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Abstract

Agile social media analysis involves
building bespoke, one-off classification
pipelines tailored to the analysis of spe-
cific datasets. In this study we investigate
how the DUALIST architecture can be op-
timised for agile social media analysis. We
evaluate several semi-supervised learning
algorithms in conjunction with a Naı̈ve
Bayes model, and show how these mod-
ifications can improve the performance of
bespoke classifiers for a variety of tasks on
a large range of datasets.

1 Introduction

Natural Language Processing (NLP) on large so-
cial media datasets has emerged as a popular
theme in the academic NLP community with pub-
lications ranging from predicting elections, e.g.
(Tumasjan et al., 2010; Marchetti-Bowick and
Chambers, 2012), to forecasting box-office rev-
enues for movies, e.g. (Asur and Huberman, 2010)
and anticipating the stock market, e.g. (Bollen et
al., 2011; Si et al., 2013). More recently, Opin-
ion Mining and Sentiment Analysis on large so-
cial media datasets have received an increasing
amount of attention outside academia, where a
growing number of businesses and public insti-
tutions seek to gain insight into public opinion.
For example, companies are primarily interested
in what is being said about their brand and prod-
ucts, while public organisations are more con-
cerned with analysing reactions to recent events,
or with capturing the general political and societal
Zeitgeist. The social network Twitter has been a
popular target for such analyses as the vast major-
ity of tweets are publicly available, and easily ob-
tainable via the Twitter API1, which conveniently

1http://dev.twitter.com/

enables the harnessing of a large number of real-
time responses to any user-defined keyword query.

In this paper we are concerned with what we
call agile social media analysis, which is best il-
lustrated with an example. Imagine that a political
scientist wants to investigate reactions on Twitter
to a speech given by British Prime Minister David
Cameron the previous night. She uses an appli-
cation which allows her to query the Twitter API
in order to gather a dataset, and to interactively
design classifiers, tailored to specific tasks. For
her analysis, she starts searching for “Cameron”,
which inevitably will retrieve a large number of ir-
relevant tweets, e.g. those referring to Cameron
Diaz. Her first goal therefore is to filter out all of
those unrelated tweets, for which she requires a
bespoke classifier that will only be used for this
single task. In order to create such a classifier,
she first needs to annotate a gold standard evalu-
ation set which is randomly sampled from the ini-
tially retrieved tweets. While labelling the first few
tweets for the evaluation set, she starts to build a
picture of the range of topics being discussed on
Twitter that night. She notices that a considerable
proportion of tweets appears to be talking about
David Cameron’s personality. Many of the oth-
ers appear to be about two specific topics men-
tioned in the speech: tax policy and the EU ref-
erendum. After training a classifier to perform
relevancy classification, she therefore decides to
create another one-off classifier to divide the rel-
evant tweets into the three categories, “personal-
ity”, “tax policy” and “EU referendum”. To con-
clude her analysis, she creates three more bespoke
classifiers to perform Sentiment Analysis on each
of the three subsets separately.

A crucial aspect of performing agile social me-
dia analysis is the direct interaction with the data,
through which the analyst gains a sense of what
the discourse is about. It furthermore enables
her to better tailor her analysis to the collected
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data. DUALIST introduced the framework which
enables non-technical analysts to design bespoke
classifiers by labelling documents and features
through active learning, with only a few minutes of
annotation effort (Settles, 2011; Settles and Zhu,
2012). Wibberley et al. (2013) and Wibberley et
al. (2014) showed that the DUALIST architecture
can successfully be used for performing ad-hoc
analyses in an agile manner.

The remainder of this paper is organised as fol-
lows: in Section 2 we more generally introduce
agile social media analysis, followed by the de-
scription of the datasets we use in our empirical
evaluation in Section 3. Section 4 describes our
approach alongside related work and Section 5
presents our experiments and discusses our find-
ings. In Section 6 we give an overview of future
work and we conclude this paper in Section 7.

