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Abstract 

In this paper we present a data-driven model 

for detecting opportunities and obligations for 

a robot to take turns in multi-party discus-

sions about objects. The data used for the 

model was collected in a public setting, 

where the robot head Furhat played a collabo-

rative card sorting game together with two 

users. The model makes a combined detec-

tion of addressee and turn-yielding cues, us-

ing multi-modal data from voice activity, 

syntax, prosody, head pose, movement of 

cards, and dialogue context. The best result 

for a binary decision is achieved when sever-

al modalities are combined, giving a 

weighted F1 score of 0.876 on data from a 

previously unseen interaction, using only au-

tomatically extractable features. 

1 Introduction 

Robots of the future are envisioned to help peo-

ple perform tasks, not only as mere tools, but as 

autonomous agents interacting and solving prob-

lems together with humans. Such interaction will 

be characterised by two important features that 

need to be taken into account when modelling 

the spoken interaction. Firstly, the robot should 

be able to solve problems together with several 

humans (and possibly other robots) at the same 

time, which means that we need to model multi-

party interaction. Secondly, joint problem sol-

ving is in many cases situated, which means that 

the spoken discourse will involve references to, 

and manipulation of, objects in the shared physi-

cal space. When speaking about objects, humans 

typically pay attention to these objects and gaze 

at them. Also, placing or moving an object can 

be regarded as a communicative act in itself 

(Clark, 2005). To solve the task efficiently, inter-

locutors need to coordinate their attention, result-

ing in so-called joint attention (Clark & Mar-

shall, 1981).  

These characteristics of human-robot interac-

tion pose many challenges for spoken dialogue 

systems. In this paper, we address the problem of 

turn-taking, which is a central problem for all 

spoken dialogue systems, but which is especially 

challenging when several interlocutors are in-

volved. In multi-party interaction, the system 

does not only have to determine when a speaker 

yields the turn, but also whether it is yielded to 

the system or to someone else. This becomes 

even more problematic when the discussion in-

volves objects in a shared physical space. For 

example, an obvious signal that humans use for 

yielding the turn in a face-to-face setting is to 

gaze at the next speaker (Vertegaal et al., 2001). 

However, in situated interaction, where the gaze 

is also used to pay attention to the objects which 

are under discussion, it is not obvious how this 

shared resource is used. While modelling all 

these aspects of the interaction is indeed chal-

lenging, the multi-modal nature of human-robot 

interaction also has the promise of offering re-

dundant information that the system can utilize, 

thereby possibly increasing the robustness of the 

system (Vinyals et al., 2012).  

The aim of this study is to develop a data-

driven model that can be used by the system to 

decide when to take the turn and not. While there 

are many previous studies that have built such 

models based on human-human (Koiso et al., 

1998; Morency et al., 2008) or human-machine 

interaction (Raux & Eskenazi, 2008; Skantze & 

Schlangen, 2009; Bohus & Horvitz, 2011; Meena 

et al., 2014), we are not aware of any previous 

studies that investigate multi-party human-robot 

discussions about objects.  

The system that we build the model for, and 

use data from, is a collaborative game that was 

exhibited at the Swedish National Museum of 
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Science and Technology in November 15-23, 

2014. As can be seen in Figure 1, two visitors at 

a time could play a collaborative game together 

with the robot head Furhat (Al Moubayed et al., 

2013). On the touch table between the players, a 

set of cards are shown. The two visitors and 

Furhat are given the task of sorting the cards ac-

cording to some criterion. For example, the task 

could be to sort a set of inventions in the order 

they were invented, or a set of animals based on 

how fast they can run. This is a collaborative 

game, which means that the visitors have to dis-

cuss the solution together with Furhat. As we 

have discussed in previous work (Johansson et 

al., 2013), we think that the symmetry of the in-

teraction is especially interesting from a turn-

taking perspective. The setting also provides a 

wide range of multi-modal features that can be 

exploited: voice activity, syntax, prosody, head 

pose, movement of cards, and dialogue context
1
.  

The paper is organized as follows: In Section 

2 we present and discuss related work, in Section 

3 we describe the system and data annotation in 

more detail, in Section 4 we present the perfor-

mance of the different machine learning algo-

rithms and features sets, and in Section 5 we end 

with conclusions and a discussion of the results. 

