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Abstract
This paper describes the AFRL-MITLL
statistical machine translation systems and
the improvements that were developed
during the WMT16 evaluation campaign.
New techniques applied this year include
Neural Machine Translation, a unique se-
lection process for language modelling
data, additional out-of-vocabulary translit-
eration techniques, and morphology gen-
eration.

1 Introduction

As part of the 2016 Conference onMachine Trans-
lation (WMT16) news-translation shared task, the
MITLL and AFRL human language techology
teams participated in the Russian–English and
English–Russian news translation tasks. Our ma-
chine translation (MT) systems represent improve-
ments to both our systems from IWSLT2015 (Kazi
et al., 2015) and WMT15 (Gwinnup et al., 2015),
the introduction of Neural Machine Translation
rescoring, neural-net based recasing, unsupervised
transliteration of out-of-vocabulary (OOV) words
(Durrani et al., 2014), and an unique selection
process for language modelling data. For the
English–Russian translation task we experimented
with techniques to improve morphology genera-
tion.

2 System Description

We submitted systems for the Russian–English and
English–Russian news-domain machine transla-
tion shared tasks. For all submissions, we used the
phrase-based variant of theMoses decoder (Koehn
et al., 2007). As in previous years, our submitted
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systems used only the constrained data supplied
when training.

2.1 Data Usage
In training our systemswe drew on all the available
data, filtering the new English Common Crawl
monolingual data as described in §2.4 and §3.1.
The Wikipedia Headlines corpus1 was reserved to
train a neural network based transliteration system
described in §2.8.1.

2.2 Data Preprocessing
We processed the training data similarly to our
WMT15 system (Gwinnup et al., 2015). We ex-
amined irregular behaviors inMoses’s punctuation
normalization script2. We ran a script that exam-
ines the source and target side of the parallel train-
ing data and removes lines that are identical in both
the source and target in order to prevent the effects
of wrong-language phrases “polluting” the phrase
and rule tables.

2.3 Phrase Table Generation
We used the standard Moses method of extract-
ing and creating phrase tables. Phrase tables were
binarized using either the Compact Phrase Table
(Junczys-Dowmunt, 2012) or ProbingPT (Bogoy-
chev and Hoang, 2016) methods.

2.4 Language Model Data Selection
Using definitions below, we select as a language
modelling set a subset S from the Common Crawl
set C to maximize its similarity to a target set T ,
using a coverage metric g(S, T ). Defining ci(X)
as the count of feature i’s occurrence in corpus X ,

g(S, T ) =

∑
i∈I f(min(ci(S), ci(T )))∑
i∈I f(ci(T )) + pi(S, T )

1http://statmt.org/wmt15/wiki-titles.tgz
2normalize-punctuation.perl
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where the oversaturation penalty pi(S, T ) is

max(0, ci(S)−ci(T )) [f(ci(T ) + 1) − f(ci(T ))] .

We use f(x) = log(1+x) as the submodular func-
tion to weight counts, and the feature set I is the
set of all unigrams and bigrams. The target set T
is made of the news test sets from 2013–2015.
The optimization problem, maxS⊂C g(S, T ), is

solved via greedy optimization, iteratively adding
the segment to S that provides the largest increase
in g. The set S is reviewed after each addition,
removing any older segment in S that decreases g.
The Common Crawl corpus C is broken into

easily-processed chunks of ten thousand segments,
selecting five hundred segments from each chunk.
This selection was repeated until we saw dimin-
ishing returns from adding further chunks, result-
ing in a language modelling subset of six million
lines. These six million lines represent 0.17% of
the 3.6 billion lines of data in the English portion
of the Common Crawl.