2 Agile Social Media Analysis

When beginning an analysis the social scientist
has no predetermined plan of the specific content
of her investigation. The reason is that there is
limited appreciation for what is being discussed
in advance of engaging with the data. Therefore,
the process of annotating a gold standard evalua-
tion set and a training set to create bespoke classi-
fiers, also serves the purpose of exploring the data
space.

After collecting a text corpus from Twitter,
the analyst typically creates a tailored multi-stage
classification pipeline to organise the heteroge-
nous mass of data. As explained in the introduc-
tory scenario, the first stage often involves filtering
irrelevant tweets, since keyword queries are pur-
posefully kept broad to minimise the risk of miss-
ing relevant aspects of a discussion. The following
stages are completely dependent on the extracted
content — target categories are not known upfront,
but are determined while interacting with the data.
Each stage in this pipeline requires the annotation
of a gold standard evaluation set and the training
of a bespoke classifier to perform the categorisa-
tion. The tweets for the gold standard set are ran-
domly sampled from the available data, whereas
the creation of the classifier is guided by active
learning to accelerate the training process (Settles,
2009). The two kinds of labelling tasks have in-
trinsic beneficial side-effects that support the ana-
lyst’s investigation. When annotating a gold stan-
dard set, the social scientist is able to explore the

data and gather ideas for further analyses. The
training of a bespoke classifier enables the ana-
lyst to quickly test whether the algorithm has the
capability to divide the data into the target cate-
gories. This is possible because the system is able
to provide instant feedback on how well the cur-
rent classifier is performing on the evaluation set,
and allows the social scientist to “fail fast”. This
has the benefit of being able to quickly define new
target categories which better match the data.

From a Machine Learning perspective, agile so-
cial media analysis poses a number of distinct
challenges. The labelled data for any classifica-
tion task can contain a considerable amount of
noise as the dataset is not labelled and validated
by a team of experienced annotators in month-long
efforts, but in short sessions by a single analyst.
Furthermore, for most downstream classification
tasks, the input dataset often is the product of one
or more preceding classifiers. Therefore, there is
no guarantee that a given tweet is actually relevant
to the current analysis.

The small amount of labelled data together with
the large amount of unlabelled data raise the is-
sue of how to best make effective use of the
vast number of unlabelled tweets. We investi-
gate this problem from two complementing an-
gles. On the one side we enhance our current semi-
supervised learning algorithm with several sim-
ple modifications. On the other side, we compare
the adjusted algorithms with various other semi-
supervised learning algorithms that aim to lever-
age the information in the unlabelled data in a
different way. We furthermore examine whether
we can improve the classifier by extending its lan-
guage model to include bigrams and trigrams.

3 Datasets

We evaluate our experiments on 24 Twitter
datasets that have been collected by social scien-
tists for a number of real-world analyses (Bartlett
and Norrie, 2015; Bartlett et al., 2014b; Bartlett
et al., 2014a). The Twitter datasets represent a di-
verse range of possible applications of agile so-
cial media analysis. Some are focused on “Twitci-
dents”2 during political debates or speeches (boo-
cheer, cameron 1-3, clacton, clegg, debate 1-2,
farage, immigr, miliband 1-2, salmond). Three

2“A major incident provoking a firestorm of reactions on
Twitter”, see http://www.urbandictionary.com/
define.php?term=Twitcident
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datasets are concerned with reactions to the in-
quest following the death of Mark Duggan in Lon-
don 2013 (duggan 1-3), and the remaining ones
investigate topics such as the winter floods in
many coastal regions in the South of England,
throughout late 2013 and early 2014 (flood 1-2),
misogyny (misogyny, rape), extremism (isis 1-3)
and oil drillings in the arctic (shell). The Twit-
ter datasets are drawn from different stages of
the processing pipeline, which means that some
datasets consist of the unprocessed tweets match-
ing an initial keyword query while others have
already been processed by one or more preced-
ing steps in the pipeline. For example, the shell
and flood-1 datasets are the result of querying the
Twitter API, whereas the duggan-1 dataset has al-
ready been cleared of irrelevant tweets, and tweets
only containing news links, in two separate pre-
ceeding stages of the processing pipeline. We fur-
thermore evaluate our implementations on 2 com-
monly used NLP benchmark datasets, 20 News-
groups (Lang, 1995), henceforth “20news”, as an
example Topic Classification dataset, and Movie
Reviews (Maas et al., 2011), henceforth “reviews”,
as an example Sentiment Analysis dataset.