2 Background 

2.1 Turn-taking in dialogue systems 

Numerous studies have investigated how humans 

synchronize turn-taking in dialogue. In a seminal 

study, Duncan (1972) showed how speakers use 

prosody, syntax and gestures to signal whether 

the speaker wants to hold the turn or yield it to 

the interlocutor. For example, flat final pitch, 

syntactic incompleteness and filled pauses are 

strong cues to turn hold. In his analysis, Duncan 

                                                 
1
 A video of the interaction can be seen at 

https://www.youtube.com/watch?v=5fhjuGu3d0I 

found that as more turn yielding cues are pre-

sented together, the likelihood that the listener 

will try to take the turn increases. Later studies 

on human-human interaction have presented 

more thorough statistical analyses of turn-

yielding and turn-holding cues (Koiso et al., 

1998; Gravano & Hirschberg, 2011). Typically, 

for speech-only interaction, syntactic and seman-

tic completeness is found to be the strongest cue, 

but prosody can also be informative, especially if 

other cues are not available. In face-to-face inter-

action, gaze has been found to be a strong turn-

taking cue. Kendon (1967) found that the speaker 

gazes away from the listener during longer utter-

ances, and then gazes at the listener as a turn-

yielding cue near the end of the utterance.   

Contrary to this sophisticated combination of 

cues for managing turn-taking, dialogue systems 

have traditionally only used a fixed silence 

threshold after which the system responds. While 

this model simplifies processing, it fails to ac-

count for many aspects of human-human interac-

tion such as hesitations, turn-taking with very 

short gaps or brief overlaps and backchannels in 

the middle of utterances (Heldner & Edlund, 

2010). More advanced models for turn-taking 

have been presented, where the system interprets 

syntactic and prosodic cues to make continuous 

decisions on when to take the turn or give feed-

back, resulting in both faster response time and 

less interruptions (Raux & Eskenazi, 2008; 

Skantze & Schlangen, 2009; Meena et al., 2014). 

2.2 Turn-taking in multi-party interaction 

Multi-party interaction differs from dyadic inter-

action in several ways (Traum & Rickel, 2001). 

First, in a dyadic interaction there are only two 

different roles that the speakers can have: speak-

er and listener. In multi-party interaction, hu-

mans may take on many different roles, such as 

side participant, overhearer and bystander (Mutlu 

et al., 2012). Second, in dyadic interaction, it is 

 
Figure 1: A schematic illustration of the dialogue system setting and architecture 
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always clear who is to speak next at turn shifts. 

In multi-party interaction, this has to be coordi-

nated somehow. The most obvious signal is to 

use gaze to select the next speaker (Vertegaal et 

al., 2001). Thus, for multi-party interaction be-

tween a robot and several users, gaze is a valua-

ble feature for detecting the addressee. Gaze 

tracking is however not trivial to utilize in many 

practical settings, since they typically have a lim-

ited in field-of-view, or (if head worn) are too 

invasive. In addition, they are not very robust to 

blinking or occlusion, and typically need calibra-

tion. Many systems therefore rely on head pose 

tracking, which is a simpler and more robust ap-

proach, but which cannot capture quick glances 

or track more precise gaze targets. However, 

previous studies have found head pose to be a 

fairly reliable indicator for gaze in multi-party 

interaction, given that the targets are clearly sep-

arated (Katzenmaier et al., 2004; Stiefelhagen & 

Zhu, 2002; Ba & Odobez, 2009). In addition to 

head pose, there are also studies which show that 

the addressee detection in human-machine inter-

action can be improved by also considering the 

speech signal, as humans typically talk different-

ly to the machine compared to other humans 

(Shriberg et al., 2013). Vinyals et al. (2012) pre-

sent an approach where the addressee detection 

is done using a large set of multi-modal features.  

In situated interaction, speakers also naturally 

look at the objects which are under discussion. 

The speaker’s gaze can therefore be used by the 

listener as a cue to the speaker’s current focus of 

attention. This has been shown to clearly affect 

the extent to which humans otherwise gaze at 

each other to yield the turn. Argyle & Graham 

(1976) studied dyadic interactions involving ad-

ditional targets for visual attention. Objects rele-

vant to the task at hand were found to attract vis-

ual attention at the expense of the other subject. 

In a study on modelling turn-taking in three-

party poster conversations, Kawahara et al. 

