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Abstract 

In this paper, we study the performance of N-gram 
language models on classification tasks such as sentiment 
analysis and spam detection and evaluate the effect of 
prior probability estimates on the results. Our data is in 
the form of public online posts pertaining to fast fashion 
brands, from different social media channels (Twitter and 
Facebook). We propose a novel ensemble model based 
on the combination of different N-grams in order to deal 
with the heteroskedastic nature of data collected from 
these social media channels. This has been further 
extended to increase the efficacy of the classification 
results. 

1 Introduction 

In recent years, the rise of social media channels like 
Twitter, Facebook and Instagram have opened new 
avenues for people to express their opinions and 
generate their own content. Companies such as 
Simplymeasured (www.simplymeasured.com) and 
Gnip (www.gnip.com) aggregate data from 
different networks to help brands form a more 
complete understanding of how well they engage 
with users and perform online. Companies such as 
Metamind, Alchemy and Semantria provide online 
APIs for sentiment analysis and associated tasks. 
Sentiment analysis is a growing area of Natural 
Language Processing with research ranging from 
document level classification (Pang and Lee [1]) to 
learning the polarity of words and phrases (Esuli 
and Sebastiani [2]). Given the character limitations 
on tweets, classifying the sentiment of Twitter 
messages is most similar to sentence-level 
sentiment analysis. Some researchers have explored 
the use of part-of-speech features [3] but results 

remain mixed. Researchers in [4] and [5] have 
reported different ways of automatically collecting 
training data by relying on emoticons for defining 
the sentiment labels in their training data. However 
as per our observations the presence of an emoticon 
does not necessarily divulge its sentiment and hence 
we have taken the approach of manually labeling the 
training and test data. Da Silva et al. [6] have 
introduced an approach of using classifier 
ensembles to determine the sentiment of tweets. 
However they only consider a binary classification 
of tweets (i.e. positive and negative) and use a 
heterogeneous ensemble of classifiers like 
Multinomial Naïve Bayes, SVM, Logistic 
Regression and Random Forests. 
Agarwal et al [7] propose a method of sentiment 
analysis using a tree kernel and a set of hand crafted 
POS features. Twitter hashtags have been 
extensively used in [8] to train a classifier using the 
Adaboost algorithm. In recent years several 
competitions like SemEval 2014 have included 
sentiment analysis of tweets as a major task. This 
has led to several state-of-the-art performances like 
[9] where the authors have used a Deep Learning 
approach using a combination of sentiment specific 
semantic word embeddings and hand crafted 
features. The authors in [10] have enhanced Twitter 
sentiment classification using contextual 
information like geolocation, timezones etc. 
While a great deal of recent research has focused on 
sentiment analysis of Twitter data and spam 
detection (Wang et al [11]) less attention has been 
devoted to extending these classification tasks to 
public Facebook posts. Furthermore, while domains 
such as politics (Bakliwal et al. [12]; Yang et al. 
[13]) and sports (Hong and Skiena [14]) have 
received strong coverage, the genre of commercial 
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fashion brands has not been mined as frequently for 
predictive and classification tasks 
The absence of literature on cross channel sentiment 
analysis with a special focus on the implications of 
prior distributions on the classification results has 
motivated us to undertake the following study. The 
niche segment of fast fashion brands was chosen 
because it remains largely unexplored. An attempt 
has been made to provide a clear comprehensive 
view of the performance metrics across different 
channels (Twitter and Facebook in our case) while 
noting the difference in trends among them. 
The major contributions of the present work are as 
follows: We have collected and manually annotated 
a dataset**of posts from major social media 
channels (Twitter and Facebook). Our dataset was 
based on posts about fast fashion brands, thereby 
extending the application of sentiment analysis and 
spam detection to this infrequently-explored genre. 
The inclusion of more than one social channel 
provides a cross sectional view of the social media 
spectrum. It was also helpful in gauging the 
performance of the same algorithm on channels 
with disparate content (different in terms of 
syntactic and semantic structure).  
We have extensively analyzed the effect of priors on 
the associated tasks and compared different N-gram 
models on many statistical performance metrics like 
Accuracy, Precision, Recall, Specificity and F1-
score. Use of N-grams as features obviates the need 
for tedious feature engineering which often entails a 
classification task. The proposed generative 
ensemble model provides an easily implementable 
and lightweight framework which can be extended 
to any classification problem. This is because it does 
not make any implicit/explicit assumption about the 
nature or distribution of the data. Thus, we have 
developed a roadmap for cross channel text analysis 
and classification, thereby providing a unified and 
holistic view of any topic or subject (fashion brands 
in our case). 
The key brands identified were fast fashion brands 
(Zara, Forever 21, H&M etc.) which target young 
customers in their late teens and early twenties and 
have a high turnover rate as part of their business 
strategy. We were particularly interested in studying 
this demographic since their customers frequently 
take to social media to express their satisfaction or 
dissatisfaction with products purchased. Due to the 
high turnover rate and short shelf-life of most of 