Table 1 highlights the extreme imbalance be-
tween labelled and unlabelled data and the cor-
responding differences in vocabulary size. In the
Twitter datasets, |VL| is usually one order of mag-
nitude smaller than |VL∪U |. In comparison, the
disparity in vocabulary size between labelled and
unlabelled data in the reviews corpus is less than
a factor of two. The difference is more extreme
when looking at the actual amounts of labelled and
unlabelled data, where the Twitter datasets often
contain two orders of magnitude more unlabelled
data than labelled data. Furthermore, the dispar-
ity in number of labelled documents between the
Twitter datasets and the NLP benchmark corpora
usually is one to two orders of magnitude. Where
the 20news dataset contains more than 10k la-
belled documents and the reviews dataset even 25k
labelled instances, the Twitter datasets rarely con-
tain more than a few hundred labelled tweets.

4 Approach & Related Work

The DUALIST architecture represents the gen-
eral framework for performing agile social me-
dia analysis by combining active learning, semi-
supervised learning, a Naı̈ve Bayes text classifier
and a graphical user interface into an application.

A human annotator iteratively labels new tweets
and terms in tweets which the active learning al-
gorithm identifies as being most beneficial for an-
notation. The flexibility to label instances and in-
dividual words perhaps is the most important rea-
son why effective classifiers can be created with
only a few minutes of labelling effort. To leverage
the collective information of the labelled and unla-
belled data, DUALIST executes a single iteration
of the Expectation-Maximization algorithm (Set-
tles, 2011). In this paper we focus on the Naı̈ve
Bayes classifier and the semi-supervised learning
algorithm and leave an investigation of the active
learning component — and especially the feature
labelling — for future work.

4.1 Naı̈ve Bayes
Naı̈ve Bayes fulfills the most important re-
quirements for agile social media analysis: it
is fast to train, proven to work well in the
text domain despite its often violated inde-
pendence assumptions, and is easily extensible
with semi-supervised learning algorithms such as
Expectation-Maximization due to its generative
nature (Domingos and Pazzani, 1997; McCallum
and Nigam, 1998; Nigam et al., 2000). The goal
of classification is to find the class c ∈ C that is
most likely to have generated document d, which
Naı̈ve Bayes estimates as:

c = argmax
c∈C

P (c)
ND∏
i=1

P (wi | c) (1)

where P (wi | c) is the conditional probability of
word wi occurring in a document of class c, con-
taining ND words in a given labelled dataset L.

4.2 Which Naı̈ve Bayes?
There are several distinct flavours of the Naı̈ve
Bayes model, with different model types being
better suited for some tasks and data characteris-
tics than others. One major distinction is whether a
Multinomial or Bernoulli event model is used. The
former incorporates term frequency information
into the model whereas the latter only uses term
occurrence information. It has been shown that
the Multinomial model usually performs better in
the Topic Classification domain (McCallum and
Nigam, 1998). However, Manning et al. (2008)
highlight that the Bernoulli model tends to work
better for short texts. Interestingly, a variant of
the Multinomial event model that only uses binary
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Name T |C| |L| |U| |VL| |VL∪U | Name T |C| |L| |U| |VL| |VL∪U |
20news TC 20 11314 - 130107 130107 flood-1 TC 2 530 116123 2176 72004

boo-cheer SA 3 1665 436305 7092 104477 flood-2 TC 4 1615 39327 5043 25326
cameron-1 TC 2 205 33561 1491 33234 immigr TC 2 210 425425 1098 171195
cameron-2 TC 4 320 867637 1317 294169 isis-1 SA 3 322 19378 2123 32242
cameron-3 SA 3 502 303868 1858 122372 isis-2 TC 2 827 107310 2549 51444