(2012) found that the participants almost always 

looked at the shared poster. Also, in most studies 

on human-robot interaction, the robot has a clear 

“function”, and it is therefore obvious that the 

user is either addressing the machine or another 

human. However, in a previous study on multi-

party human-robot discussion about objects 

(Johansson et al., 2013), which had a task that is 

very similar to the one used here, we found that 

the addressee of utterances is not so easy to de-

termine. Sometimes, a question might be posed 

directly to the robot, which then results in an ob-

ligation to take the turn. But many times, utter-

ances in multi-party discussions are not targeted 

towards a specific person, but rather to both in-

terlocutors, resulting in an opportunity to take the 

turn. 

The approach taken in this study is therefore 

to combine the turn taking and addressee detec-

tion into one decision: Should the system take the 

turn or not?, and then allow a gradual answer 

from a clear “no” (0) to a clear “yes” (1). If the 

answer is 0, it could be because a speaker is 

holding the turn, or that a question was clearly 

posed to someone else. If the answer is 1, the 

system is obliged to respond, most likely because 

one of the users has asked a question directly to 

the robot. But in many cases, the answer could 

be somewhere in between, indicating an oppor-

tunity to respond. In future work, we plan to use 

such a score together with a utility function in a 

decision-theoretic framework (Bohus & Horvitz, 

2011). Thus, if the system has something urgent 

to say, it could do so even in a non-optimal loca-

tion, whereas if what it has to say is not so im-

portant, this would require an obligation in order 

to respond 

3 Data collection and annotation 

3.1 System description 

As described in the introduction, we use data 

from a multi-party human-robot interaction game 

that was exhibited in a public setting. The system 

was implemented using the open source dialogue 

system framework IrisTK (Skantze & Al Mou-

bayed, 2012) and is schematically illustrated in 

Figure 1. The visitors are interacting with the 

Furhat robot head (Al Moubayed et al., 2013), 

which has an animated face back-projected on a 

translucent mask, as well as a mechanical neck, 

which allows Furhat to signal his focus of atten-

tion using a combination of head pose and eye-

gaze. A Kinect camera (V2) is used to track the 

location and rotation of the two users’ heads, as 

well as their hands. This data, together with the 

position of the five cards on the touch table are 

sent to a Situation model, which maintains a 3D 

representation of the situation. Two behaviour 

controllers based on the Harel statechart mecha-

nism offered by IrisTK run in parallel: The Dia-

log Flow and the Attention Flow. The Attention 

Flow keeps Furhat’s attention to a specified tar-

get (a user or a card), even when the target is 

moving, by consulting the Situation model. The 

3D position of the target is then transformed into 

neck and gaze movement of Furhat (again taking 

Furhat’s position in the 3D space into account). 
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This, together with the 3D design of Furhat, 

makes it possible to maintain exclusive mutual 

gaze with the users, and to let them infer the tar-

get of Furhat’s gaze when directed towards the 

cards, in order to maintain joint attention 

(Skantze et al., 2014). Although the system can 

be configured to use the array microphone in the 

Kinect camera, we used close talking micro-

phones in the museum. The main motivation for 

this is that the Kinect array microphone cannot 

separate the sound sources from the two users 

and we wanted to be able to run parallel speech 

recognizers for both users in order to capture 

overlapping speech (for both online and offline 

analysis). The speech recognition is done with 

two parallel cloud-based large vocabulary speech 

recognizers, Nuance NDEV mobile
2
, which al-

lows Furhat to understand the users even when 

they are talking simultaneously. 

The Dialogue Flow module orchestrates the 

spoken interaction, based on input from the 

speech recognizers, together with events from 

the Situation model (such as cards being moved, 

or someone leaving or entering the interaction). 

The head pose of the users is used to make a 

simple decision of whether Furhat is being ad-

dressed. The game is collaborative, which means 

that the visitors have to discuss the solution to-

gether with Furhat. However, Furhat does not 

have perfect knowledge about the solution. In-

stead, Furhat's behaviour is motivated by a ran-

domized belief model. This means that visitors 

have to determine whether they should trust 

Furhat’s belief or not, just like they have to do 

with each other. Thus, Furhat’s role in the inter-

action is similar to that of the visitors, as opposed 

to for example a tutor role which is often given 

                                                 
2
 http://dragonmobile.nuancemobiledeveloper.com/ 

to robots in similar settings. An excerpt from an 

interaction is shown in Figure 2, illustrating both 

clear turn changes and turns with overlapping 

speech. 

