
Proceedings of SocialNLP 2015@NAACL-HLT, pages 39–47,
Denver, Colorado, June 5, 2015. c©2015 Association for Computational Linguistics

A Deep Learning and Knowledge Transfer Based Architecture for Social

Media User Characteristic Determination

Matthew Riemer, Sophia Krasikov, and Harini Srinivasan
IBM T.J. Watson Research Center

1101 Kitchawan Road
Yorktown Heights, NY 10598, USA

{mdriemer, kras, harini}@us.ibm.com

Abstract

Determining explicit user characteristics

based on interactions on Social Media is a

crucial task in developing recommendation

and social polling solutions. For this purpose,

rule based and N-gram based techniques have
been proposed to develop user profiles, but

they are only fit for detecting user attributes

that can be classified by a relatively simple

logic or rely on the presence of a large amount

of training data. In this paper, we propose a

general purpose, end-to-end architecture for

text analytics, and demonstrate its effective-

ness for analytics based on tweets with a rela-

tively small training set. By performing

unsupervised feature learning and deep learn-

ing over labeled and unlabeled tweets, we are

able to learn in a more generalizable way than
N-gram techniques. Our proposed hidden

layer sharing approach makes it possible to ef-

ficiently transfer knowledge between related

NLP tasks. This approach is extensible, and

can learn even more from metadata available

about Social Media users. For the task of user

age prediction over a relatively small corpus,

we demonstrate 38.3% error reduction over

single task baselines, a total of 44.7% error

reduction with the incorporation of two re-

lated tasks, and achieve 90.1% accuracy when

useful metadata is present.

1 Introduction

Two major Social Media Analytics use cases that
are driving business value for businesses today are

social recommendation systems and social polling
applications.

Social recommendation systems analyze
attributes of Social Media users and historical
trends to recommend personalized products and
advertisements to users. The accuracy and robust-

ness of these systems has a direct impact on user
satisfaction and ROI, making improvement of
these systems a very worthwhile area of study.

Social polling refers to effectively carrying out
massive surveys over Social Media. Organizations
find applications with these capabilities useful for
brand management, campaign management, and
understanding key social trends. State of the art
social polling systems include a capability of mea-

suring trending topics and sentiment. These sys-
tems also include a capability to analyze the user
characteristic level dependencies of these trends.
For this use case, informative characteristics for
businesses to analyze may include a user’s age
range, gender, ethnicity, income range, location,
hobbies, political leanings, and brand affinities.
Additionally, both high precision and high recall
for all features is paramount to the success of these
systems. Low precision or low recall for user

attributes skew trends seen over aggregate data,
and defeat the purpose of using these solutions to
discover statistically founded business insights.

Social Media organizations, generally with
strong inherent privacy restrictions, like Facebook
have access to many user level characteristics that
have been directly inputted to the website. Howev-
er, there is great interest in analyzing these same
kinds of qualities on more public platforms like

Twitter and Blogs, where comments are more rea-

39

dily accessible to organizations interested in Social
Media analytics. In this situation, text analytics
techniques are commonly used to infer qualities
about these users that are not explicitly provided to
organizations analyzing this content.

The difficulty of extracting a characteristic
about a user based on tweets alone varies greatly
by the type of characteristic. NLP rule based ap-
proaches (Krishnamurthy et al., 2009) have been
commonly used as a means to perform micro-
segment analysis of Social Media users. These
techniques have been very effective at creating
extractors for user attributes like “fan of” relation-
ships, and gender determination with the presence

of very little training data. For example, by know-
ing the key characters, actors, and plot details of a
TV show, the logic is intuitive for making an indi-
vidual rule based extractor that monitors expressed
interest by a Social Media user in that show.
Moreover, a gender prediction system can be made
pretty reliable simply by extracting profile first
names, and matching to large lists of female and
male names. However, rule based techniques are
not good solutions for analyzing more subtle rela-

tionships in social posts like those needed for pre-
dicting a user’s age range, income range, or
political leanings. Additionally, as social trends
change and users age, it is very desirable for clas-
sifiers focused on these tasks to be adaptive and
have the ability to efficiently relearn from scratch.

