN/C 

Complex Nominals per T-Unit SYN.CNS NCN/NT 

Complex T-Units per T-Unit SYN.CTT NCT/NT 

Coordinate Phrases per Clause SYN.CPC NCP/NC 

Coordinate Phrases per T-Unit SYN.CPT NCP/NT 

Dependent Clauses per Clause SYN.DCC NDC/NC 

Dependent Clauses per T-Unit SYN.DCT NDC/NT 

Syntactic Kolmogorov Deflate SYN.KOLMOGOROV Ehret & Szmrecsanyi 2011 

Mean Length Clause SYN.MLC NW/NC 

Mean Length Sentence SYN.MLS NW/NS 

Mean Length T-Unit SYN.MLT NW/NT 

T-Units per Sentence SYN.TS NT/NS 

Verb Phrases per T-Unit SYN.VPT NVP/NT 
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insights from language learning and processing research. One such tool is TAALES (Kyle & Crossley, 

2015) that supports 104 classic and new indices of lexical sophistication, covering indices of frequency, 

range, academic language and psycholinguistic word information. Another tool is TAASSC (Kyle 2016) 

that covers 372 classical and fine-grained indices of syntactic complexity. CRAT (Crossley, Kyle, 

Davenport & McNamara, 2016) is another recently developed tool that includes over 700 indices related 

to lexical sophistication, cohesion and source text/summary text overlap. The coverage of such a large 

number of indices allows for an extensive and comprehensive assessment of text complexity and enables 

the identification of the most predictive and reliable indices of L2 performance and proficiency.  

The sliding-window approach implemented in CoCoGen adds a new perspective on the assessment 

of text complexity. We showcase how this approach can be put to use in the area of L2 learning. The 

focus here is on the advanced stages of L2 English learning which in recent years have received growing 

attention, primarily grounded in what has come to be known as learner corpus research (cf. Granger, 

Gilquin & Meunier, 2015). This line of research has provided valuable insights into how and to what 

extent advanced L2 learners’ performance deviate from target-like behavior. The vast majority of 

previous studies conducted in this line of research have made L1-L2 comparisons using L2 data from 

corpora such as the ICLE (cf. Granger, Dagneaux, Meunier & Paquot, 2009) and L1 data from 

comparable corpora such as the LOCNESS (cf. https://www.uclouvain.be/en-cecl-locness.html). These 

corpora include writing of a general argumentative, creative or literary nature and consist of relatively 

short texts (e.g. average text length: ICLE = 617 words). These texts do not represent academic writing 

in a narrow sense (cf. Callies & Zaytseva, 2013), a register characterized by its compressed style (cf., 

Biber & Gray, 2010) as well as its own phraseology/formulaic language (e.g., Ellis et al., 2008). The 

mastery of this register constitutes a learning target in both L1 and L2 learning (cf., Biber et al., 2011, 

2013; Hyland & Tse, 2007). Correspondingly, advanced L2 learners’ performance is best evaluated 

against an expert writer baseline (cf., Bolton, Nelson & Hung, 2002; Römer, 2009; Kerz & Wiechmann, 

2015 for discussions).  

The L2 learner data used in our paper come from a corpus of 110 academic research papers on a 

linguistic topic written by 2nd and 3rd year students enrolled in the bachelor programmes of the English 

Department at the RWTH Aachen University (N ~ 486,000 words, average text length = 4,500 words). 

All students are L1 speakers of German and meet the criteria for advanced learner status of English 

based on their institutional status (undergraduates with 7-9 years of formal instruction of English before 

entering university) (cf. Callies, 2009:116f.). The expert corpus consists of 110 research articles on 

linguistic topics published in peer-reviewed journals (N ~867,000 words, average text length = 7,880 

words).  

