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Abstract
Recent work has proposed using network
science to analyse the structure of the men-
tal lexicon by viewing words as nodes in a
phonological network, with edges connect-
ing words that differ by a single phoneme.
Comparing the structure of phonological
networks across different languages could
provide insights into linguistic typology
and the cognitive pressures that shape lan-
guage acquisition, evolution, and process-
ing. However, previous studies have not
considered how statistics gathered from
these networks are affected by factors such
as lexicon size and the distribution of word
lengths. We show that these factors can
substantially affect the statistics of a phono-
logical network and propose a new method
for making more robust comparisons. We
then analyse eight languages, finding many
commonalities but also some qualitative
differences in their lexicon structure.

1 Introduction

Studies suggest that the ease with which a word is
recognised or produced is affected by the word’s
phonological similarity to other words in the men-
tal lexicon (often operationalised as neighbourhood
density, i.e., the number of words that differ from
a target word by just a single phoneme) (Luce and
Pisoni, 1998; Harley and Bown, 1998; Vitevitch,
2002; Ziegler et al., 2003). Yet the nature of these
effects is not always consistent between languages.
For example, in English, the neighbourhood den-
sity of a word was found to correlate positively
with reaction times in a picture naming task (Vite-
vitch, 2002), and negatively with the speed and

accuracy of participants’ responses in a lexical de-
cision task (Luce and Pisoni, 1998). However, in
Spanish the opposite pattern was found: words with
higher neighbourhood densities were produced less
quickly in a picture naming task (Vitevitch and
Stamer, 2006), and recognised more quickly and
accurately in an auditory lexical decision task (Vite-
vitch and Rodrı́guez, 2005).

A possible explanation for such cross-linguistic
variation is that the different effects of neighbour-
hood density (a local measure of lexicon struc-
ture) might result from differences in the global
lexicon structure: for example, if one language
exhibits much greater similarity between words
overall, this could affect how language process-
ing mechanisms develop, leading to qualitatively
different behaviour.

One way to analyse the global phonological
structure of the mental lexicon is by represent-
ing it as a phonological network (Vitevitch, 2008):
a graph in which nodes correspond to the word-
forms in a lexicon, and edges link nodes which
are phonologically similar according to some met-
ric (typically, words which differ by exactly one
phoneme, i.e. they have a Levenshtein distance
of one). The structure of the network can then be
analysed quantitatively using measures from net-
work science. While neighbourhood density (i.e., a
node’s degree) is one local measure of connectivity,
other measures can better capture the global struc-
ture of the network. By comparing these measures
across languages, we might find explanations for
the behavioural differences mentioned above.

As well as providing insight into cross-linguistic
variations in language processing, cross-linguistic
comparisons of phonological network structure
could also uncover universal properties of language
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or typological generalisations. Indeed, Arbesman
et al. (2010) argued based on an analysis of phono-
logical networks from five languages that these
networks share several structural properties that
distinguish them from other naturally occurring
networks, suggesting some important underlying
organisation. Though specific hypotheses were
not presented in this work, one of the authors sug-
gested in an earlier analysis of the English lexicon
that such properties might arise due to particular
learning processes (Vitevitch, 2008).

However, work by Gruenenfelder and Pisoni
(2009) found that several of the structural prop-
erties discussed above were also found in a random
pseudolexicon with the same word lengths as a real
English lexicon, but with the phonemes in each
word chosen at random. Thus, they argued that
these structural properties are simply a by-product
of the way phonological networks are defined (by
connecting similar strings) and should not be taken
as evidence of particular growth processes (or pre-
sumably, any other cognitive pressures Arbesman
et al. might later have had in mind).