their products, opinions about their newest items are 
created every few months. This made data 
collection easier and more attuned to public opinion. 
We divide the paper as follows: In Section 2 we 
discuss the collection and distribution of data in 
details, we also include the steps taken for pre-
processing the data, in Section 3 the algorithms used 
for spam detection and sentiment analysis have been 
detailed along with intuitive explanation of why 
they work, in Section 4 we present our experiments 
and observations which includes a detailed analysis 
of the proposed algorithm for each channel along 
with a cross channel view of different performance 
metrics, in Section 5 we conclude the paper. 

 

2 Data Collection and Distribution  

We collected data in the form of posts from 
Facebook and Twitter over a period of 3 months 
(August to November 2015). The nine selected 
fashion brands were Forever 21, Mango, Levis, 
H&M, Guess, Free People, True Religion, Rag & 
Bone and 7 For All Mankind.  
We have used the official Twitter Search API to 
fetch the data. Tweets containing hashtags and 
names of the mentioned brands were selected. Apart 
from these we have sieved tweets containing the 
official Twitter handles of these brands. For 
example, searching by “@7fam” retrieves tweets 
containing the tag @7fam which corresponds to the 
official Twitter handle of 7 for all mankind. 
In case of Facebook, posts were fetched from the 
official pages of the selected brands using the 
official Facebook Graph API. Since the brands 
advertise their latest arrivals through these pages the 
posts were filtered by the author names, so any self-
advertising content has been excluded.  
From our observations Twitter is a more fast paced 
channel (i.e. frequency of posts is more) in 
comparison to Facebook. This is reflected in the 
significantly lower number of Facebook posts. On 
the other hand Facebook posts are more informative 
and verbose compared to 140 character tweets. 
Each post has been hand labelled. For sentiment 
analysis each post is assigned either of the three 
class labels positive, negative or neutral depending 
on the content. In case of spam detection it is 
assigned a binary label of spam and ham/not spam. 

**Dataset can be downloaded from: https://github.com/Senjuti/Dataset-Fashion-Analytics 
**Source Code is available at: https://github.com/Senjuti/Fashion-Analytics 
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Each post has been labelled by two annotators. The 
average agreement between the two annotators has 
been observed to be 83.2% 
We are not detecting spam in a traditional sense 
here, it is more of a word sense disambiguation. For 
example, we need to filter out posts pertaining to 
Mango the fruit from those relating to the actual 
denim brand. Similarly we need to distinguish 
between Levis stadium and Levis the company. As 
most of the fashion brand names we have selected 
are proper or common nouns the need to add this 
additional filter arose, which has been modelled as 
a spam detector. Additionally posts promoting 
freebies and advertising one’s own fashion 
collection have been included in the category of 
spam because they do not contain useful opinion 
words or sentences and hence they introduce noise 
in the training data instead of adding value to it.  
Each post is passed through a pre-processing 
pipeline before extracting the N-gram features. The 
salient steps in the pipeline are as follows – 1. 
Cleaning the data of URLs, HTML tags, 
punctuation marks, emoticons and similar noise. 2. 
Stopword removal (using an English stopword 
lexicon). 3. Stemming – Reducing each word to its 
root word using the Snowball Stemmer which is 
based on Porters Stemmer. 