3.2 Collected Data 

The dialog system was exhibited at the Swedish 

National Museum of Science and Technology, in 

November 15-23, 2014. During the 9 days the 

system was exhibited, we recorded data from 373 

interactions with the system, with an average 

length of 4.5 minutes. The dataset contains 

mixed ages: both adults playing with each other 

(40%), children playing with adults (27%), and 

children playing with each other (33%). For the 

present study, 9 dialogues were selected for 

training and tuning the turn-taking model, and 

one dialogue was selected for final evaluation 

and for verification of the annotation scheme. 

3.3 Data Annotation 

In order to build a supervised machine learning 

model for detecting turn-taking cues, we need 

some kind of ground truth. There have been dif-

ferent approaches to deriving the ground truth in 

previous studies. In studies of human-human in-

teraction, the behaviour of the other interlocutor 

is typically used as a ground truth (Koiso et al., 

1998; Morency et al., 2008). The problem with 

this approach is that much turn-taking behaviour 

is optional, and these studies typically report a 

relatively poor accuracy (albeit better than base-

line).  Also, it is not clear to what extent they can 

be applied to human-machine interaction.  

In this paper we follow the approach taken in 

Meena et al. (2014) – to manually annotate ap-

propriate places to take the turn. Although this is 

quite labour intensive, we think that this is the 

best method to obtain a consistent ground truth 

 
Figure 2: Dialogue fragment from an interaction (translated from Swedish). The shaded (green) track shows 

where Furhat’s attention is directed. Card movements are illustrated in blue. Users’ head poses are illustrated 

with red plots, where a high y-value means the angular distance towards Furhat is small. 
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about potential turn-taking locations. To this end 

we used turn-taking decisions from one annotator 

(one of the authors), thus building models of one 

specific human’s behaviour rather than an aver-

age of multiple humans’ behaviour. However, as 

described further down, we have also evaluated 

the amount of agreement between this annotator 

with another annotator on the evaluation set.  

Similarly to most previous studies on turn-

taking reported above, we treat the end of Inter-

Pausal Units (IPUs) as potential turn-taking loca-

tions. Each channel of the recorded audio was 

first echo-cancelled and then automatically seg-

mented into IPUs, using an energy-based Voice 

Activity Detector (VAD), with a maximum of 

200ms internal silence. The logged utterances 

from the dialogue system were then added as a 

third track of IPUs. A decision point was defined 

after every segmented user IPU where the system 

had not been speaking in the last three seconds. 

Figure 3 presents an example of sequences of 

subject IPUs with the location of decision points 

overlaid. Note that we also include locations 

where the other speaker is still speaking (1 in the 

figure), since the other speaker might for exam-

ple be talking to herself while the first speaker 

asks Furhat something. 

 
Figure 3: Four numbered decision points 

A set of 688 decision points from the 9 select-

ed dialogues were annotated for turn-taking deci-

sions. The annotator was presented with five 

seconds of audio and video taken from the ro-

bot’s point of view. A turn-taking decision was 

then annotated on a continuous scale ranging 

from “Absolutely don’t take the turn” to “Must 

take the turn”. The scale was visually divided 

into four equally wide classes to guide the anno-

tator. The first section “Don’t” (35% of annotat-

ed instances) represents instances where it would 

be inappropriate to take the turn, for example 

because the other interlocutor was either the ad-

dressee or currently speaking. The next section, 

“If needed” (19%), covers cases where it is not 

really appropriate, but possible if the system has 

a clear reason for saying something, while 

“Good” (21%) covers instances where it would 

not be inappropriate to take the turn. The final 

section, “Obliged” (25%), represents instances 

where it would be inappropriate not to take the 

turn, for example when the system clearly was 

the sole addressee.  

 
Figure 4: Histogram of annotated decisions on a scale 

from 0 (must not take turn) to 1 (must take turn) 

The distribution of the decisions, illustrated in 

Figure 4, indicates a fairly even distribution 

across the x-axis, but with higher frequencies of 

annotations at the extremes of the scale.  

For verification of the annotation scheme and 

final evaluation, we annotated a second set of 43 

decision points from a tenth dialogue using both 

the original annotator and a second annotator. 

The inter-annotator agreement for the four clas-

ses was good, Kw=0.772 (Cohen’s Kappa, equal 

weights), and neither annotator classified any 

decision point as “Don’t” when the other had 

classified it as “Obliged”. 