We are interested in whether and to what extent the progression of complexity within L2 texts 

deviates from the expert-writer target. We address this question for each of the 32 complexity measures 

currently implemented in CoCoGen (cf. Table 1). We used a supervised machine learning classifier to 

distinguish L2 texts from expert texts based on the measurements computed by the tool. The guiding 

idea is that in cases where the classifier cannot distinguish between learner and expert texts, L2 

performance is target-like. Conversely, in cases where the classifier can distinguish between learner and 

expert texts, L2 performance deviates from target-like behavior. We also want to know whether there is 

any advantage of using complexity contours in the classification task, rather than using summary 

statistics. If this is the case, we would expect classification accuracy to be higher for a classifier fed with 

complexity contour information compared to one fed with summary statistics information. 
The complexity of 220 texts in our corpora was automatically assessed using CoCoGen. Figure 2 

below provides a visual representation of complexity contours of a single text – a randomly selected text 

from our expert corpus – for two selected complexity measures: SYN.CNS and LEX.SOPH.BNC. The 

two plots show the progression of complexity over 100 scaled windows, indicating that for both 

measures complexity is not uniformly distributed. 
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Figure 2: Visual representation of complexity contours for two selected measures in a single expert text 

Figure 3 below illustrates the distribution of complexity for a single measure – SYN.MLS – in the two 

corpora. The thick solid lines describe the distributions of mean complexity using text-time scaling for 

both learners (blue) and experts (red). The shaded areas represent the corresponding interquartile ranges 
for both groups. 

 

 

Figure 3: Distribution of complexity for a single measure in the learner and the expert corpus 

For our classification task, we used a simple and transparent supervised machine learning technique: 

For each complexity measure, we identified the empirical threshold complexity value, i.e. the value that 

discriminates most strongly between L2 learner and expert texts in our data. This value served as the 

decision boundary for discriminating between the two groups. For the summary statistics-based 

approach, the description of text complexity of our corpus yielded 220 point estimates of text complexity 

– one score for each of the 110 learner and 110 expert texts. Each midpoint between any two values of 

the rank-ordered vector of complexity scores was used to divide the data into two groups. The optimal 

empirical threshold complexity value was found by maximizing the rand index (RI, Rand, 1971) and 

was validated using 10-fold cross-validation. For the sliding window approach, the empirical threshold 

values were determined for each window separately and the classification was determined by majority 

vote.1  

Figure 5 visualizes the type of information available to the contour-based and summary statistics-

based classification. The plot presents all measurements obtained for the LEX.DIV.CTTR complexity 

measure. Red dots represent expert texts, whereas blue dots represent L2 learner texts. The black vertical 

line separates the data used for the contour-based classification (left) from the data used for the summary 

statistics-based classification (right). The horizontal lines mark the empirical threshold complexity, 

                                                 
1 Classification can also be informed by the accumulated deviation of the observed values from the threshold. 

We opted against this option here in the interest of transparency. However, the inclusion of this information – as 

well as information concerning weights of vector positions (feature weighting) – can only improve the 

performance of the contour-based approach advocated here. 
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which were used by the classifier to predict the class of a text (L2 learner/expert). In case of the summary 

statistics-based approach, this is a single value. In the contour-based approach, a threshold value was 

determined for each of the ten scaled windows. It is important to note that the thresholds found for each 

of the windows follow a nonlinear curve, which cannot be adequately captured by a single value. 

 

 
 Figure 4: Measurements of complexity and empirical threshold values for LEX.DIV.CTTR for ten non-overlapping 

windows 

Table 2 presents the Accuracy (RI), Recall, Precision, and F-measure (harmonic mean) for all measures 

for the summary-statistics-based and contour-based classification. 
 

Table 2: Results of summary statistics-based (SSB) and contour-based (CB) classification 