These studies highlight some important method-
ological issues that need to be resolved if we hope
to use network analysis as a tool for cross-linguistic
studies. In order to make meaningful compar-
isons between different languages’ networks, we
need to determine what constitutes a large or small
difference in phonological network statistics by
comparing all languages to appropriate random
baselines. In addition, there are two other factors
that have not been explicitly considered in previ-
ous studies of phonological networks. First, we
don’t know how the size of a phonological network
(number of nodes) affects its statistics. The lexi-
cons in Arbesman et al.’s study ranged from 2500
words (Hawaiian) to 122,000 words (Spanish), yet
if the size of the Spanish lexicon had also been
2500 words, it might have yielded quite different
statistics. Second, there is a lack of consensus
about whether phonological networks should be
constructed from lemmas or from all wordforms in-
cluding morphological variants, and in some cases,
datasets may only be available for one or the other
option. Therefore, we need to understand how in-
cluding or excluding inflectional variants affects
the measured statistics of phonological networks.

In this paper, we investigate the questions above,
synthesizing arguments from the literature with our
own analyses to propose a new method for com-

paring phonological networks across languages.
Using this method, we compare network statis-
tics across eight different languages to appropri-
ate baselines at a range of lexicon sizes. We show
that Gruenenfelder and Pisoni’s (2009) findings
for English extend to the other seven languages
we consider, supporting their argument that the
small-world properties of phonological networks
should not be used as evidence of particular cogni-
tive/growth processes. We also find that network
statistics vary with lexicon size within each lan-
guage, but not always in the same way. These
differences provide a first step in investigating the
relationship between cross-linguistic variation in
language processing and global lexicon structure.

2 Background

The use of network science to study the phonolog-
ical structure of the lexicon was first proposed by
Vitevitch (2008). He and later authors converged
on using several standard measures from network
science, which we will also employ. These are:

Degree assortativity coefficient In some net-
works, nodes tend to connect to other nodes that
have similar degrees (numbers of neighbours) to
their own. The extent to which a network exhibits
this property can be quantified using the degree
assortativity coefficient, which is defined as the
Pearson correlation coefficient r of the degrees of
the nodes at either end of each edge. So, r lies be-
tween −1 (the higher a node’s degree is, the lower
the degrees of its neighbours) and 1 (nodes con-
nect only to other nodes of the same degree), with
r = 0 if there is no correlation between the degrees
of neighbouring nodes.

Networks with positive degree assortativity are
relatively robust. Empirical studies show that in
such networks many nodes can be removed without
substantially reducing their connectivity (Newman,
2003).

Fraction of nodes in the giant component
Complex networks often have many distinct con-
nected components. Often, a single giant compo-
nent contains a much larger fraction of the nodes
than any other component, and this fraction helps
characterise the global connectivity of the network.

Average shortest path length (ASPL) The
shortest path length between two nodes v and w,
which we denote d(v, w), is the minimum number
of edges that must be traversed to get from node
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v to node w. The ASPL is then the mean of the
shortest path lengths between all pairs of nodes,
and is given by the equation

ASPL =
∑

v,w∈V

d(v, w)
|V |(|V | − 1)

,

where V denotes the set of all nodes in the net-
work. Since paths do not exist between mutually
disconnected components, there are different ways
to compute ASPL for graphs with disconnected
components; all values reported in this paper com-
pute the average across all pairs of nodes in the
giant component only.

Average clustering coefficient A node’s cluster-
ing coefficient measures the ‘cliquishness’ of its
neighbourhood, and is defined as the number of
edges that exist between its neighbours divided by
the number of possible edges between them:

C(v) =
2|{ eu,w ∈ E : ev,u ∈ E, ev,w ∈ E}|

k(v)(k(v)− 1)
,

where E denotes the set of all edges in the network,
ex,y denotes an edge between nodes x and y, and
k(x) denotes the degree of node x. The clustering
coefficient is undefined for nodes with k < 2, since
the denominator reduces to zero for such nodes.
We report the mean clustering coefficient over all
nodes in the giant component; nodes with fewer
than two neighbours are assigned a coefficient of
zero.1

A word’s clustering coefficient has been found
to predict behavioural measures in both lexical ac-
cess (Chan and Vitevitch, 2009) and adult and child
word learning (Goldstein and Vitevitch, 2014; Carl-
son et al., 2014).