4 Results 

For this analysis we will first focus on the classes 

“Don’t” and “Obliged” to make a binary turn-

taking decision in section 4.1. We will then 

switch focus to the full range of annotations and 

predict turn-taking decisions numerically on a 

scale in section 4.2. Finally we evaluate the re-

sulting models in 4.3 using annotations from a 

second annotator. 

4.1 Binary Decision – Don’t vs. Obliged 

For every turn-taking decision the outcome will 

eventually be either to take the turn or to not. For 

the annotated classes “Don’t” and “Obliged”, 

there is a one-to-one mapping between the class 

and the correct turn-taking decisions. The classes 

“If needed” and “Good” on the other hand en-

code optional behaviour; both the decision to 

take the turn and to not take the turn can be con-

sidered correct at the same time, an opportunity 

to take the turn and not an obligation. 

In this section we therefore build a model to 

distinguish between “Don’t” and “Obliged”. For 

this we explore the RIPPER (JRIP), Support 

Vector Machine (SVM) with linear kernel func-

tion and Multilayer Perceptron (MLP) classifiers 
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in the WEKA toolkit (Hall et al., 2009), using the 

default parameters. All results in this section are 

based on 10-fold cross-validation. For statistical 

analysis, we have used two-tailed tests and cho-

sen an alpha level of 0.05. 

 
Features JRIP SVM MLP 

VAD * 0.727 0.734 0.723 

Head pose * 0.690 0.724 0.709 

Cards * 0.717 0.526 0.671 

Prosody * 0.648 0.574 0.649 

POS * 0.602 0.630 0.634 

System DA 0.506 0.506 0.500 

Table 1: Weighted F1 score of the feature categories 

used in isolation. Results significantly better than 

baseline are marked with *. 

Baseline 

The majority-class baseline, always providing 

the classification “Don’t”, yields a weighted F1 

score of 0.432. 

Voice Activity Features 

A very basic feature to consult before taking the 

turn is to listen if anyone is speaking. Using 

only this feature the weighted F1 score reaches 

0.734, significantly better than the baseline. In 

addition, we also use features to add context: The 

amount of time each of the system and the other 

interlocutor has been quiet, and the length of the 

last turn, defined as a sequence of IPUs without 

IPUs from other speakers in-between, as well as 

length of the last IPU for the system and each of 

the two interlocutors. Thus, the total of VAD 

features is 9. The “anyone speaking” feature is 

the single feature yielding the highest weighted 

F1 score, performing on par with the combination 

of all VAD features (Table 1). 

Prosodic Features 

As prosodic features, we used final pitch and 

energy. A pitch tracker based on the Yin algo-

rithm (de Cheveigné & Kawahara, 2002) was 

used to estimate the F0 at a rate of 100 frames per 

second. The F0 values were then transformed to 

log scale and z-normalized for each user. For 

each IPU, the last voiced frame was identified 

and then regions of 200ms and 500ms ending in 

this frame were selected. For these different re-

gions, we calculated the mean, maximum, 

standard deviation and slope of the normalized 

F0 values. To calculate the slope, we took the 

average pitch of the second half of the region 

minus the average of the first half. Additionally, 

we calculated the maximum and standard devia-

tion of the normalized F0 values over the full 

IPU. We also Z-normalized the energy of the 

voiced frames and then calculated the maximum 

energy for the 200ms and 500ms regions and the 

full IPU. Thus, we used 13 prosodic features in 

total. Using MLP on the combination of all fea-

tures yielded the highest weighted F1 score 

(0.649, see Table 1). The features based on pitch 

were more useful than the ones based on energy. 

Syntactic Features 

Syntax has been shown to be a strong turn-

yielding cue in previous studies (Koiso et al., 

1998; Meena et al., 2014). For example, hesita-

tions can occur in the middle of syntactic con-

structions, whereas turn ends are typically syn-

tactically complete. In previous studies, the part-

of-speech (POS) of the last two words has been 

shown to be a useful feature. Thus, we use the 

POS of the last two words in an IPU as a bigram. 

The POS tags were automatically extracted using 

Stagger (Östling, 2013) based on results from 

cloud-based large vocabulary speech recogniz-

ers, Nuance NDEV mobile ASR, as an automat-

ed system would need to rely on ASR. Despite a 

word error rate (WER) of 63.1% (SD=39.0) for 

the recognized IPUs, the generated POS feature 

performed significantly better than the baseline 

(Table 1). However, the increase is not very high 

compared to previous studies. This could both be 

due to the relatively high WER, but also due to 

the fact that syntax in itself does not indicate the 

addressee of the utterance. 