2.5 Tuning Improvements
Improvements were made to our tuner, Drem (Erd-
mann and Gwinnup, 2015), since our last sub-
mission. Enforcement of minimum and maxi-
mum distance of the tuning result from prior de-
codes (i.e., tabu and fear constraints) is now im-
plicitly enforced via L1 penalty functions, mak-
ing the process more robust to densely-packed de-
codes. Rescoring weights are now not penalized
in the n-best list interpolation scheme, since they
do not directly affect n-best lists. This new feature
provides faster convergence of our NMT-rescored
systems. Another improvement to Drem is that the
metric chrF3 (Popović, 2015) is now available as
a tuning objective function.

2.6 Neural Network Recaser
We noticed a substantial gap between uncased and
cased BLEU scores on our systems. Addressing
the problem in post-processing, it became apparent
that recasing can only do so much on monolingual
data. We therefore built a classifier that uses both
the source-side and the target-side of the transla-
tions. The inputs to the classifier are:

• ti, the word to be recased, as well as ti−1 and
ti−2

• sa(i), the source word aligned to ti, plus
sa(i)±1. Alignments were taken from Moses

output, and missing alignments were com-
puted using the NNJM affiliation heuris-
tic (Devlin et al., 2014).

• The status of the source word as lowercase,
capitalized, or OTHER.

The exact classifier used could be anything; we
chose a neural network because it is simple to cre-
ate and robust. Our architecture is as follows:

1. Vocabulary of all words, excluding 25% of
singletons

2. Input: Word vectors for these words, plus
nine binary inputs (si−1 = lc, si−1 =
Uc, si−1 = OTHER, si = lc . . .), all con-
catenated together into a single vector

3. Two hidden layers, default size 100
4. One softmax output, 3 output classes

The resulting recaser consistently yields +0.2-
0.25 case-sensitive BLEU over a standard lan-
guage model recaser.

2.7 Inflection Generation
English-Russian systems have the added challenge
of generating morphologically rich word-forms.
In addition to an English-Russian baseline, we
trained two methods to generate inflected forms.
First, we created a system with a separate inflec-
tion prediction component (Toutanova et al. 2008,
Fraser et al. 2012). We trained anMT system from
English to lemmatized Russian, using the Mys-
tem3 Russian morphological analyzer to lemma-
tize all available parallel data, and then trained
a MT system from lemmatized Russian to Rus-
sian. Scoring against lemmatized references, the
first step yielded 27.70 case-insensitive BLEU on
newstest2016. However, while the lemru-ru sys-
tem was successful with one-to-one lemmatized
training data, it couldn’t recover from mistakes in
theMT output of the first step and the system over-
all did not perform as well as our baseline (17.19
cased BLEU).
We also attempted to address inflection genera-

tion during training using verb annotation, follow-
ing the approach of Kirchhoff et al. (2015) for Ara-
bic verb inflection. We use dependency parsing to
identify the subject of the verb in the English sen-
tence and then annotate the verb with the person
and number of the subject. With a pronominal sub-
ject he or she, the verb is also annotated for gender.

3https://api.yandex.ru/mystem

297



Original: Woud n’t you know it ?
Annotated: Would n’t you know-2p it ?

Dependency Parse:

Index Word POS Head Relation

1 Would MD 4 aux
2 n’t RB 4 neg
3 you PRP 4 nsubj
4 know VB 0 root
5 it PRP 4 dobj
6 ? . 4 punct

Figure 1: Annotation via Dependency Parse

This provides the potential for the system to match
annotated English verbs to the correctly inflected
Russian verbs during training. Figure 1 shows an
annotated sentence and the underlying dependency
parse.
We use the Stanford parser (Klein and Man-

ning, 2003) and conversion utility to generate the
dependency parses, adjusting the tokenization of
the input to match the Stanford treatment of con-
tractions. We apply annotation to verbs with sub-
jects listed as nsubj or xsubj in the dependency
parse. Person, number, and gender are derived
from the subject’s POS tag and from the specific
lexical item for pronouns. Coordinate subjects are
counted as plural.
An unannotated MT system has a good chance

of associating the correct verb form with the sub-
ject if the subject and verb are adjacent and can be
extracted as a phrase, while more distant pairs are
less likely to be found in the phrase table, leaving
the verb open to translation in the wrong inflected
form. Since annotation can increase data sparsity,
it is better to apply it only when necessary.
Kirchhoff et al. (2015) address the data spar-