As such, Machine Learning techniques make
sense as a means for creating classifiers of more
complex user characteristics. N-gram based tech-

niques have commonly been applied to social me-
dia analytics problems (Go et al., 2009), (Kökciyan
et al., 2013), and (Speriosu et al., 2011). However,
we have found that these techniques are not effec-
tive without a substantial amount of supervised
training data or an extremely reliable semi-
supervised method of creating a stand-in corpus.

In this paper, we propose an end-to-end archi-
tecture to address the key problems exhibited with

common NLP techniques in analyzing subtly ex-
pressed social media user characteristics. We will
demonstrate our architecture’s effectiveness at
predicting user age based on a modest 1266 user
training set compiled by a team of four researchers
in a few hours of work for each person manually
annotating data. Our end-to-end method improves
on N-gram machine learning techniques by:

1. Building unsupervised text representations
that naturally pick up semantic and syntactic
synonymy relationships.

2. Effectively utilizing knowledge acquired

from unlabelled data.
3. Taking advantage of powerful deep neural

networks to increase prediction accuracy.
4. Leveraging a practical framework for trans-

ferring knowledge between related user cha-
racteristic classifiers for increased
performance without increasing the number
of free parameters.

5. Establishing a methodology for efficient
knowledge transfer from structured metadata
related to a user.

Although our main intent is to show the effec-
tiveness of our architecture for Social Media ana-
lytics use cases, there is little about our system that
has virtues specific to the social media domain.
Considering the collection of a user’s historical

tweets as equivalent to a text document, our ap-
proach can serve as a general purpose text analyt-
ics architecture, especially for use cases with
limited training data. In fact, tweets are generally
regarded as more challenging to analyze than other
text because of the noisy language and ambiguous
content.

The rest of the paper is organized as follows:
In Section 2, we describe our data set and go over

our experimental methodology. Section 3 gives an
overview of the benefits we see by exploring unsu-
pervised text vector techniques. In Section 4 we
explain the benefit of building deep learning mod-
els on top of unsupervised features. We proceed to
explain popular multitask deep learning techniques
and their failures for our problem statement in Sec-
tion 5. Section 6 is an overview of our hidden layer
sharing approach, which we validate in Section 7.

Section 8 explains how our model is extensible for
the incorporation of structured metadata. Finally,
Section 9 concludes the paper.

2 Experimental Methodology

Without access to any reliable user provided age
information, we had to rely on human judgment to
create gold standard annotations for the ages of
users on Twitter. We randomly generated Twitter
usernames and had a team of four people manually
go to Twitter.com and look at their profile. The
instructions were to look at the user’s Twitter pro-

40

file including pictures and their tweets to judge
their age range and discard any users for whom the
age range was not clear. The annotators looked
through the user’s recent tweets to validate their
age and also annotated with gender and ethnicity

where possible. Each user in our dataset was ana-
lyzed by two different annotators, and only those
in which there was agreement for all characteristics
were kept. Ultimately, we compiled a dataset of
1808 annotated Twitter profiles, and retrieved his-
torical tweets from their accounts. Depending on
individual usage patterns, we retrieved a very vari-
able number of tweets. The minimum was 5, the
maximum was 7115, the average was 226.6, the

median was 96, and the standard deviation was
326.

Age Range Training Count Test Count

Generation Y 590 253

Generation X 352 152

Older 323 138

Table 1: Total counts of the annotated Twitter users in
our training set and test set by age range.

 For our first attempt to create an age prediction

system, we attempted to use rules. However, we
quickly found that even things like usage of cur-
rently trending slang were not reliable in predicting
age groups. Moreover, rule based systems did not
seem to have the potential to achieve even modest
recall. Clearly, age prediction could not be accu-
rately performed deterministically based on tweets,
and a technique that used a complex evidence

based model would be needed.
 Our second attempt at age prediction then was
to use popular machine learning text analytics
models based on N-grams. We deployed these
models using classifiers in the NLTK python pack-
age (Bird et al., 2009). We tried Naïve Bayes, and
Maximum Entropy models for unigrams, bigrams,

and trigrams. We found that it was optimal to re-
quire a minimum of 3 training corpus occurrences
for an N-gram to be included in our feature space.