Small-world property Small world networks
(Watts and Strogatz, 1998) are characterized by
short ASPL relative to their size and high average
clustering coefficients relative to what one would
expect from an equivalent Erdős-Rényi graph—one
with the same number of nodes and edges as the
real graph, but where edges are placed randomly
between pairs of nodes. A distinctive property of
these networks is their easy searchability: it is usu-
ally possible to find short paths between nodes in a
decentralized fashion using only small quantities
of information per node when the network admits

1Some researchers instead define the coefficient for such
nodes to be one, whilst others exclude such nodes from the
average (Schank and Wagner, 2004).

embedding in a suitable space (Kleinberg, 2000;
Sarkar et al., 2013). It has been suggested that
easy searchability could be relevant for spreading-
activation models of lexical processing (Chan and
Vitevitch, 2009) and in lexical acquisition (Carlson
et al., 2011).

Using the measures above, Vitevitch (2008) anal-
ysed a lexicon of English, and Arbesman et al.
(2010) extended the analysis to five lexicons repre-
senting languages from different language families.
They found several characteristics common to these
networks. All five lexicons were found to exhibit
the small-world property, having similar ASPLs to
those expected in comparable Erdős-Rényi graphs,
but average clustering coefficients that were sev-
eral orders of magnitude larger. The phonological
networks were also marked by high degree assorta-
tivity, with coefficients ranging from 0.56 to 0.76,
in contrast to typical values of 0.1 to 0.3 for so-
cial networks, and -0.1 to -0.2 for biological and
technical networks. The giant components in the
phonological networks all contained less than 70%
of nodes (in three cases, less than 40%), whereas
the giant components of social, biological, and tech-
nical networks typically contain 80-90% of nodes.
Arbesman et al. suggested that “together, these
observed characteristics hint at some deeper orga-
nization within language” (2010: 683).

Nevertheless, Arbesman et al. also found some
quantitative variation in the phonological network
statistics across languages—for example, the Man-
darin network had an ASPL almost twice that of the
Hawaiian network, a clustering coefficient twice
that of the Spanish network, and the fraction of
nodes in its giant component was almost twice that
of the English network. However, we don’t know
if these differences are meaningful, since the ex-
pected variability of these statistics in phonological
networks has not been established. In addition,
since the lexicon sizes varied widely across lan-
guages, the differences in network statistics may
have been due to this variation rather than to more
interesting differences between the languages.

Gruenenfelder and Pisoni (2009) started to ad-
dress these issues by considering a random baseline
network for English. They constructed a pseudolex-
icon by randomly generating phoneme sequences
with the same lengths as the words in an English
lexicon2, and found that the phonological network

2Both the English lexicon and the pseudolexicon were
limited to words of only 2 to 5 phonemes in length.
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Figure 1: Phonological network statistics of English lemmas, as a function of lexicon size.

of this random pseudolexicon also exhibited the
small-world property and a high degree assortativ-
ity coefficient. They concluded that these charac-
teristics are likely to occur in any network whose
nodes represent random sequences of parts (i.e.,
phonemes), and whose edges are determined by
the overlap of these parts. Thus they argued that
high assortative mixing by degree and small-world
characteristics should not be taken to indicate a
deeper organisational principle in the lexicon.

So, although Gruenenfelder and Pisoni (2009)
have analysed some properties of a randomly gen-
erated lexicon with the same size, word-lengths,
and phoneme inventory as a particular English lexi-
con, it remains to be seen whether these properties
are characteristic of randomly generated lexicons
in general, or to what extent they vary across dif-
ferent lexicon sizes, word-length distributions, and
phoneme inventory sizes. In the following sec-
tions we show that all of these factors affect the
statistics of both random and real lexicons; we then
propose a more robust method for making cross-
linguistic comparisons of phonological networks.
While our method is still not enough to draw strong
quantitative conclusions in all cases, we are able
to shed further light on a number of the claims and
questions raised above, and we also discover some
cross-linguistic differences in lexicon structure that
warrant further investigation.

3 Effect of lexicon size

We begin by asking whether the size of a phono-
logical network may affect its statistics. For this
analysis, we use only a single language (English).