Head Pose Features 

Unlike the other feature categories, head pose 

can be used to both yield the turn and to select 

the next speaker, and is therefore expected to be 

a strong feature for the current task. We repre-

sent the interlocutors’ head poses in terms of an-

gular distance between the direction of the in-

terlocutor’s head and the robot’s head. The angu-

lar distance is made available as absolute angu-

lar distance as well as signed vertical and hori-

zontal angular distance separately. The sign of 

the horizontal distance is adjusted to account for 

the mirrored position of the two interlocutors. 

This representation allows the system to infer if 

someone is looking at the system (low absolute 

distance), towards the table (negative vertical 

distance) or towards the other interlocutor (high 

horizontal distance). 

The head pose features are generated separate-

ly for the speaker ending the IPU and the other 

interlocutor as well as in two composite versions 
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representing the joint (maximum) and disjoint 

(minimum) distance. The features are generated 

both at the end of the speech in the IPU and at 

the time of the decision point. Thus, there are a 

total of 24 features available for estimating visu-

al focus of attention. Sorting the individual fea-

tures from highest weighted F1 score to lowest, 

we get the following top four groups in order: 

Last speaker (end of speech), last speaker (deci-

sion), disjoint (decision) and then joint (end of 

speech). As expected, the use of head pose gives 

a significantly better result than the baseline 

(Table 1). 

Card Movement 

The activity of the game table is represented in 

terms of card movement activity via 3 feature 

types. Note that we only know if a card is being 

moved, but not by whom. The first feature type 

is the duration of ongoing card movement. If no 

card is being moved at the moment, the value is 

set to 0. The second feature type is the duration 

of the most recently completed card movement. 

The final feature type is the time passed since 

the last movement of any card. These features 

are generated for two points in time; the end of 

the IPU relating to the decision point and the 

time when the decision is to be made. Thus, there 

are 6 card movement features in total. As can be 

seen in Table 1, this feature category alone per-

forms significantly better than baseline, which is 

a bit surprising, given that the card movements 

are not necessarily linked to speech production 

and turn-taking.  

The System’s Previous Dialogue Act 

To represent the dialogue context, we used the 

last system dialogue act as a feature. Whereas 

this feature gave a significant improvement in 

the data-driven models for dyadic turn-taking 

presented in Meena et al. (2014), it is the only 

feature category here that does not perform sig-

nificantly better than the baseline (Table 1). The 

overall low performance of this feature could be 

due to the nature of multi-party dialogue, where 

the system doesn’t necessarily have every second 

turn. 

Combined Feature Categories 

Until now we have only explored features where 

every category comprised one single modality. 

All feature categories, summarized in Table 1, 

have performed significantly better than the 

baseline with the exception of the system’s last 

dialogue act. 

In this section we explore the combinations of 

features from different modalities, summarized 

in Table 2. Combinations including head pose 

typically performed best. The maximum perfor-

mance using automatically generated features is 

0.851 using 5 feature categories: head pose, POS, 

card movements, prosody and the system’s dia-

log act. 

4.2 Regression Model 

While the end result of a turn-taking decision has 

a binary outcome, the distribution of annotations 

on a scale (Figure 4) suggests that there are 

stronger and weaker decisions, reflecting oppor-

tunities and obligations to take turns. As dis-

cussed above, such a score could be used togeth-

er with a utility to take turns in a decision-

theoretic framework. Thus, we also want to see 

whether it is possible to reproduce decisions on 

the scale. For this we explore the Gaussian Pro-

cesses (GP) and Linear Regression (LR) classifi-

ers in the WEKA toolkit. All results in this sec-

tion are based on 10-fold cross-validation. 

The individual feature categories have positive 

but low correlation coefficients (Table 3). Com-

bining the feature categories with highest corre-

Features JRIP SVM MLP 

Head pose (HP) 0.690 0.724 0.709 

HP+VAD 0.742 0.786 0.764 

HP+Cards (C) 0.780 0.753 0.772 

HP+Prosody (P) 0.700 0.698 0.789 

HP+POS 0.754 0.731 0.772 

HP+System DA (SDA) 0.725 0.739 0.728 

Best combination 

HP+POS+C+P+SDA 0.745 0.796 0.851 

Table 2: Weighted F1 score for different feature set 

combinations using RIPPER (JRIP), Support Vector 

Machine (SVM) and Multilayer Perceptron (MLP) 