sity issue by only applying their annotation-trained
model when their baseline model translates the
subject and verb via separate phrases. In some
of our systems, we simulated the use of a back-
off model by restricting our annotation to subjects
and verbs that occur with a minimum separation
distance.
Figure 2 shows the potential effect of specify-

ing a minimum separation distance. In the first
sentence, the subject and verb are adjacent; any
separation requirement greater than zero prevents
annotation of the verb. The other sentences show
a greater separation, and annotation will be main-

Would n’t you know-2p it ?
The country was gradually recovering-3p-sg ..
The interests of people take-3p-pl precedence ..

Figure 2: Annotation at different separation dis-
tances.

tained if the separation requirement is less than 3.
In order to avoid the data sparsity problem, we

ultimately created a factored version of the verb
annotation system. The annotations were speci-
fied as factors on the verb, with a null factor on the
unannotated words, e.g. would|NONE n't|NONE
you|NONE know|2p it|NONE ?|NONE
In system 2 of our English-Russian systems

(shown in Table 8), we used this factored input
with no separation limit.

2.7.1 Discussion
We examined the effect of verb annotation on in-
flection choice using an enhanced version of the
Hjerson (Popović, 2011) error analysis program,
in conjunction with the Mystem Russian morpho-
logical analyzer. Factored verb annotation as de-
scribed above failed to reduce the number of in-
flectional errors (shown in Table 1.)

Technique Inf. Errors Pct. Hyp. Words

Baseline 5823 9.349%
Annotated 5994 9.351%

Table 1: Hjerson performance

The verb annotation technique aims to increase
the information available for the generation of verb
inflections. Errors in verb inflection amount to just
a small proportion of overall errors in our baseline
system, so the room for improvement in translation
quality is small (shown in Table 2.)

Error Type Instances Pct. Hyp. Words

Word Choice 30031 48.21%
Reordering 4479 7.19%
Inflection 5823 9.35%

Table 2: Hjerson classification of Error Types in
Baseline System

Only about 18% of these 5823 baseline inflec-
tional errors involve verbs; other errors involve
nouns and pronouns (about 58%) or adjectives
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(about 24%). Meanwhile, the use of annotated
data had unintended consequences for the other
elements in the sentence. While our annotations
were only applied to verbs in the training data,
changes in inflection were observed for nouns and
pronouns as well.
We used Mystem to provide a morphological

analysis of the inflectional errors. We found that
similar errors were made in both the baseline sys-
tem and the annotated system. Looking at the error
types by part of speech, we saw that verb errors
for both systems primarily involved either num-
ber or gender, as opposed to tense or person. Pro-
noun errors for both systems showed a tendency
for oblique cases in place of nominative.
For example, both systems displayed errors in

which будут (third person plural) “they will” was
generated instead of the reference form, будет
(third person singular) “he will”. The baseline sys-
tem had 8 instances of this error, while the anno-
tated system had 10 instances. The most frequent
error was the substitution of the dative/locative
first person singular pronoun мне “to me” for the
nominative pronoun я “I”. The baseline system had
16 instances of this error, compared to 20 instances
for the annotated system.
The verb-annotated system performed worse

than our baseline when evaluated with the BLEU
metric. We hope to gain more insight from the hu-
man ranking of the two systems.

2.8 Transliteration
We employed two methods to address translit-
eration of remaining out-of-vocabulary (OOV)
words: an unsupervised statistical translitera-
tion approach and a novel character-based neural-
network transliteration approach.