2.1 Distribution of the Training Data 

 
 

Channel Positive  Negative Neutral Total 

Facebook 165 (11%) 46 (3%) 1337 (86%) 1548 

Twitter 987 (27%) 393 (11%) 2893 (62%) 3705 

 
 

Channel Spam Ham Total 
Facebook 253 (14%) 1548 (86%) 1801 

Twitter 1220 (25%) 3705 (75%) 4925 

 
Table 1 lists the distribution of training data (posts) 
for sentiment analysis as can be inferred, the class 
label distribution is highly skewed, majority of the 
posts are neutral for both the channels. The data for 
spam detection is equally biased (i.e. the majority of 
the posts are not spam) as can be seen in Table 2. 
This kind of a data distribution closely resembles 
real-life scenarios where majority of the online 

posts are likely to belong to a single class. 
Motivated by this skewed data distribution, an 
attempt has been made to make the classifier fairly 
invariant to class label distribution which led to the 
proposed ensemble model. 

2.2 Distribution of the Test Data  

 
 

Channel Positive  Negative Neutral Total 

Facebook 192 (20%) 67 (7%) 712 (73%) 970 

Twitter 369 (23%) 138 (8%) 1120 (69%) 1627 

  
 

Channel Spam Ham Total 
Facebook 41 (4%) 970 (96%) 1011 

Twitter 613 (25%) 1627 (75%) 2440 

 
The test data distribution closely tails the training 
data (as can be seen from tables 3 and 4). This 
provides a level ground for measuring model 
performance, though it would be interesting to see 
the performance on a uniformly distributed dataset. 
In order to get a clearer picture of classifier 
performance, metrics like precision and specificity 
have been included. This skewed distribution makes 
the effect of priors more prominent thereby enabling 
us to study them for our specific test conditions. 
 
 3. Algorithms 
 
Naïve Bayes classifier with N-grams as the features 
has been used. Algorithm 1 (see section 3.1) is used 
to combine the output of different N-gram models 
in order to calculate a single class probability. Each 
classifier outputs two things: the probability of the 
most likely class and its corresponding class label. 
After experimenting with different N-gram models 
(N = 1 to N = 7), it can be seen that there is no 
significant gain in performance after N = 5 on the 
test data. So for the proposed algorithm N-gram 
models up to only order 5 have been used.   
 

 
 

Table 1: Distribution of Train Data for Sentiment Analysis 

Table 2: Distribution of Train Data for Spam Analysis 

Table 3: Distribution of Test Data for Sentiment Analysis 

Table 4: Distribution of Test Data for Spam Analysis 
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The use of Naïve Bayes as the classifier of choice 
has been motivated by the fact that our main 
intention is to study the effect of priors using N-
gram features and Naïve Bayes has proven to be 
very effective for many text classification tasks, 
often matching state-of-the-art results obtained by 
using SVMs and the like. Algorithm 1 proposed 
aggregates the outputs of all the classifiers (each 
classifier is trained on a different N-gram model, 
with values of N ranging from 1 to 5) and predicts 
the final class label as the one which has highest 
probability among the five input class labels. 
The reason why this approach increases the 
performance is - N-gram models match the N-grams 
in the test sample with the probabilities of the N-
grams calculated during training, thus a larger 
posterior probability implies a greater degree of 
match of the N-grams of the test sample with the 
training set. Hence, intuitively a greater probability 
increases the likelihood that the model has seen a 
similar post/sample during training, so taking the 
class label of the maximum probable N-gram as the 
final prediction increases the chances of a correct 
classification. The algorithms have been presented 
in the form of a pseudocode where each step has 
been clearly mentioned, it has been further grouped 
into separate training and testing phases (with 
additional hyperparameter adjustment phase 
wherever necessary). Algorithm 2 (see section 3.2) 
is our proposed ensemble algorithm which is built 
on top of Algorithm 1. 

3.1 Algorithm 1: Combining Different N-grams 

Training Phase: 

Input: Training data after being passed through 
the preprocessing pipeline. Each sample 
consists of N-gram features and its associated 
class label. 

Output: Trained N-gram models (N = 1 to N 
=5) using the maximum likelihood probability 
estimate followed by add one smoothing. 

Testing Phase: 

Input: An unknown test sample.   

Output: The class label (of the most likely 
class) to which the sample belongs.  

Step 1: For a given test sample calculate the 
pair (Pi, Ci) where Pi is the probability value 

output of the ith N-gram model (in our case i = 
1 to 5) and Ci is its corresponding class label. 
So we will have five such pairs of (Pi, Ci).  