clacton SA 3 930 147493 2785 59990 isis-3 TC 2 602 56928 1859 29287
clegg SA 3 500 9597 3280 8349 miliband-1 SA 3 927 36335 3378 19728

debate-1 SA 3 306 31993 917 10987 miliband-2 SA 3 449 35786 2092 19785
debate-2 TC 5 123 31993 482 10984 misogyny TC 2 215 119078 1131 89474
duggan-1 TC 3 475 86749 1376 26382 rape TC 3 746 108044 3908 78757
duggan-2 TC 4 1086 53440 2609 15760 reviews SA 2 25000 50000 74849 124255
duggan-3 TC 3 401 86749 1283 26385 salmond SA 3 228 55899 1171 14464

farage SA 3 2614 9794 5305 8349 shell TC 2 221 50065 1196 60815

Table 1: Datasets: T =Task, where TC=Topic Classification; SA=Sentiment Analysis; |C| = number of labels; L=Labelled data, |L|=amount of Labelled data; U=Unlabelled data,
|U|=amount of Unlabelled data; |VL|=Vocabulary size of the labelled data; |VL∪U |=Vocabulary size of the labelled and unlabelled data

counts instead of the full frequency information
has been shown to outperform the standard Multi-
nomial model, and the Bernoulli model, for a va-
riety of tasks (Metsis et al., 2006; Wang and Man-
ning, 2012).

Instead of the commonly used Laplacian (add-
1) smoothing, we use a simple heuristic that ad-
justs the additive smoothing term, depending on
the number of observed tokens and the over-
all vocabulary size, for every dataset individu-
ally. Instead of adding 1, we add 1

10k , and nor-
malise appropriately afterwards. We defined k =⌊

log |VL∪U |
log |TL|

⌋
, where |VL∪U | is the total size of the

vocabulary and |TL| is the number of tokens in the
labelled data. This approach re-distributes proba-
bility mass from observed words to unknown ones
less aggressively than add-1 smoothing. We refer
to this heuristic as Lidstone-Tokens (LT) smooth-
ing and compare it to add-1 smoothing in a super-
vised learning scenario.

4.3 Semi-supervised Learning
In these experiments we examine the performance
of three semi-supervised learning algorithms —
Expectation-Maximization and two more recently
proposed algorithms, Semi-supervised Frequency
Estimate (Su et al., 2011), and Feature Marginals
(Lucas and Downey, 2013).

4.4 Expectation-Maximization
The starting point for the Expectation-
Maximization (EM) algorithm is an initial
model instance from the labelled data L, which
can be obtained in a number of ways. A common
approach is to train a Naı̈ve Bayes classifier on
the available labelled documents. DUALIST
introduced an alternative using the labelled
features, whose term frequencies are incremented
by a pseudo-count, which was found to be more
effective for an active learning scenario (Settles,

2011). In order to factor out the effect of active
learning and to better study our modifications
on datasets without any labelled features, we are
using the labelled instances to initialise EM.

The EM algorithm first produces probabilis-
tic class predictions for the unlabelled data U ,
representing the “E-Step” and subsequently re-
estimates the model parameters on all available
data L ∪ U in the “M-Step”. These two steps can
be repeated until convergence, although for effi-
ciency reasons, DUALIST only performs a single
iteration. Furthermore, given the enormous differ-
ence in amounts of labelled and unlabelled data,
documents in U are assigned a smaller weight
than data in L in order to not drown out the infor-
mation learnt from the labelled data. A common
approach is to assign every instance in U a weight
of α = 0.1, henceforth “EM-CWF”3 (Nigam et
al., 2000; Settles, 2011). In a typical practical
application, from which most of our datasets are
drawn, we observe only a few hundred labelled
documents but several tens or hundreds of thou-
sands of unlabelled instances. In these circum-
stances, it can be hypothesised that a weight of
α = 0.1 would be too high, and the unlabelled
data would outweigh the labelled data by one to
two orders of magnitude. We therefore assign
tweets in U a weight of α = | L |

| U | , where | L | rep-
resents the number of labelled documents and | U |
represents the number of unlabelled documents.
We refer to this weighting scheme as “Propor-
tional Weight Factor” (PWF).