2.8.1 Neural Network Transliteration
We created a list of 54k Named Entity (NE) pairs
from the CommonCrawl using transliterationmin-
ing; we also derived NE pairs from the Wikipedia
Headlines Corpus (Gwinnup et al., 2015). We
employed these lists in building a neural net-
work based transliterator. We trained an encoder-
decoder LSTM network to produce characters in a
target language given characters from aword in the
source language. The network configuration was
nearly the same as that in our NMT experiments,
except the network was significantly smaller (hid-
den sizes of 100 and 200, with 1, 2, and 3 hidden
layers) and had a beam of 5. A small (5k) sub-

set of the data was held out for evaluation/tuning.
Since Russian nouns use case inflections, multi-
ple Russian word forms may map to a single En-
glish spelling. For this reason, we tried rescor-
ing with a unigram language model trained on the
monolingual data to help weight the correct En-
glish spelling of words that may have been seen
in the language modelling data but were not in the
phrase table. The LM’s unknown word probability
was optimized on the validation set.

System Exact matches

Baseline [0 edit distance] 23.1%
Single enc-dec 34.7%
Ensemble (6) 38.7%
Single enc-dec + LM rescore 42.5%
Ensemble (6) + LM rescore 45.8%

Table 3: Fraction of transliterations that match ex-
actly, on validation set (subset of newstest2014)

We integrated this process into our SMT
pipeline through different backoff phrase tables.
Unknown words from the dev and test sets were
transliterated via beam search (beam and stack size
of 5) using the final system in Table 3 to cre-
ate phrase table entries. The results are in Ta-
ble 4. Gains may seem modest, however, there
are not that many OOV words in newstest2015
– only 817 total unknowns, 515 of which we at-
tempted to transliterate (ASCII entries and Capi-
talized words). Despite this, gains are consistent.

System Cased BLEU

1. drop unknowns 28.07
2. pass-through unknowns 27.85
3. ASCII entries in backoff PT 27.86
4. 3 + cased words LM match 28.20
5. 3 + all cased Cyrillic words 28.16

Table 4: Neural Transliteration via Backoff PTs

2.8.2 Unsupervised Statistical Transliteration

As a contrast to our neural network transliteration
approach, we also experimented with using the un-
supervised statistical transliteration method (Dur-
rani et al., 2014) included in Moses. System 2 in
Table 7 and both systems in Table 8 employ this
strategy as a post-decode step.
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2.9 Neural MT
We describe a Neural Machine Translation system
we developed and our strategies to integrate this
system into our machine translation framework.

2.9.1 System
We trained a neural encoder-decoder net-
work (Sutskever et al., 2014; Bahdanau et al.,
2014; Luong et al., 2015) using the attention
model from (Vinyals et al., 2015) to perform
neural machine translation (NMT). We trained
the model using Adagrad (Duchi et al., 2011) and
found it improved performance over the learning
rate schedule proposed in (Luong et al., 2015).
We also found it advantageous to use a larger
source vocabulary (200k-500k words worked
well). Each instance of the system was comprised
of two 1000-dim hidden layers, with beam and
stack of 5. Our NMT results are shown in Table 5.
They did not perform competitively with our SMT
systems by themselves, however they were very
useful in rescoring as others have noted (Auli et
al., 2013).

System Cased BLEU

1. Single model 21.00
2. Ensemble of 2 21.46

Table 5: Russian–English Neural MT Systems de-
coding newstest2015

2.9.2 Reranking
Wecompared two different ways of using theNMT
system to augment our phrase-based system.

1. Single set of weightsWe augment the Moses
n-best list with NMT scores for each sen-
tence, and then tune the decode weights us-
ing Drem. We repeat this process 10 times,
using the last weights to decode the test set
and one-best calculation.

2. Decode + rerank weights We tune the de-
code weights using Drem, without the NMT
scores. After 10 iterations, we merge the n-
best lists together and compute NMT scores
over the result. Then, we compute a second
set of weights. To decode the test set, we pass
the decode weights to Moses, augment the n-
best list with NMT scores, and finally apply
the one-best dot product using the second set
of weights.

Features Cased BLEU tst15

pb + BigLM 27.09
+ nmt 27.92
+ cc LM data 28.07
+ translit 28.20

Table 6: Score breakdown for en–ru submission
system 1, average of 6 runs on newstest2015.