Step 2: Find the max value of Pi and take its 
corresponding Ci to be the final class label.  

Step 3: Output the class label calculated in the 
Step 2 

 

Algorithm 1 proposed cannot effectively deal with 
the skewness in the data. This is because it is trained 
on the entire dataset and hence its performance is 
limited by and equal to the best performing N-gram 
model (which is N = 5 in most cases across both 
classification tasks). In order to deal with the 
inherent single class bias of the dataset the training 
data has been randomly split into N mutually 
exclusive and exhaustive parts. N-gram models 
have been trained on each of these N parts using 
Algorithm 1 and the weighted output of these N-
gram models has been used to predict the final class 
label. The proposed algorithm for ensemble 
learning includes a hyper-parameter adjustment 
phase where the weight of each model is calculated 
based on its performance on a held out set.  

Randomly splitting up the training data into 
mutually exclusive and exhaustive parts reduces the 
effect of a single class bias which is prevalent in the 
data. By training individual models on each of these 
disjoint parts of the feature space, each model 
receives the unique ability to learn the final 
hypothesis differently. This prevents overfitting the 
data which often plagues individual N-gram models 
trained on the entire dataset. The weights of the 
models are tuned as per their performance on a held 
out set. Hence, the predictions of well performing 
models are given more weightage in comparison to 
those with lower performance on the held out set. 
Taking the final prediction (i.e. final class label) as 
the modal (most frequently occurring class) class 
label of the weighted output of the individual 
models ensures that the predicted class label is the 
one on which majority of the models agree upon. 
Thus, in spirit our ensemble model works in the 
same way as Random Forests [15] which have 
shown to be better at learning final hypothesis in 
comparison to individual decision trees. 
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Training Phase:   
 
Input: Training data after being passed through the 
preprocessing pipeline. Each sample consists of N-
gram features and its associated class label 
 
Output: A total of K N-gram models each trained 
using Algorithm 1. 
 
Step 1: Randomly split the training dataset into N 
mutually exclusive and exhaustive parts.  
Step 2: For each part Ni train model Ki by 
Algorithm 1.  
Step 3: Save these models for testing and later use. 
 
Hyper parameter Adjustment Phase:   
 
Input: Trained models Ki and held out dataset. 
 
Output: Model Weights Wi corresponding to each 
Ki 

 
Step 1: For each model Ki calculate the number of 
correct predictions (Xi) and the number of 
incorrect predictions (Yi). 
Step 2: Calculate weight Wi of each model as  
𝑒𝑒𝑥𝑥𝑥𝑥/(𝑦𝑦𝑥𝑥+1) 
Step 3: Save the model weights Wi  

 
 
Testing Phase:  
 
Input: An unknown test sample.  
 
Output: The class label (of the most likely class) 
to which the sample belongs.  
 
Initialize: f = { }  (Empty List to hold the class 
labels) 
 
Step 1: For each model Ki calculate the class label 
Ci using Algorithm 1. 
Step 2: For each Ki let Qi = Wi x Ci (i.e. each class 
label      Ci is counted Wi times) 
Step 3: For each Ki  f = f U Qi (i.e. Add the class 
label computed in Step 2 to the list) 
Step 4: Output the final predicted class label as the 
modal class of f 

 

4. Experiments and Results 
 
N-gram models have been trained for different 
values of N (N = 1 to N = 7). During the 
classification phase using the Naïve Bayes 
classifier, we have experimented under two 
conditions 
1. Calculating the class label probabilities while 
discounting the prior probabilities learned during 
the training phase (i.e. assuming equal prior class 
distribution). 2. Taking the prior probabilities into 
account while calculating the class label 
probabilities. 
In order to get a clear insight into the effects of 
priors on different classification tasks across 
different channels, we have studied each scenario 
independently. First we present the results of each 
channel separately on the twin classification tasks 
then we provide a cross channel view of the effect 
of priors. 
 