4.5 Semi-supervised Frequency Estimate

The Semi-supervised Frequency Estimate (SFE)
algorithm leverages the information P (w) over
the combined amount of labelled and unlabelled

3CWF means “Constant Weight Factor”. For all of our
experiments EM-CWF refers to the specific case with α =
0.1.
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data, to scale the class-conditional probabilities
learnt from L. Hence, the probability mass is re-
distributed according to a word’s overall preva-
lence in the corpus. Unlike the EM algorithm,
SFE only requires a single pass over the data to
adjust the model parameters and is thus better able
to scale to large amounts of unlabelled data. SFE
does not need the adjustment of additional hyper-
parameters such as the weighting of probabilisti-
cally labelled documents in U .

4.6 Feature Marginals

The Feature Marginals (FM) algorithm also uses
the information of P (w) over the labelled and un-
labelled data to scale the class-conditional proba-
bilities estimated from the training set. In addition,
FM re-distributes the probability mass ofP (w) ac-
cording to the probability of a token inL occurring
in either class. Lucas and Downey (2013) found
that their model is especially effective in estimat-
ing probabilities for words that have not been seen
in the labelled data. In its current form, FM does
not generalise to multi-class problems, we there-
fore perform one-vs-rest classification for datasets
with more than two classes.

4.7 Usefulness of Unlabelled Data

Previous work has shown that unlabelled data can
be leveraged to create superior models (Chawla
and Karakoulas, 2005). The DUALIST frame-
work adopts the assumption that by exploiting
semi-supervised learning techniques, a more ef-
fective model can be built than by supervised
learning alone. We examine whether the benefits
of semi-supervised learning hold for the distinc-
tive characteristics in our Twitter datasets.

4.8 Feature Extraction — Unigrams,
Bigrams or Trigrams?

We investigate whether classifier performance can
be improved by including bigram and trigram fea-
tures. Wang and Manning (2012) showed that bi-
gram features are especially beneficial for a more
complex task such as Sentiment Analysis, but also
consistently improve performance on Topic Clas-
sification problems for supervised learning set-
tings.

5 Experiments & Discussion

All datasets we use have pre-defined train-
ing/testing splits. We tokenise the documents,

but do not perform any other pre-processing such
as stemming, URL normalisation or stopword re-
moval. All documents are represented as simple
bag-of-words vectors. We report micro-averaged
F1-Scores for all experiments. When investigating
the effect of unlabelled data, we randomly sample
1k, 5k, 10k, 25k, 50k, 100k unlabelled tweets, or
use all available unlabelled data. As baseline we
use EM-CWF — MNB add-1, which reflects the
text classifier and semi-supervised learning algo-
rithm used in DUALIST, with the difference that
we use the labelled documents instead of the la-
belled features for initialising EM. This is to iso-
late the effects of Naı̈ve Bayes and EM, and to
factor out the contributions of active learning. We
compare our results in terms of absolute F1-Score
gain/loss in comparison to our baseline, or present
F1-Score performance trajectories.

5.1 Parameterisation and Selection of the
Naı̈ve Bayes Event Model

As Figure 1 shows, Lidstone-Tokens smoothing
performs better than add-1 smoothing on 18 out
of 26 datasets, and improves F1-Score by 2.5% on
average across all datasets, in a supervised learn-
ing scenario. We therefore adopt it for all fur-
ther experiments. We furthermore drop the stan-
dard Multinomial Naı̈ve Bayes model and only
adopt the binary MNB and the Bernoulli Naı̈ve
Bayes (BNB) models for future comparisons, as
we found them to be superior to the standard
Multinomial model. Our findings are consistent
with previously published results of Wang and
Manning (2012), and Metsis et al. (2006), who re-
port that binary MNB works better than the stan-
dard Multinomial model for a variety of Topic
Classification and Sentiment Analysis tasks. Our
results also agree with Manning et al. (2008) who
found the Bernoulli event model to be a competi-
tive choice for short text classification. For all ex-
periments we use all combinations of binary MNB
and BNB together with the three semi-supervised
learning algorithms introduced in the previous sec-
tion — except for BNB + FM, which we found to
significantly underperfom the other combinations.