Table 2: F1 scores by age range category for Naïve
Bayes and Maximum Entropy unigram, bigram, and

trigram models.

Table 2 depicts the test set results from our
Maximum Entropy and Naïve Bayes analysis. In-

creasing the our granularity to include bigrams and
trigrams resulted in an better training set perfor-
mance for Maximum Entropy and Naïve Bayes,
but those increases did not generalize to the test
set. Maximum Entropy models saw degradation in
accuracy with higher level N-grams. For Naïve
Bayes, there was a slight improvement based on an

increase in performance at predicting the oldest
age range. Regardless, these results would not be
suitable for a deployed system to make confident
judgments.

As we began exploring other techniques
which we will describe in more detail in subse-
quent sections, we use Paragraph Vector as pro-
vided by the original developers (Mesnil et al.,

2015). Additionally, we used the theano-hf python
package (Boulanger-Lewandowski et al., 2012) as
the beginning building block for our deep learning
based approaches.

3 Unsupervised Text Vectors

Neural Network Language Models (NNLMs) were
first proposed by (Bengio et al., 2001), and have
since become a major focus of research in building
feature representations for text. (Mikolov et al.,
2013), (Pennington et al., 2014), and (Levy and

Goldberg, 2014) demonstrate that high quality vec-
tors mapping N-gram phrases to latent vectors can
be learned over large amounts of unlabelled data.
These vectors have been shown to be able to natu-
rally express synonymy through vector similarity
and relationships through vector arithmetic. From a
practical perspective, this work can be very useful
to systems with limited training data as unlabelled
public data is readily available, while supervised

labeled training data often is not.

41

Table 3: Accuracies and F1 scores by age prediction category for Paragraph Vector (PV), Maximum Entropy (ME),

and Naïve Bayes (NB) models.

In this paper we use Paragraph Vector, pro-

posed by (Le & Mikolov, 2014), to build unsuper-
vised language models. The key idea of this model
is to predict nearby words with a fixed context
window of surrounding words. Paragraph Vector

extends to any segment of text with any length by
allowing each unit of text (i.e. units in our experi-
ments are a group of historical tweets for a particu-
lar user) to be represented by its own vector that is
learned by contributing to the prediction of nearby
words along with the words in the context window.
Paragraph Vector has been shown to be a state of
the art technique for analyzing supervised docu-
ment level sentiment. However, we envision our

end-to-end architecture as not being tied to a par-
ticular unsupervised feature learning technique. In
fact, the drawback of Paragraph Vector is that all
text units must be stored in memory, and an itera-
tive inference step is needed during runtime. Even-
tually it is not unlikely that advances and variation
in Recurrent Neural Network Language Models, as
discussed in (Mikolov et al., 2010) and (Sutskever
et al., 2011), or Recursive Neural Networks, as in

(Socher et al., 2013) and (Socher et al., 2011), will
provide a more scalable alternative for mapping
text segments of arbitrary length to vectors.

In this section we will explore the perfor-
mance of the unsupervised text vector component
of our end-to-end architecture. We will first dis-
cuss the comparison between the unmodified Para-
graph Vector method and popular N-gram machine
learning models. Then we will discuss the effect of

augmenting Paragraph Vector with unlabelled data.

3.1 Comparison with N-gram Models

In this experiment we implemented Naïve Bayes
and Maximum Entropy N-gram models to serve as

machine learning baselines over our age prediction
dataset. We trained Paragraph Vector with a word
context window of 8, 20 training epochs, and text
vectors of length 300. After establishing text vec-
tors for the training set of user tweet collections,
we trained a logistic regression classifier as (Le &

Mikolov, 2014) do in their original sentiment anal-
ysis paper.
 Table 3 displays the results of this analysis.
When it comes to testing accuracies and age range

specific F1 scores, Paragraph Vector seems to re-
sult in the most well rounded representation, but
the Naïve Bayes trigram model actually achieves a
slightly higher overall accuracy. However, one
clearly evident differentiator between the tech-
niques can be seen in the breakdown of the results
over the training set.