4.1 Results for Facebook 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Comparison of N-gram Models for Spam Detection on  
Facebook 

 

Figure 2: Comparison of N-gram Models for Sentiment Analysis on 
Facebook 

 

3.2 Algorithm 2: Ensemble of Combined N-Grams 
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Figure 1 illustrates the performance (in terms of 
accuracy) of different N-gram models for spam 
detection on Facebook, as can be seen from the 
figure the effect of priors is more profound on the 
unigrams and bigrams in comparison to the higher 
order N-grams. Another notable feature is how the 
performance almost plateaus after N=4 for both 
cases (i.e. taking the prior into account and 
discounting the prior).  Figure 2 juxtaposes the 
performance of different N-gram models for 
sentiment analysis on Facebook, it follows the same 
trend as in figure 1 but the overall classification 
accuracy is less in this case, the best performing N-
gram model (N =  7)  has an accuracy of 74.15% for 
sentiment analysis while it is 93.28% (for N = 7) in 
case of spam detection . The obvious reason for this 
is that spam detection is a two class classification 
problem (only 2 class labels spam and ham), while 
sentiment analysis is a three way classification task 
(positive, negative and neutral class labels). Thus, 
priors play an important role in the prediction of 
classes especially if the data is highly biased (as in 
our case). 
 
 
 

N-gram 
Model 
Number 

 
Accuracy  
 

 
Precision  
 

 
Recall 
 

 
Specificity 
 

 
F1Score 
 

1 16.27 37.57 47.37 26.19 41.91 
2 73.53 64.16 59.74 65.21 61.87 
3 73.53 64.11 42.94 60.28 51.44 
4 73.22 62.88 39.64 59.14 48.62 
5 73.53 63.60 39.65 59.29 48.85 
6 74.15 65.81 39.93 59.77 49.70 
7 74.15 66.12 39.68 59.59 49.59 

 
 

 
Tables 5 and 6 elucidates the performance metrics 
of N-gram models for sentiment analysis on 
Facebook, in order to evaluate the effect of priors on 

different N-gram models, we take the results of 
table 5 as the baseline. There is a spike in the 
accuracy of unigrams (41% over the baseline) while 
for the rest there is marginal (in case of bigrams and 
trigrams) or no decrease (for N >= 4). The same 
trend is visible across other performance parameters 
like precision, recall and specificity. A possible 
explanation for this behavior is that Facebook posts 
are mostly highly structured (i.e. in proper English) 
in comparison to tweets and hence higher order N-
grams effectively model the language structure 
which obviates the effects of prior probabilities as is 
evident from the results. 
 
 
 

N-gram 
Model 
Number 

 
Accuracy 

 
Precision 

 
Recall 

 
Specificity 

 
F1Score 

1 23.22 48.60 43.99 44.81 46.18 
2 84.78 52.30 56.71 57.07 54.42 
3 92.29 52.48 52.65 52.81 52.56 
4 92.78 53.04 52.90 53.07 52.97 
5 92.88 52.05 51.82 51.95 51.93 
6 93.08 52.29 51.92 52.06 52.11 
7 93.28 52.55 52.28 52.16 52.28 

 
 
Tables 7 and 8 depict the performance of spam 
detection on Facebook they are exactly are in the 
same vein as the results for sentiment analysis. 
There is a massive increase in the accuracy for 
unigrams (56%) when we include priors into the 
equation however this has side effects of decreasing 
the precision and recall. 
 
 

 
 
 
 
 

N-gram 
Model 
Number 

 
Accuracy 

 
Precision 

 
Recall 

 
Specificity 

 
F1Score 

1 22.96 42.66 51.99 32.66 46.87 
2 73.32 65.94 49.63 62.01 56.64 
3 73.42 64.87 42.20 59.93 51.13 
4 73.22 62.88 39.64 59.14 48.62 
5 73.53 63.60 39.65 59.29 48.85 
6 74.15 65.81 39.93 59.77 49.70 
7 74.15 66.12 39.68 59.59 49.59 

N-gram 
Model 
Number 

 
Accuracy 

 
Precision 

 
Recall 

 
Specificity 

 
F1Score 

1 36.26 48.57 41.67 42.27 44.86 
2 88.83 54.16 58.82 59.18 56.39 
3 92.39 52.58 52.70 52.86 52.64 
4 92.78 53.04 52.90 53.07 52.97 
5 92.88 52.05 51.82 51.95 51.93 
6 93.08 52.29 51.92 52.06 52.10 
7 93.28 52.02 52.02 52.16 52.28 