5.2 Semi-supervised Learning Algorithms
Comparison

As Figure 2 shows, there are only two datasets
(clacton and isis-2), where the EM-CWF —
MNB add-1 baseline outperforms the other semi-
supervised learning algorithms. On the other
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Name EM-M EM-B SFE-M SFE-B FM MNB EM-C Name EM-M EM-B SFE-M SFE-B FM MNB EM-C
20news 0.761 0.676 0.779 0.779 0.743 0.759 0.729 flood-1 0.468 0.368 0.451 0.456 0.381 0.381 0.382

boo-cheer 0.492 0.516 0.538 0.539 0.498 0.496 0.487 flood-2 0.669 0.704 0.669 0.669 0.683 0.683 0.62
cameron-1 0.781 0.832 0.815 0.827 0.814 0.808 0.712 immigr 0.956 0.91 0.951 0.948 0.953 0.962 0.91
cameron-2 0.589 0.529 0.589 0.58 0.589 0.585 0.451 isis-1 0.567 0.573 0.533 0.557 0.55 0.563 0.503
cameron-3 0.67 0.683 0.647 0.667 0.7 0.7 0.62 isis-2 0.751 0.755 0.734 0.722 0.758 0.753 0.808

clacton 0.52 0.483 0.513 0.513 0.517 0.513 0.56 isis-3 0.648 0.667 0.658 0.648 0.654 0.654 0.533
clegg 0.696 0.724 0.692 0.7 0.736 0.724 0.676 miliband-1 0.556 0.563 0.544 0.552 0.57 0.574 0.533

debate-1 0.627 0.637 0.597 0.61 0.63 0.626 0.5 miliband-2 0.69 0.69 0.71 0.7 0.69 0.7 0.6
debate-2 0.667 0.661 0.567 0.581 0.644 0.684 0.396 misogyny 0.953 0.953 0.938 0.949 0.953 0.953 0.888
duggan-1 0.639 0.649 0.634 0.634 0.637 0.634 0.526 rape 0.895 0.87 0.87 0.88 0.895 0.885 0.785
duggan-2 0.585 0.603 0.537 0.545 0.575 0.6 0.378 reviews 0.826 0.825 0.831 0.831 0.83 0.83 0.821
duggan-3 0.767 0.75 0.773 0.767 0.76 0.75 0.603 salmond 0.69 0.69 0.65 0.68 0.69 0.69 0.45

farage 0.718 0.72 0.698 0.712 0.67 0.716 0.688 shell 0.756 0.798 0.738 0.755 0.758 0.775 0.715

Table 2: Micro averaged F1-Score for all methods across all datasets. EM-M=EM-PWF — binary MNB LT; EM-B=EM-PWF — BNB LT; SFE-M=SFE — binary MNB LT; SFE-B=SFE —
BNB LT; FM=FM — binary MNB LT; MNB=supervised binary MNB LT; EM-C=EM-CWF — MNB add-1; Boldfaced numbers mean top performance on the dataset.

Figure 2: Semi-Supervised Learning algorithm comparison. The baseline is EM-CWF — MNB add-1. PWF refers to our EM weighting scheme. The new algorithms only failed to improve
performance on 2 datasets. Our simple enhancements to NB smoothing and EM weighting (see Sections 4.1 and 4.3) improve an NB-EM combination considerably and make it competitive
with SFE and FM.

Figure 1: Overall Lidstone-Tokens smoothing achieves an average improvement of 2.5%
across all datasets and improves performance on 18 out of 26 datasets. Performance gains
are as large as 14% in absolute terms on the 20News dataset, 8.5% on the flood-1 dataset
and 7.3% on the isis-2 dataset. Both MNB models use binary counts.

hand, there is no single dominant algorithm that
consistently outperforms the others (also see Table
2). Our results confirm that SFE and FM are supe-
rior to EM-CWF — MNB add-1 as was shown in
the respective publications, and that their improve-
ments can be leveraged for agile social media anal-
ysis. Interestingly, our simple modifications to
EM improve its performance substantially, making

it competitive with SFE and FM on our datasets.
Our results furthermore highlight that consider-
able performance improvements can be gained for
the commonly used combination of Naı̈ve Bayes
and Expectation-Maximization when their respec-
tive hyperparameters are optimised for the given
dataset characteristics.