 Accuracy Recall Precision F 

Measure SSB CB SSB CB SSB CB SSB CB 

KOLMOGOROV 0.6 0.62 0.59 0.62 0.59 0.65 0.59 0.63 

LEX.DEN 0.64 0.66 0.63 0.65 0.64 0.67 0.64 0.66 

LEX.DIV.CNDW 0.54 0.58 0.54 0.58 0.55 0.62 0.55 0.6 

LEX.DIV.CTTR 0.58 0.62 0.58 0.61 0.62 0.7 0.6 0.65 

LEX.DIV.NDW 0.6 0.64 0.59 0.63 0.6 0.66 0.59 0.64 

LEX.DIV.RTTR 0.58 0.62 0.57 0.61 0.59 0.68 0.58 0.64 

LEX.DIV.TTR 0.54 0.58 0.54 0.58 0.55 0.62 0.54 0.6 

LEX.SOPH.AFL 0.51 0.57 0.51 0.56 0.58 0.68 0.54 0.61 

LEX.SOPH.ANC 0.57 0.62 0.56 0.61 0.58 0.65 0.57 0.63 

LEX.SOPH.BNC 0.6 0.65 0.6 0.64 0.6 0.67 0.6 0.65 

LEX.NAWL 0.54 0.59 0.54 0.58 0.54 0.69 0.54 0.63 

LEX.NGSL 0.6 0.62 0.59 0.61 0.62 0.64 0.61 0.63 

MORPH.KOLMOGOROV 0.57 0.62 0.57 0.62 0.57 0.65 0.57 0.63 

SYN.MLWC 0.54 0.6 0.53 0.59 0.67 0.66 0.59 0.62 

SYN.MLWS 0.55 0.6 0.54 0.59 0.64 0.67 0.58 0.63 

SYN.NPPOSTMODW 0.56 0.6 0.56 0.59 0.59 0.65 0.57 0.62 

SYN.NPPREMODW 0.57 0.6 0.56 0.6 0.62 0.65 0.59 0.62 

SYN.CS 0.5 0.58 0.5 0.57 0.53 0.61 0.52 0.59 

SYN.CT 0.5 0.57 0.5 0.57 0.56 0.65 0.53 0.6 

SYN.CNC 0.62 0.63 0.62 0.63 0.62 0.65 0.62 0.64 

SYN.CNS 0.6 0.63 0.59 0.62 0.62 0.67 0.6 0.64 

SYN.CTT 0.51 0.57 0.51 0.57 0.63 0.67 0.56 0.61 

SYN.CPC 0.52 0.57 0.52 0.57 0.56 0.67 0.54 0.61 

SYN.CPT 0.52 0.57 0.52 0.57 0.54 0.61 0.53 0.59 

SYN.DCC 0.51 0.57 0.5 0.57 0.58 0.63 0.54 0.6 

SYN.DCT 0.5 0.57 0.5 0.57 0.53 0.63 0.52 0.6 

SYN.KOLMOGOROV 0.59 0.63 0.58 0.62 0.59 0.65 0.59 0.64 

SYN.MLC 0.63 0.63 0.63 0.63 0.64 0.64 0.63 0.64 

SYN.MLS 0.59 0.63 0.59 0.63 0.59 0.65 0.59 0.64 

SYN.MLT 0.58 0.62 0.57 0.61 0.64 0.67 0.61 0.64 
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We found that the contour-based classifier outperformed the summary statistics-based classifier for all 

measures of complexity. The contour-based classifier also identified a larger number of complexity 

measures that discriminate between L2 learner and expert texts: In the global, summary statistics-based 

classification more than a third of the measures received a predictive accuracy (RI score) < 0.55, which 

is not significantly different from chance (p binomial test > 0.05). In response to our first research question, 

these findings indicate that for all measures investigated in this study L2 learners’ performance deviates 

from that of the expert-target (classification accuracy ≥ 0.57, p binomial test = 0.025). The top three measures 

are all measures of lexical sophistication. In response to our second research question, we found that 

using complexity contours information in the classification task provides a more accurate picture of 

differences between learner and expert texts. While these results look promising, further work is needed 

to include a larger set of complexity measures proposed in the relevant literature and to investigate how 
the contour-based approach can contribute to the identification of the most reliable and valid complexity 

measures that serve as proxies of L2 performance and proficiency.  

Most importantly, however, the contour-based approach opens up new interesting research questions. 

One possible research question concerns the identification of “gold standards” for the within-text 

distribution of complexity for different text type (register/genre) and to what extent compliance to such 

standards is related to perceived text quality. A related question is whether human ratings of text quality 

are affected by the “global” complexity of a text captured in terms of summary statistics, or by the 

“local” complexity of specific passages, captured in terms of complexity contours: For example, do 

human raters judge a text quality primarily based on an early partition (anchoring effects), do they judge 

it based on properties of a late partition (recency effects)? Another question is whether there is evidence 

for “local compensatory effects”, i.e. whether a high level of complexity at one level of linguistic 

analysis (e.g. syntax) is compensated for by a low level of complexity at another level (e.g. lexicon). 

4 Conclusion 

We introduced CoCoGen (Complexity Contour Generator), a tool designed to automatically track the 

progression of linguistic complexity within a text. CoCoGen uses a sliding-window technique to 

generate a series of measurements (complexity contours) for a given complexity dimension, providing 

a novel approach to the automatic assessment of text complexity. For the purposes of the present study, 

we decided to showcase this approach in the area of L2 learning. In future work we intend to apply this 

approach to other research areas, in particular, readability research and discourse processing. 
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