Table 5. Performance Metrics for Sentiment Analysis of Facebook 
Posts (Without Priors) 

 
 

Table 6. Performance Metrics for Sentiment Analysis of Facebook 
Posts (With Priors) 

 
 

Table 7. Performance Metrics for Spam Detection of Facebook Posts 
(Without Priors) 

 
 

Table 8. Performance Metrics for Spam Detection of Facebook Posts 
(With Priors) 
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Tables 9 and 10 depict the performance of the 
proposed method on sentiment analysis and spam 
detection respectively. The improvements by 
including priors is measured against the baseline of 
discounting priors. Though there is an improvement 
in accuracy for both classification tasks, however 
the precision, recall and specificity in case of spam 
detection decreases marginally. There is an increase 
of 33.62% in accuracy for sentiment analysis 
whereas for spam detection there is a leap of 
32.01%. Precision for sentiment analysis improves 
by 26.17% whereas for spam detection a decline of 
2% is noted. Recall and specificity improvements 
for sentiment analysis is negligible hovering 
somewhere around 1%. However in case of spam 
detection both decrease by 1.5% and 1.6% 
respectively, this may be attributed to the 
overwhelming presence of ham labels in the test 
data (about 75%).Thus, as a general trend the effect 
of priors becomes more dominant with the increase 
in the number of classes in data especially if the 
distribution of class labels is skewed. 
Facebook has unique challenges in comparison to 
Twitter. First the verbosity of the posts in 
comparison to 140 character tweets is something 
which needs to be taken into account. It takes a 
longer time to make predictions because of the 
greater number of N-grams. Second, the posts are in 
proper English and the use of emoticons and 
acronyms is less in comparison to Twitter. 
 
 
 

 
 
4.2 Results for Twitter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 3 and 4 depict the performance of N-gram 
models for sentiment analysis and spam detection 
on Twitter data, they follow the same general trend 
as the N-gram models for Facebook. Similarly the 
exclusion of prior probabilities (i.e. considering 
equal prior distribution for all classes) has a deeper 
impact on the lower order N-grams in comparison 
to the higher order N-grams (N >= 3). The intuitive 
reason for this may be that unigrams and bigrams 
assume a higher degree of conditional independence 
of the different words in a sentence hence, cannot 
effectively model the syntactic and semantic level 
dependencies of the language. The differentiating 
factor of the Twitter N-gram models is that their 
performance decreases for higher order N-grams (N 
>= 3) whereas in case of Facebook it is almost 
constant. Also the overall accuracy of the Twitter 
models is less than the Facebook ones both in case 
of sentiment analysis and spam detection.  

Ensemble  
Model 

Accuracy Precision Recall Specificity F1-
Score 

Without 
Prior 

66.69 51.94 60.95 61.65 56.09 

With 
Prior 

88.04 50.77 51.57 51.76 51.17 

Ensemble  
Model 

Accuracy Precision Recall Specificity F1-
Score 

Without 
Prior 

56.95 49.62 65.78 58.68 56.57 

With 
Prior 

76.10 62.61 66.73 68.66 64.61 Figure 3: Comparison of N-gram Models for Sentiment Analysis of 
Tweets 

 

Figure 4: Comparison of N-gram Models for Spam Detection of 
Tweets 

 

Table 9: Performance Metrics for Sentiment Analysis on Facebook 
(Proposed Method i.e. Algorithm 2) 

 
 

Table 10: Performance Metrics for Spam Detection on Facebook 
(Proposed Method i.e. Algorithm 2) 

 
 

32



 
 
 

 

 
 
 

 
 

 
 

For sentiment analysis the best performing 
Facebook model (N = 7) achieves an accuracy of 
74.15% whereas the Twitter N-gram has an 
accuracy of 76.65%, in case of spam detection the 
accuracy is 93.28% and 77.95% for Facebook and 
Twitter respectively. Tables 11 and 12 illustrate the 
performance of different N-gram models for 
sentiment analysis, as can be seen the effect of 
priors is deeper on unigrams and bigrams in 
comparison to the higher order N-grams. By taking 
the performance of the N-grams without prior (table 
11) as the baseline we notice the following 
improvements – for unigrams there is a massive 
improvement in accuracy (41.30%) but at the cost 
of a decrease in precision of 7.47%. For rest of the 
N-grams (N >= 2) a marginal increase in accuracy 
(1.42% to 0.64%) entails an increase in precision 
and specificity, with an expected dip in recall 
(2.25% to 0.05%). 
 