5.3 The Effect of Unlabelled Data
Table 2 shows that adding unlabelled data does
not always improve performance. The super-
vised binary MNB classifier with Lidstone-Tokens
smoothing is the top performing method on 6 out
of 26 datasets. Only the EM-PWF — BNB LT
combination is the top performing method more
frequently. Figures 3a and 3b show that EM-
CWF — MNB add-1 appears to be very sensi-
tive to the amount of unlabelled data, whereas the
other semi-supervised learning algorithms remain
relatively stable under a growing amount of un-
labelled data. Figure 3a highlights a prototyp-
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ical case where adding unlabelled data up to a
certain threshold improves performance, but de-
grades it when more is added. We observed this
behaviour of EM-CWF — MNB add-1 on a num-
ber of datasets. Figure 3b shows that EM-PWF
— binary MNB LT, FM — binary MNB LT and
SFE — binary MNB LT do not make the most ef-
fective use of the unlabelled data, hence there is
still potential for further improvement in these al-
gorithms. Especially EM-PWF — binary MNB
LT is perhaps scaling down the contributions of
the unlabelled data too aggressively. This comes
at the expense of not leveraging the full potential
of the unlabelled documents, but has the advan-
tage of improved stability across varying amounts
of unlabelled data as our experiments show.

5.4 The Effect of Adding Bigrams and
Trigrams

Contrary to our expectations, adding bigrams or
trigrams produced mixed results and did not con-
sistently improve performance on our datasets. An
interesting observation is the different behaviour
of the various semi-supervised algorithms. For
example, adding trigrams improves EM-PWF —
binary MNB LT by almost 10% on the flood-
1 dataset, whereas performance goes down by
nearly 10% for SFE — binary MNB LT. The re-
verse effect can be observed on the shell dataset.
Our findings are in contrast to published results by
Wang and Manning (2012) who report that adding
bigrams never degraded performance in their ex-
periments. Figures 4a-4c highlight the inconsis-
tent behaviour of adding bigrams or trigrams for
three semi-supervised learning algorithms across
all datasets4. We also ran our experiments with
a purely supervised MNB classifier to factor out
the effect of semi-supervised learning, which how-
ever, resulted in the same inconsistent behaviour
(see Figure 4d). A closer investigation of the
datasets suggests that the difference might be due
to the idiosyncrasy of Twitter where opinions are
commonly packaged into multi-word hashtag ex-
pressions, which frequently capture the sentiment
of a tweet, but are treated as unigrams. For ex-
ample, expressions such as “#CameronMustGo”
and “#CareNotCuts” in the boo-cheer dataset,
or “#NoSympathy” and “#PoliceMurder” in the
duggan-1 dataset, convey crucial sentiment infor-

4Due to space reasons, we only show figures for the binary
MNB variants — the results for the BNB variants are almost
identical.

mation. The phenomenon is not exclusive to Sen-
timent Analysis, hashtag expressions frequently
categorise a tweet, e.g. “#ArcticOil” in the shell
dataset. Such topical information has already been
leveraged in a number of previous works, e.g. We-
ston et al. (2014); Dela Rosa et al. (2011). There-
fore, we hypothesise that the potential benefits of
bigrams or trigrams cannot be leveraged as effec-
tively for Twitter Sentiment Analysis datasets than
for other datasets.