3.1 Method
We start with the 44,841 English lemmas in the
CELEX database (Baayen et al., 1995), which in-
cludes both word frequencies and phonemic tran-
scriptions. We derive from this original lexicon a
series of sublexicons of decreasing sizes, by pro-
gressively filtering out batches of words with the

lowest frequencies. Thresholding a lexicon by fre-
quency simulates drawing a lexicon from a smaller
corpus or dictionary, since the more frequently a
word is used, the more likely it is to appear in even
a small corpus or dictionary. For each (sub)lexicon,
we associate each distinct phonological form with
a unique node and place edges between pairs of
nodes that differ by one phoneme (insertion, dele-
tion, or substitution). To construct the networks
and compute their statistics we use the NetworkX
Python package (Hagberg et al., 2008).

3.2 Results and discussion

Figure 1 shows the values of four network statis-
tics as a function of lexicon size. All the values
fall within the range found across languages by
Arbesman et al. (2010). However, all four statistics
do vary with lexicon size, suggesting that com-
parisons between networks should only be made
between lexicons of similar size.

One way to attempt such quantitative compar-
isons across languages could be to subsample from
each lexicon in order to obtain lexicons of the same
size. However, we don’t know if the slopes of these
plots will be the same across languages. Consider
the hypothetical plot in Figure 2:

Lexicon size

N
et

w
or

k
st

at
is

ti
c

Language X
Language Y

Figure 2: Hypothetical scenario where the value
of a phonological network statistic is positively
correlated with lexicon size in Language X, but
negatively correlated in Language Y.

In this case, controlling for lexicon size is not
enough, since if we choose a small lexicon size
then Language X will have a smaller statistic than
Language Y, whereas if we choose a large size then
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the opposite holds. This observation motivates us
to compare statistics across a range of sizes rather
than using point estimates as in previous work.

Indeed, an established technique for comparing
the properties of real networks against random base-
lines is to plot the value of a network statistic as
a function of network size, and compare the slope
obtained for random networks against the trend ob-
served in real networks (Albert and Barabási, 2002).
However, care must be taken in choosing appropri-
ate random baselines for phonological networks,
due to the issues described next.

4 Effects of word-length distribution and
phoneme inventory size

Recently, Stella and Brede (2015) pointed out that
due to the way in which nodes and edges are typi-
cally defined in phonological networks, the statis-
tics of such networks are highly sensitive to the
distribution of word lengths in the lexicon, and to
a lesser extent, the size of the phoneme inventory.
Stella and Brede considered the set of all possible
‘words’ (i.e. possible sequences of phonemes) that
could be formed using a given phoneme inventory,
and noted that the number of possible n-phoneme
words scales exponentially with n, while the num-
ber of possible neighbours of an n-phoneme word
scales linearly with n. Hence, if we randomly sam-
ple a pair of words from the set of all possible
words, then the shorter their lengths are, the more
likely it is that the sampled words will be neigh-
bours. Thus, lexicons with a higher proportion
of short words will tend to be more densely con-
nected, regardless of any other phonological proper-
ties. Also, since the number of possible n-phoneme
words scales faster with the size of the phoneme
inventory than does the number of possible neigh-
bours of an n-phoneme word, we expect the size of
the phoneme inventory to affect the connectivity of
a phonological network, albeit by a smaller factor
than the distribution of word lengths.

Unlike lexicon size, the word-length distribution
and phoneme inventory size are inherent properties
of a language, so these confounds make it difficult
to directly compare network statistics across lan-
guages, even after controlling for lexicon size. In
making cross-linguistic comparisions, we would
like to be able to identify differences between lan-
guages beyond the fact that their lexicons have
different word length distributions.

Therefore, rather than directly comparing the

statistics of real lexicons across languages, we pro-
pose to generate separate pseudolexicons for each
language that match the word-length distribution
and phoneme inventory size of that language. We
can then examine the differences between these
pseudolexicons and the real lexicons over a range
of lexicon sizes, and compare these differences
across languages. Using this method we can bet-
ter evaluate some of the claims made by previous
authors and reveal some previously undetected vari-
ation in network structure across languages.