Tables 13 and 14 describe the performance of the N-
gram models for spam detection, the performance 
gain for unigrams and bigrams is marginal while it 
decreases for rest of the higher order N-grams when 
taking the priors into account. This is consistent 
with the general trend for Twitter as shown in [16]. 
The decrease in accuracy (for N >= 3) is in tandem 
with the dip in the precision, recall, specificity and 
f1-score.Unigrams perform uniquely while 
including the priors, there is an increase in accuracy 
of 5.1% while the precision decreases by 2.36% at 
the same time. 
 
 

 
 
 

Ensemble  
Model 

Accuracy Precision Recall Specificity F1-Score 

Without 
Prior 

69.76 68.61 70.82 70.88 69.69 

With 
Prior 

75.01 72.58 67.93 67.99 70.18 

 
 

N-gram 
Model 
Number 

 
Accuracy 

 
Precision 

 
Recall 

 
Specificity 

 
F1Score 

1 16.95 37.46 40.05 23.01 38.71 
2 73.21 69.41 69.55 71.49 69.48 
3 76.65 75.08 69.02 73.27 71.92 
4 75.98 74.47 66.61 71.66 70.32 
5 74.87 73.34 61.99 69.24 67.19 
6 73.21 72.04 57.93 66.17 64.22 
7 72.65 71.86 54.65 64.52 62.09 

N-gram 
Model 
Number 

 
Accuracy 

 
Precision 

 
Recall 

 
Specificity 

 
F1Score 

1 23.95 34.65 40.72 28.96 37.44 

2 74.26 71.81 67.98 71.44 69.84 

3 77.14 75.67 68.47 73.34 71.89 

4 76.65 75.33 66.37 71.92 70.56 

5 75.61 74.42 61.89 69.62 67.58 

6 73.89 73.19 57.92 66.59 64.67 

7 73.09 72.94 54.17 64.70 62.17 

N-gram 
Model 
Number 

 
Accuracy 

 
Precision 

 
Recall 

 
Specificity 

 
F1Score 

1 44.89 51.99 51.87 51.92 51.93 
2 75.46 73.51 68.02 68.08 70.66 
3 78.08 82.32 68.36 68.42 74.69 
4 76.60 81.45 66.03 66.08 72.93 
5 75.01 80.43 63.51 63.56 70.98 
6 73.24 79.29 60.71 60.76 68.77 
7 72.34 79.09 59.21 59.25 67.72 

N-gram 
Model 
Number 

 
Accuracy 

 
Precision 

 
Recall 

 
Specificity 

 
F1Score 

1 47.23 50.77 50.82 50.87 50.87 

2 77.08 77.14 68.67 68.72 72.66 

3 77.95 82.31 68.15 68.20 74.56 

4 76.52 81.82 65.78 65.83 72.93 

5 74.80 80.36 63.17 63.22 70.74 

6 73.16 79.36 60.56 60.60 68.70 

7 72.22 78.94 59.02 59.07 67.54 

Ensemble  
Model 

Accuracy Precision Recall Specificity F1-Score 

Without 
Prior 

47.42 47.16 56.65 51.44 51.44 

With 
Prior 

62.03 52.22 54.50 59.96 53.33 

Table 11: Performance Metrics for Sentiment Analysis of Tweets 
(Without Priors) 

 
 

Table 12: Performance Metrics for Sentiment Analysis of Tweets 
(With Priors) 

 
 

Table 13: Performance Metrics for Spam Detection of Twitter Posts 
(Without Priors) 

 
 

Table 14: Performance Metrics for Spam Detection of Twitter Posts 
(With Priors) 

 
 

Table 15: Performance Metrics for Sentiment Analysis of Tweets 
(Proposed Method i.e. Algorithm 2) 

 
 