6 Future Work

Our results created a multitude of directions for
future research. We plan to investigate the rea-
son behind the inconsistent performance of the
semi-supervised learning algorithms across our
datasets. We are interested whether it is spe-
cific dataset characteristics or particular hyper-
parameter configurations that cause e.g. EM-PWF
— BNB LT to be the top performing algorithm
on the shell and duggan-2 datasets, but the worst
performer on the clacton and flood-1 datasets.
Moreover, we seek to gain insight why adding
bigrams or trigrams improves performance on a
given dataset for one method, but degrades it for
another. We also plan to study whether we can use
the unlabelled data more effectively, e.g. by sub-
sampling the unlabelled tweets by some criterion.
The hypothesis is that there might be a subset of
tweets in the unlabelled data which better aligns
with the current analysis. We will furthermore ex-
amine whether the active learning process, and es-
pecially the feature labelling, can be improved in
order to create more effective bespoke classifiers
with less manual labelling effort. Lastly, we intend
to investigate the role of opinionated multi-word
hashtag expressions which not only convey topi-
cal information, but also express sentiment as we
highlighted in the previous section. We therefore
intend to assess whether we can leverage the sen-
timent information of hashtag expressions to im-
prove Sentiment Analysis on our Twitter datasets.

7 Conclusion

In this paper we highlighted the demand for being
able to quickly build bespoke classifier pipelines
when performing agile social media analysis in
practice. We considered different Naı̈ve Bayes
event models in conjunction with various semi-
supervised learning algorithms on a large range of
datasets. We showed that SFE and FM outperform
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(a) The effect of unlabelled data on the flood-1 dataset. While EM-PWF — binary MNB LT
and SFE — binary MNB LT are relatively stable with increasing amounts of unlabelled data,
EM-CWF — MNB add-1 displays its frequently observed “peak-behaviour”, where adding
unlabelled data would improve performance until a threshold is reached, after which perfor-
mance degrades again. FM — binary MNB LT shows the opposite effect, where performance
decreases in the beginning and then slightly recovers with more unlabelled data.

(b) The effect of unlabelled data on the isis-2 dataset. While the performance of EM-CWF —
MNB add-1 increases steadily with more unlabelled data, EM-PWF — binary MNB LT, FM
— binary MNB LT and SFE — binary MNB LT remain very stable with increasing amounts
of unlabelled data. These results suggest that there is further room for improvement in the
latter algorithms to make more effective use of the unlabelled data.

Figure 3: Micro averaged F1-Score over the number of unlabelled instances. The baseline is a supervised binary MNB LT classifier. To reduce clutter, we only present the binary MNB
variants of EM-PWF, FM and SFE.

(a) The effect of adding bigrams and trigrams in comparison to a unigram baseline for the
EM-PWF — binary MNB LT algorithm.

(b) The effect of adding bigrams and trigrams in comparison to a unigram baseline for the
SFE — binary MNB LT algorithm.

(c) The effect of adding bigrams and trigrams in comparison to a unigram baseline for the FM
— binary MNB LT algorithm.

(d) The effect of adding bigrams and trigrams in comparison to a unigram baseline for the
supervised binary MNB algorithm.

Figure 4: The effect of adding bigrams and trigrams for various algorithms. No consistent behaviour can be observed across the datasets. This is contrary to the findings of Wang and
Manning (2012) who found that adding bigrams always helped for Topic Classification and Sentiment Analysis. Interestingly while we can reproduce the positive effect of bigrams and
trigrams on the reviews dataset, we find that bigrams or trigrams do not help on the full 20news dataset (Wang and Manning (2012) used 3 different 2-class subsets of the 20news dataset). We
hypothesise that the disparity between the findings in Wang and Manning (2012) is due to the different characteristics between the Twitter datasets in our study, and the ones used by in their
experiments.

EM-CWF — MNB add-1 but also highlighted
that the performance of NB-EM combinations can
considerably be improved when their hyperparam-
eters are optimised. We showed that with these
modifications NB-EM is competitive with SFE
and FM on our datasets. Overall we demonstrated
that the modifications to Naı̈ve Bayes and EM,
and the usage of alternative semi-supervised learn-
ing algorithms, outperformed the baseline config-
uration on almost all datasets. We furthermore

pointed out that none of the semi-supervised learn-
ing algorithms we evaluated can consistently make
effective use of a large amount of unlabelled data.
Lastly, we presented the result that adding bigrams
or trigrams does not consistently improve perfor-
mance in an agile scenario on our datasets.
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