 The trigram Maximum Entropy model expe-
riences a 35.4% drop-off in accuracy from the
training set to the test set, Naïve Bayes experiences
a 28.1% drop-off in accuracy, and Paragraph Vec-
tor only falls 1%. It seems as though particularly
for the case of the tougher Generation X and Older
ranges, the N-gram models overfit on this small
training set in a way that does not generalize. The

Paragraph Vector model, however, has built a no-
tion of text synonym that constricts its learning to
knowledge that will generalize. Table 3 seems to
indicate that despite similar performance, the Para-
graph Vector model has a far better idea of its own
true accuracy than N-gram models and has the po-
tential at least to significantly improve whereas the

N-gram models are much closer to their accuracy
limitations given the small training dataset.

3.2 Knowledge Transfer From Unlabelled

Data

In order to extend the Paragraph Vector model, we
explored the possibility of expanding its know-
ledge coverage by incorporating unlabelled data.
As we were concerned about the effect on perfor-
mance of both storing and conducting inference
over text segment vectors at scale, we did not in-
clude any additional user profile vectors in our

model. Instead, additional unlabelled tweets were
added to the Paragraph Vector training and only
the words were considered.

42

Table 4: Logistic regression Paragraph Vector results

with the incorporation of additional text.

Table 4 shows that as more tweets are in-

cluded, the Paragraph Vector model becomes bet-
ter. In fact, the addition of 10 million unlabelled
tweets results in a 12.5% relative improvement in
the accuracy of the original Paragraph Vector

model. It should be noted that each of these cor-
puses was analyzed over 20 training epochs of Pa-
ragraph Vector. It is also important to note at this
stage that we have found that the number of train-
ing epochs has a big impact on the quality of the
text vectors produced by Paragraph Vector. The
implication being that training on massive corpuses

only makes sense if the time is allotted for a signif-
icant number of iterations.

4 Learning Deep Neural Networks from

Unsupervised Text Feature Vectors

A logical first step in building powerful repre-
sentations on top of unsupervised text vectors is to
analyze the performance differences between lo-
gistic regression and generic deep neural network
architectures. 3.03 million total free parameters is a
good number that we established as the desired

size for our neural network architecture. In these
experiments (and all that follow) we kept that size
constant across different numbers of hidden layers
and every hidden layer was set to be the same size
within an individual single task network.

We also restricted our analysis to Paragraph
Vector with 10 million unlabelled tweets because it
achieves the best performance with logistic regres-
sion. Our neural network leverages the Hessian

Free Optimizer (Martens, 2010) and (Martens and
Sutskever, 2011) in order to traverse pathological
curvatures in the error function. We found this me-
thod to be considerably better than straightforward
stochastic gradient descent in practice. Additional-
ly, our deep neural network was initialized with
greedy layer wise pretraining (Hinton et al., 2006).
We used sigmoid activation units, a preconditioner,
and a cross entropy loss function.

Our deep learning results are depicted in Table
5. Our network increase in performance as we in-
crease the number of hidden layers until hitting a
maximum total accuracy of 73.1% with three hid-

den layers. The three hidden layer network is the
most efficient in its use of free parameters, and
shines above the rest due to a considerable separa-
tion from the pack in predicting Generation X
Twitter users – the toughest age range to predict.

Table 5: Results for different numbers of equal sized

hidden layers with a fixed total parameter size.

5 Deep Multitask Learning Architectures

Multitask learning across deep neural network ar-
chitectures is far from a new idea. The architecture
portrayed in Figure 1, taken from (Socher and
Manning, 2013), is seemingly of general consensus
in the deep learning community (Bengio et al.,
2013). The main idea is that a shared input is sent
to an arbitrary amount of Neural Network hidden
layers that are shared between related tasks and
then classified by an arbitrary number of task spe-

cific Neural Network hidden layers and a task spe-
cific output layer.