Table 16: Performance Metrics for Spam Detection of Tweets 
 (Proposed Method i.e. Algorithm 2) 
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Tables 15 and 16 depict the performance of the 
proposed algorithm for sentiment analysis and spam 
detection respectively. As stated before, they are 
compared under two given conditions including the 
priors and excluding them. In order to compare the 
effect of priors on the proposed model, the 
performance of the proposed ensemble algorithm 
while discounting priors is set as the baseline. 
Inclusion of prior probabilities in the proposed 
model has a marked improvement in accuracy and 
precision, while there is a marginal improvement in 
the f1 measure. For sentiment analysis there is a leap 
of 30.80% in the accuracy while for spam detection 
an improvement of only 7.5% has been observed. 
Precision for sentiment analysis increases by 
10.72% while for spam detection an increase of 
5.78% in seen. Recall decreases as the precision 
improves since they are inversely proportional to 
each other, the decrease in recall for spam detection 
is 4.08% while for sentiment analysis it is 3.79%. 
Another notable thing in case of spam detection is 
the decrease in specificity by 4.07% which means it 
classifies some spam tweets as ham, although it is 
acceptable in our use case since we are not doing 
spam detection in a traditional sense.F1 measure for 
sentiment analysis increases by 3.67% while for 
spam detection is it a meagre 0.7%. 
An important thing to note about Twitter is that the 
proposed algorithm does not perform as well as the 
naïve N-grams (in terms of accuracy and precision) 
for both the tasks of spam detection and sentiment 
analysis.  
For sentiment analysis the proposed method with 
priors has an accuracy of 62% while for N-gram it  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
has an accuracy of 76.60% (for N = 3).in case of 
spam detection the difference is marginal  
in terms of accuracy but more profound for 
precision, 72% versus 83.31% (for trigrams). 
 
4.3 Cross Channel View of Results   
Figure 5 illustrates a cross channel view of the 
proposed method under two experimental 
conditions (with and without considering the prior 
probability distributions) and across a set of four 
performance metrics - accuracy, precision, recall 
and f1-measure. As is evident from the figure, for 
sentiment analysis the Facebook models outperform 
the Twitter models by a sizable margin however the 
tables are turned in case of spam detection where the 
Twitter models are the clear winner across the 
different metrics. The only metric where they lag 
behind Facebook is in the case of accuracy (while 
taking priors into account).  
An important conclusion to draw from the given 
results is that priors affect not only accuracy but also 
precision and recall – which are perhaps more 
important metrics for a classifier. Priors also affect 
different channels differently: the effects are more 
significant for Facebook than Twitter (in terms of 
increase of accuracy precision and specificity. For 
small datasets the priors have been found to be more 
effective than large uniform datasets.) 
In the proposed algorithm since we are training each 
model on a random subset of the dataset the prior 
probability distribution is different for each model 
hence their impact is much more significant in 
comparison to vanilla N-grams which are trained on 
the entire dataset.  

Figure 5. Compares the relative performance of the proposed method across the channels (Twitter and Facebook) for the twin 
tasks of sentiment analysis and spam detection. The first row contains results of sentiment analysis under two conditions 
considering the prior probability and discounting it. The second row juxtaposes the results for spam detection for the same 
channels under the same conditions. They have been compared across four performance metrics like Accuracy, Precision, Recall 
and F1-measure. 
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5 Conclusion and Future Work 

In the future we plan to extend our work to include 
other social media channels like Instagram and 
Reddit in order to study the effect of the proposed 
algorithm on other datasets, thereby providing a 
more comprehensive view of the performance of 
our classification strategy across the social media 
spectrum. It will be interesting to see the 
performance of the proposed algorithm on a larger 
dataset and validate if the results reported here are 
consistent with the increase in data size. 
The data preprocessing pipeline can be enhanced by 
the addition of emoticon detectors, acronym 
lexicons and spell checkers. In place of the currently 
used naïve Add One smoothing, other sophisticated 
smoothing techniques such as Good-Turing, 
Witten-Bell and modified Keysner smoothing could 
be used.  

The accuracy rate can also be improved by 
augmenting the feature set using POS tags, word 
polarity and punctuation marks. The effect of 
including hashtags, in case of Twitter, could also be 
studied. The proposed ensemble model can be 
further improved by adjusting the hyper-parameters 
of each individual model to reflect the accuracy on 
a per class basis (not using average accuracy as is 
presently done), thereby enabling each model to 
respond to different class labels differently. 
Additionally we would also like to explore a smarter 
way of combining the output of the ensemble by 
using a neural gating network as is often done. 
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