5 Cross-linguistic comparison

5.1 Data and method

We analyse phonological networks from eight dif-
ferent languages: English, Dutch, German, French,
Spanish, Portuguese, Polish, and Basque. Where
possible, we have obtained for each language a
lexicon consisting only of lemmas, and another
with separate entries for phonemically distinct in-
flectional variants.3 Each lexical entry consists
of a phonemically transcribed word and a corpus-
derived estimate of its frequency. The sources and
sizes of the lexicons are listed in Table 1. From
each of these original lexicons, we derive a series
of sublexicons of decreasing sizes, by progressively
filtering out batches of low-frequency words.

For each real lexicon and derived sublexicon, we
generate 20 random pseudolexicons with the same
size, phoneme inventory size, and word-length
distribution4. For each lexicon size in each lan-
guage, we compute the mean and standard devia-
tion of each statistic across the 20 pseudolexicons,
as well as the statistics for the comparable real
(sub)lexicon.

5.2 Results and discussion

We first consider how the average word length
varies across our sample lexicons. Figure 3 shows
that average word lengths vary with lexicon size
(tending to increase as more infrequent words are
included in the lexicon), as well as across languages
(average word lengths in English and French are
substantially shorter than in Spanish).

3We were unable to obtain phonemic transcriptions for
Portuguese inflected wordforms, or reliable frequencies for
Spanish lemmas.

4Specifically, we replicate Gruenenfelder and Pisoni’s pro-
cedure for generating their ‘Word Length Only’ lexicon, ex-
cept that we match the entire word-length distribution, not just
the number of two-, three-, four-, and five-segment words.

114



Language Lexicon Type Size Source of pronunciations Source of frequencies

English Lemmas 44,841 CELEX (Baayen et al., 1995) CELEX
All wordforms 87,263 CELEX CELEX

Dutch Lemmas 117,048 CELEX CELEX
All wordforms 300,090 CELEX CELEX

German Lemmas 50,481 CELEX CELEX
All wordforms 353,679 CELEX CELEX

French Lemmas 43,361 Lexique (New et al., 2001) Lexique
All wordforms 71,334 Lexique Lexique

Portuguese Lemmas 18,656 Porlex (Gomes and Castro, 2003) CORLEX (Bacelar do Nascimento, 2003)
Spanish All wordforms 42,461 CALLHOME (Garrett et al., 1996) CALLHOME
Polish Lemmas 6024 GlobalPhone (Schultz, 2002) SUBTLEX-PL (Mandera et al., 2014)

All wordforms 25,623 GlobalPhone SUBTLEX-PL
Basque Lemmas 9102 E-hitz (Perea et al., 2006) E-hitz

All wordforms 99,491 E-hitz E-hitz

Table 1: Sources and sizes of lexicons. Sizes refer to the number of distinct phonological forms: sets of
words which have distinct spellings and/or senses but the same phonemic transcription are conflated into a
single phonological wordform.
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Figure 3: Average word length as a function of lexicon size. Solid lines are for lemmas; dashed lines are
for all wordforms.

Results for the four measures of network struc-
ture and connectivity defined above are presented
in Figure 4. We first discuss the similarities be-
tween different languages, focusing on the claims
made by previous researchers; we then discuss
some cross-linguistic differences.

5.2.1 Cross-linguistic similarities
As noted by Arbesman et al. (2010), there are some
striking similarities across the languages, especially
relative to other types of networks. To test for the
small-word behaviour that Arbesman et al. found
in their networks, we computed estimates of the
ASPLs and clustering coefficients of Erdős-Rényi
graphs matched to the giant components of each of
our lexicons.5 The ASPLs all ranged from 4 to 6,

5Following Gruenenfelder and Pisoni (2009), we esti-
mate the ASPL of an Erdős-Rényi graph using the formula

which is somewhat smaller than in our real lexicons,
but considered similar according to the conventions
used to test for the small-world property (Watts and
Strogatz, 1998). The clustering coefficients of the
Erdős-Rényi graphs ranged between 0.0003 and
0.03, orders of magnitude smaller than the values of
0.17 to 0.37 for our real lexicons; again, according
to the usual conventions (Watts and Strogatz, 1998),
these results indicate that all of our real lexicons
exhibit the small-world property.