Figure 1: Standard Deep Multitask Learning Architec-
ture Diagram

In (Collobert & Weston, 2008) this general
architecture is extended in an attempt to perform

Semantic Role Labeling and an unsupervised lan-
guage model is used to initialize word vectors.
However, it is important to note that they have

43

many more training examples in their experiments
than we do. In a situation where there is a relative-
ly small number of training examples, we believe it
makes more sense to treat unsupervised text map-
pings as an input feature space for training that is

shared across tasks (as opposed to just an initia-
lized layer). Although feature spaces created by
unsupervised learning could contain errors, with
limited training examples algorithms cannot afford
to perform sparse updates based on individual N-
grams. It is imperative in learning relationships
that generalize well and do not overfit to associate
discoveries about phrases with synonyms and
phrases of similar meaning. As we have already

shown, doing this with high quality unsupervised
feature vectors constrains the space of learning and
prevents supervised machine learning algorithms
from reading too much into misleading co-
occurances present in smaller datasets.

A very simple paradigm of multi-task learning
can be achieved by concatenating the output for
each task and learning a single neural network that
simultaneously classifies all tasks. Interestingly,
this paradigm resulted in a consistent slight per-

formance degradation in our experiments over sin-
gle tasks. It seems like adding the extra output
indicators must be complicating the process of mi-
nimizing error despite more information, even con-
sidering the small training corpus. Additionally,
this method is only possible for training data that is
jointly labeled, which significantly limits it appli-
cability as a technique and seems inconsistent with
the individual attention humans successfully exhi-

bit when learning new skills. This limitation moti-
vates the general architecture of Figure 1, which
has no requirement for jointly labelled training da-
ta.

However, in the general multi-task deep learn-
ing model depicted in Figure 1, it is not clear how
to approach the order of training tasks. In an ex-
treme example, if you imagine first training one

task for all epochs and then training another for all
epochs, the first task would essentially serve as an
initialization of the base network close to the input
that will eventually get very much customized for
the second task after enough iterations. We did not
find this technique useful in our experiments. In
fact, it seems like we may be relatively far from
realizing the totality of the apparent promise of

multi-task learning with an architecture in the form
of Figure 1. In our experiments, we found that
training a framework of that form by alternating
between tasks every epoch (and even in mini-

batches) actually resulted in a degradation of per-
formance over single task learning. In fact, in
(Collobert & Weston, 2008), where they loop
through tasks in alternating order and update one
random training example at a time, the authors find
that Semantic Role Labeling is performed better
over a large corpus just with Language Model in-
itialization than it is with the additional contribu-

tions of knowledge of Part of Speech Tagging,
Chunking, and Named Entity Recognition. This
result is quite unintuitive given how related these
tasks are, and points to a similar phenomenon to
what we saw in implementing this paradigm.

6 Hidden Layer Sharing

Our proposed approach to multitask learning is
performed with the following procedure:

1. Linguistic input is mapped to a shared unsu-
pervised layer that serves as the effective in-

put feature space for subsequent classifiers.
2. Each task is trained as its own deep neural

network – the size of which is specified as a
parameter of the model.

3. The output layer of each model is discarded
and the top hidden layers for each model are
concatenated.

4. The concatenated hidden layers are treated as
a new input feature space to subsequent deep

neural networks trained for each task. In our
experiments we found a one layer logistic
regression network with no additional hidden
layers to make optimal use of free parame-
ters, but this effect may change for different
domains.

Figure 2 depicts an example architecture for
hidden layer sharing between two tasks. In contrast
to Figure 1, Figure 2c only illustrates classification

of a single output at a time. This serves to unders-
core a critical practical point about prioritization.