The first process produced scores of 27.22,
and the second 27.92 (mteval, case+punc,
newstest2015, average of 6).

3 Results

We submitted 2 Russian–English and 2 English–
Russian systems for evaluation, each employing a
different decoding strategy. Each system is de-
scribed below. Automatically scored results re-
ported in BLEU (Papineni et al., 2002) for our
submission systems can be found in Table 7 for
Russian–English and Table 8 for English–Russian.
Finally, as part of WMT16, the results of our

submission systems were ranked by monolingual
human judges against the machine translation out-
put of other WMT16 participants. These judg-
ments are reported in WMT (2016).

3.1 Russian–English
For both Russian–English system submissions, we
reused the BigLM15 concept from our WMT15
submissions to build a monolithic language model
from the following sources: Yandex4, Common-
crawl (Smith et al., 2013), LDC Gigaword English
v5 (Parker et al., 2011) and News Commentary.
Submission system 1 included the data selected
from the large Commoncrawl corpus as outlined in
§2.4, while submission system 2 used this data to
build a separate, complementary language model.
For submission system 1, we used a standard

phrase based approach with the following param-
eters/features: distortion-limit of 8, no reorder-
ing over punctuation, hierarchical mslr reordering
model (Galley and Manning, 2008), order 7 op-
erational sequence model (Durrani et al., 2011),
and a factored language model over the NYT Gi-
gaword corpus with 600 word classes. We incor-
porated our Tensorflow Neural MT system in via
reranking, and applied transliteration as backoff
phrase tables during decoding. Lowercased out-

4https://translate.yandex.ru/corpus?lang=en
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System Cased BLEU Unc. BLEU

1. pb + NMT rescore + BigLM(inc. CC data) + Neural translit 27.6 28.8
2. pb (clean data) + NMT rescore + CC subsel LM + Neural translit

+ Moses translit 27.0 28.4

Table 7: Russian–English MT Submission Systems decoding newstest2016

put was recased via neural network. A breakdown
of scores for submission system one is indicated in
Table 6.
For submission system 2, we used the same ap-

proach as system 1, removing the class-factored
language model and utilizing both the BigLM used
in our WMT15 systems and a secondary language
model built from data selected from the monolin-
gual CommonCrawl corpus as outlined in §2.4.
While this system did use the same transliteration
backoff phrase tables to handle OOVs, due to dif-
ferent preprocessing methodologies, some OOVs
still remained in the output. The Moses unsuper-
vised statistical transliterator was applied as a post-
process. Finally, the Moses statistical recaser was
employed to recase the data before scoring.

3.2 English–Russian

Both English–Russian submission systems used a
language model interpolated from individual mod-
els built from all available Russian data.
Submission system 1 is a standard baseline sys-

tem employing hierarchical lexicalized reordering
and an order 5 operation sequence model.
For submission system 2, we applied factored

verb annotation on the training data to guide in-
flection choice, as outlined in §2.7. This system
also employed hierarchical lexicalized reordering
and an order 5 operation sequence model. While
this system did not perform as well as system 1,
we are interested to see the effect of this verb-
annotation approach on the human-ranking portion
of the evaluation.
Due to time and processing constraints we did

not employ Neural Machine Translation rescoring

System Cased BLEU Unc. BLEU

1. enru-pb 23.42 23.52
2. enru-pb-facvban0 20.90 21.00

Table 8: English–Russian MT Submission Sys-
tems decoding newstest2016

in our English–Russian submission systems.

4 Conclusion

We present a series of improvements to our
Russian–English and English–Russian machine
translation systems. These include general im-
provements in working with large data sets (lan-
guage model selection, Drem optimization, neu-
ral model rescoring) as well as improvements
in language-specific processing (inflection selec-
tion/generation, NE transliteration, and neural net-
work recasing). While these innovations show
promise in addressing relevant issues in Russian–
English and English–Russian MT, the overall MT
results show that more work is needed to integrate
these methods.
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