However, all of our pseudolexicons are also
small-world networks. This finding extends Grue-
nenfelder and Pisoni’s result for English and sup-

ASPLER ≈ ln(|V |)
ln(〈k〉) , where 〈k〉 = 2|E|

|V | is the graph’s aver-
age degree. The average clustering coefficient of an Erdős-
Rényi graph is given by CER = 〈k〉

|V | (Albert and Barabási,
2002).
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Figure 4: Thick, coloured lines show network statistics as a function of lexicon size in real lexicons.
Thin, black lines show network statistics averaged across twenty random pseudolexicons, and the shaded
regions indicate ± 2 standard deviations. Solid lines are for lemmas; dashed lines are for all wordforms.

116



ports their claim that the small-world properties
arise naturally from the conventional definition of
these networks, rather than suggesting a “deeper
organization” as suggested by Arbesman et al.

Our results for degree assortativity also support
Gruenenfelder and Pisoni’s argument that substan-
tial assortative mixing by degree can be expected
in networks which are based on the overlap of parts
randomly combined into wholes. The degree as-
sortativity coefficients for all of the real lexicons
lie between 0.5 and 0.8, which is higher than the
values typically observed in social, biological, and
technical networks. But again, the coefficients of
the pseudolexicons are similar to those of the real
lexicons, making these values less remarkable.

The final generalisation that Arbesman et al.
made was that all the languages they examined
had a smaller proportion of nodes in their giant
components than the 80-90% that is typically ob-
served in complex networks. We find the same, but
as noted in Gruenenfelder and Pisoni’s analysis of
English, the fraction of nodes in the giant compo-
nent of the real lexicons is actually much greater
than in their matched pseudolexicons. This is not
surprising, as the real lexicons have phonotactic
constraints which would tend to make words more
similar to one another than if phonemes were sam-
pled at random. So again, the claim of a “deeper
organisation” seems premature.

5.2.2 Cross-linguistic differences
The search for interesting universal properties is
only half the motivation for making such cross-
linguistic comparisons. Ideally, we also want to
identify differences that might correlate with dif-
ferent behavioural patterns across languages. Two
of our statistics don’t reveal much on this point:
average clustering coefficient (discussed above)
and degree assortativity. There are some quanti-
tative differences in degree assortativity between
languages, but they seem mainly driven by differ-
ences in the word length distributions, since the
differences across real lexicons pattern the same as
the differences across pseudolexicons.

However, our results do reveal some more inter-
esting cross-linguistic differences in the way the
other two statistics vary across lexicon sizes and
lexicon types (lemmas vs all wordforms).

Fraction of nodes in the giant component
Some of the cross-linguistic differences in this
statistic again seem driven by differences in word-

length distribution, since there are large cross-
linguistic differences for this statistic even in the
pseudolexicons. For example, pseudolexicons
matched to French or English tend to contain
around 10% of the nodes, whereas pseudolexicons
matched to German or Spanish are an order of
magnitude smaller. However, word lengths cannot
account for all of the differences in giant compo-
nent size across languages, because the magnitude
of the difference in values between the real lexi-
cons and their corresponding pseudolexicons also
varies across languages. For example, the giant
component sizes of the pseudolexicons matched to
Basque and Polish lemmas are reasonably similar,
but the giant component sizes of the real Basque
lemma lexicons are twice as large as those of the
real Polish lemma lexicons.

In most of the languages the fraction of nodes in
the giant component tends to decrease with increas-
ing lexicon size (i.e. as more infrequent words are
included in the lexicon), which suggests that less
frequent words are phonotactically unusual. In con-
trast, in Spanish, Portuguese, and to a lesser extent
Basque, the less frequent words are more likely to
be a part of the giant component, suggesting that
they are more similar to other words in the lan-
guage. These different trends do not appear to be
solely a consequence of differences in word-length
distributions, since in the pseudolexicons matched
to Spanish, Portuguese, and Basque, the fraction
of nodes in the giant component does tend to de-
crease slightly with increasing lexicon size. This
finding could be important for understanding cross-
linguistic differences in language processing, since
both word frequency and phonotactic probability
are thought to affect both recognition and produc-
tion of words (Luce and Pisoni, 1998; Vitevitch
and Sommers, 2003).