In practice the number of free parameters is a
constrained value for a production NLP system.
We expect machine learning models to increase in
performance with an increase in free parameters.
On the other hand, there are practical limits

44

Figure 2: An example of the process and final deployment architecture for our hidden layer sharing approach. Task 1

is the main task to optimize. In this configuration, Task 1 is allotted three task specific hidden layers, Task 2 is allot-

ted one task specific hidden layer, and the network that processes the output from the combined hidden layers in A is

allotted one hidden layer on top of the combined input. The logical flow of steps goes from A to B for training and C

for deployment. Optionally, fine-tuning can be conducted with the architecture in C.

imposed by the direct relationship between increas-
ing the number of free parameters, increasing a
model’s memory footprint, and decreasing its run-
time throughput. That being said, given the modern
hardware these systems are deployed on today,
most models hit a point of diminishing returns
where increasing parameters has less and less im-

pact on the model’s accuracy. As such, the practic-
al promise of multitask learning and knowledge
transfer techniques today is to achieve a lift in pre-
dictive performance of models while staying con-
stant at the allowable limit for total free
parameters. When viewed in this way, it is clear
that when considered as the main task being opti-
mized, Task 1 would probably benefit from a dif-
ferent split of free parameters than Task 2 in
Figure 2. All else being equal, although Task 2 is

useful for improving Task 1, it is not as mission
critical as the main task, so Task 1 likely should
have more dedicated free parameters than Task 2 if
you are classifying Task 1. The reverse would be
true if you were classifying Task 2.

In our experiments we see two major positive
effects of the hidden layer sharing technique. First,
training the models separately seems to allow for a
more stable learning for each task that overcomes

early local minimums hit by other common archi-
tecture types. Second, the ability to directly specify
the number of free parameters allocated to each
model in early layers results in an ability to tune
models for optimal prioritization of related tasks.

7 Measuring The Effectiveness of Hidden

Layer Sharing

As discussed in Section 6, a key aspect of our hid-
den layer sharing approach is the ability to directly

adjust the prioritization of tasks. For the case of
training age prediction alongside the gender pre-

diction task, we saw significant gains by limiting
the amount of parameters in the model allocated to
gender prediction. Training the model with a 50-50
split in free parameters allocated between tasks
resulted in 68.9% total accuracy (a net decrease in
performance from single task results), however, a

70-30 split in favor of the age prediction task
brought total accuracy to 73.3%. A 90-10 split
achieved the best two task result with 75.0% total
accuracy. For the case of training age prediction
alongside the ethnicity prediction task, we saw the
opposite relationship. When the ethnicity learning
task wasn’t given enough stake in the shared hid-

den layer at a 90-10 free parameter split, it hurt our
predictive accuracy by bringing it down to 70.7%.
However, at an even 50-50 split the ethnicity task
free parameters helped age prediction learning
enough to overcome our 3 hidden layer single task
result by achieving 73.9% total accuracy.

Table 6: Top results with a constrained free parameter

size at different architecture points.

Table 6 highlights our best result, which came

from integrating a scaled down version of the three

hidden layer model with enough free parameters
left over to give ethnicity and gender each an equal
10% of the total free parameter stake in the model.
A logistic regression layer was built on top of the
concatenated shared hidden layers to create a final
output. 75.9% total accuracy constitutes a 3.8%
relative improvement over deep learning models

45

due to knowledge transfer from two related tasks
and a 34.6% relative accuracy improvement over
the best performing baseline N-gram model. The
hidden layer sharing approach was capable of inte-

grating both gender and ethnicity detection as re-
lated tasks to age detection for significant
additional gains on top of the large gains resulting
from building deep learning on top of unsupervised
language model feature vectors. This is a pheno-
menon that was expected, but not achieved with
concatenated output and joint learning driven
shared hidden layer architectures.

8 Extensibility of Architecture to Incorpo-

rate Available Metadata

Table 7: Comparison of results in age range prediction

between neural network architectures with a fixed pa-

rameter size that are given gender and ethnicity infor-

mation as structured metadata.