classifiers 

Features GP LR 

System DA 0.090 0.129 

Prosody 0.146 0.135 

POS 0.193 0.188 

Cards 0.351 0.226 

VAD 0.416 0.368 

Head Pose (HP) 0.447 0.376 

HP+System DA 0.482 0.373 

HP+Prosody 0.500 0.377 

HP+POS 0.471 0.393 

HP+Cards 0.572 0.431 

HP+VAD 0.611 0.523 

Best combination 

HP+VAD+Cards 0.677 0.580 

Table 3: Correlation coefficient for different feature 

set combinations using Gaussian Processes (GP) and 

Linear Regression (LR) classifiers 
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lation coefficients improve performance. The 

head pose in combination with VAD and card 

movements, using Gaussian Processes yields the 

highest correlation coefficient, 0.677. 

4.3 Evaluation 

We finally evaluated the best performing models 

built from the initial 9 dialogues on a separate 

test set of 43 decision points from a tenth dia-

logue, annotated both by the original annotator 

and a second annotator.  

For the binary decision, we selected the MLP 

classifier with features from head pose, POS, 

card movements, prosody and the system’s dia-

logue act. When evaluated on the test set anno-

tated by the original annotator and the new anno-

tator, the weighted F1 score was 0.876 and 0.814 

for 29 and 32 instances respectively. These are 

promising results, given the classifier’s perfor-

mance of 0.851 in the training set cross-

validation (Table 2) and that the test set was 

from a previously unseen interaction. 

The regression model was evaluated using the 

Gaussian Processes classifier with features from 

head pose, VAD and card movement. The corre-

lation coefficients for the original annotator and 

the new annotator were 0.5959 and 0.5647 over 

43 instances each, compared to 0.677 in the 

training set cross-validation (Table 3). The lower 

values could be due to a different distribution of 

annotations in the test set and the relatively small 

data set. 

5 Discussion and Conclusions 

In this study we have developed data-driven 

models that can be used by a robot to decide 

when to take the turn and not in multi-party situ-

ated interaction. In the case of a simple binary 

decision on whether to take the turn or not, the 

weighted F1 score of 0.876 on data from previ-

ously unseen interactions, using several modali-

ties in combination, is indeed promising, given a 

relatively small training material of 9 interactions 

and 688 instances. The decision process for the 

annotator is also simplified by not making sepa-

rate decisions for turn ending and addressee de-

tection. It should also be pointed out that we 

have only relied on automatically extractable 

features that can be derived in an online system. 

We have also achieved promising results for a 

regression model that could be used to identify 

both opportunities and obligations to take turns.  

We have observed that combining features 

from different modalities yield performance im-

provements, and different combinations of fea-

tures from diverse modalities can provide similar 

performance. This suggests that the multimodal 

redundancy indeed can be used to improve the 

robustness of the dialogue system. This is very 

relevant to the specific dialogue system in this 

study as head pose data sometimes is unavaila-

ble. Two possible remedies would be to only use 

classifiers that are robust against missing fea-

tures, or to use multiple classifiers to step in 

when features are unavailable. 

The results support that head pose, despite 

sometimes missing, is very useful for turn-taking 

decisions. This was expected, as head pose is the 

only of our available features that can be used to 

both select addressee and act as a turn-yielding 

cue. The results also indicate that POS provide 

useful information, even when based on ASR 

results with high WER. Provided that higher 

ASR performance becomes available, we could 

also benefit from other more sophisticated fea-

tures, such as semantic completion (Gravano & 

Hirschberg, 2011), to predict turn-transition rele-

vant places. 

It is also interesting to see that the card 

movement is an important feature, as it suggests 

that moving of objects can be a dialogue act in 

itself, as discussed in Clark (2005). This makes 

situated dialogue systems – where the discussion 

involves actions and manipulation of objects – 

different from traditional dialogue systems, and 

should be taken into account when timing re-

sponses in such systems. This also suggests that 

it might be necessary to not just make turn-taking 

decisions at the end of IPUs, but rather continu-

ous decisions. It is not obvious, however, how 

this would be annotated. 

With the promising results of this study, we 

plan to expand on this work and integrate the 

turn-taking models into the live dialogue system, 

and see to what extent this improves the actual 

interaction. Of particular interest for future work 

is the regression model that could predict turn-

taking on a continuous scale, which could be in-

tegrated into a decision-theoretic framework, so 

that the system could also take into account to 

what extent it has something important to say.  
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