These results also provide a real example of the
behaviour hypothesized in Figure 2, underscoring
the danger of using a single lexicon size to compare
phonological network statistics across languages:
if we compared lexicons containing around 10,000
words, we might conclude that Dutch wordforms
were more densely connected than Spanish word-
forms; whereas if we compared lexicons containing
30,000 words, their giant component sizes would
support the opposite conclusion.

Average shortest path length Arbesman et al.
noted that the ASPL for Mandarin was double that
of Hawaiian, and raised the question of whether
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this quantitative difference was significant. Our
results suggest not: the sizes of the two lexicons
they used (Hawaiian: 2578, Mandarin: 30,086)
are similar to the smallest and largest sizes of the
Polish and Spanish wordform lexicons used in our
study (Polish: 1694 and 25,623, Spanish: 1694 and
42,461), and we see that for Polish and Spanish
wordforms, as well as for Portuguese lemmas, the
largest lexicon has almost twice the ASPL as the
smallest one.

On the other hand, there do seem to be some
meaningful differences in ASPL across languages.
For the English lexicons, the ASPLs in the giant
component are barely distinguishable from those of
the corresponding random pseudolexicons. How-
ever, the values for Spanish and Polish lexicons
are consistently higher than those of their respec-
tive pseudolexicons; while for German, Portuguese,
and Basque, the differences between real and ran-
dom lexicons are less stable across different lexicon
sizes.

It should be noted that while the sizes of the
pseudolexicons are matched to those of the real lex-
icons, the sizes of their giant components are not.
Since the giant components of random pseudolexi-
cons tend to be considerably smaller than those of
real lexicons, it is unsurprising that their ASPLs
tend also to be smaller. Nevertheless, our results
show that the ASPL in the giant component of a
phonological network is not a simple function of
the giant component’s size. Recall that the differ-
ence between the size of the giant component in the
real lexicons and the size of the giant component in
the corresponding random lexicons is smaller for
Polish than for English or French. Hence, all else
being equal, we would expect the difference in the
ASPLs of real and random lexicons to be smaller
for Polish too—but the ASPLs in the Polish giant
components are actually larger, relative to the cor-
responding pseudolexicons, than those of English
or French.

Polish also behaves differently from some of the
other languages with respect to its morphology. In
Polish, the magnitude of the difference in ASPL
between real and random lexicons is greater when
morphological variants are included than when the
lexicons are restricted to lemmas, but this is not the
case for English, Dutch, or French.

6 Conclusion

This paper has argued that, when making compar-
isons between phonological networks, researchers
must consider that network statistics are affected
by lexicon size, phoneme inventory size, the distri-
bution of word lengths, and whether morphological
variants are included or not. Since it is not possible
to directly control for all of these in cross-linguistic
comparisons, we have proposed that such compar-
isons need to be made indirectly, by looking at how
each language’s phonological network differs from
a matched pseudolexicon across a range of lexicon
sizes, and then comparing these differences across
languages. While this approach doesn’t permit sim-
ple comparisons of single numbers, nevertheless it
can lead to insights regarding proposed universal
properties as well as cross-linguistic differences.

In particular, our analysis of eight languages pro-
vides further support to Gruenenfelder and Pisoni’s
(2009) claim that the small-world and other proper-
ties discussed by Vitevitch (2008) and Arbesman et
al. (2010) are a consequence of how phonological
networks are defined, and do not necessarily reflect
particular growth processes or cognitive pressures.
At the same time, we did identify several differ-
ences in the behaviour of network statistics across
different languages, which could provide an ex-
planation for previously identified differences in
language processing. We hope that our results will
inspire further work to investigate these potential
connections and to extend our analyses to addi-
tional languages.
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