Beyond being able to leverage knowledge from
multiple related learned tasks, it is important for a

social media analytics solution to be able to prop-
erly leverage structured metadata when available.
To showcase the ease in which a model in our ar-
chitecture could do this, we ran an experiment as-
suming that gender and ethnicity are always given
as metadata to our system. In this case we can see
in Table 7 that both a single hidden layer model
and multiple hidden layer models can benefit sig-

nificantly from additional structured input that is
concatenated with the input unsupervised language
model feature vectors. Our 3 hidden layer model
from before is able to efficiently incorporate in this
structured data for 23.2% relative improvement
over the same single task model. This is a very en-
couraging result to achieve 90.1% total accuracy

with such a small age related training set.
The 14.2% gap between our hidden layer

sharing result and what is possible with direct
knowledge of the same tasks as metadata points

out that if we had more training data on related
tasks such as gender and ethnicity, it should be
possible to achieve high accuracy results without
the need for the metadata being directly given. Li-

mitations in accuracy increases resulting from
knowledge transfer are at least in part due to the
limited accuracy for the individual gender and eth-
nicity tasks in our current experiments, which are
learned over the same small dataset used for age
prediction.

9 Conclusion and Future Work

Prediction tasks like age prediction based solely on
historical tweets from a user are not possible using
rule based techniques and are not possible with

limited training data for N-gram machine learning
techniques. In this paper, we have shown that using
modern machine learning techniques such as the
addition of unlabelled training data, deep learning,
and knowledge transfer between related tasks, it is
possible to achieve 75.9% predictive accuracy with
limited training data. In fact, we have shown that

these models are very extensible and achieve
86.6% accuracy for the common case where gend-
er is known. Moreover, we can achieve 90.1% pre-
dictive accuracy when other useful metadata like
ethnicity is present.

In this paper we have proposed a text analyt-
ics process flow and hidden layer sharing architec-

ture suitable for solving tough prediction problems
on noisy social media text. However, our approach
in this paper can be translated to other even see-
mingly unrelated domains as well, such as business
to business lead prediction, which will be the focus
of future publications. Our hidden layer sharing
approach gives developers the power to specify
how a deep neural network stores and prioritizes

knowledge between related tasks, where popular
techniques generally allow the neural network to
figure this out.

The success of this approach points out the
need for improvement of shared hidden layer deep
neural network approaches which in some cases
have a difficult time prioritizing effectively and

balancing learning across multiple complex error
functions. Additionally, the huge improvements we
see with direct knowledge of structured metadata
are indicative of the potential that multitask archi-
tectures have for classification problems in the so-
cial media domain with limited training data.

46

References

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.

2001. A Neural Probabilistic Language Model. Ad-

vances in Neural Information Processing Systems

‘2000, pages 932-938.

Yoshua Bengio, Aaron Courville, and Pascal Vincent.

2013. Representation learning: A review and new
perspectives. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on 35, no. 8, pages 1798-

1828.

Steven Bird, Edward Loper, and Ewan Klein. 2009.

Natural Language Processing with Python. O’Reilly

Media Inc.

N. Boulanger-Lewandowski, Y. Bengio and P. Vincent.

2012. Modeling Temporal Dependencies in High-

Dimensional Sequences: Application to Polyphonic

Music Generation and Transcription. In Proceedings

of ICML, page 29.

Ronan Collobert, and Jason Weston. 2008. A unified

architecture for natural language processing: Deep

neural networks with multitask learning. In Proceed-
ings of the 25th international conference on Machine

learning, pages 160-167.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter

sentiment classification using distant supervision.

CS224N Project Report, Stanford, pages 1-12.

Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh.

2006. A fast learning algorithm for deep belief nets.

Neural computation 18, no. 7, pages 1527-1554.

Nadin Kökciyan, Arda Celebi, Arzucan Ozgür, and Su-

zan Usküdarlı. 2013. Bounce: Sentiment classifica-

tion in Twitter using rich feature sets. In Second Joint

Conference on Lexical and Computational Semantics

(* SEM), vol. 2, pages 554-561.
Rajasekar Krishnamurthy, Yunyao Li, Sriram Ragha-

van, Frederick Reiss, Shivakumar Vaithyanathan,

and Huaiyu Zhu. 2009. SystemT: a system for dec-

larative information extraction. ACM SIGMOD

Record 37, no. 4, pages 7-13.

 Quoc Le, and Tomas Mikolov. Distributed Representa-

tions of Sentences and Documents. 2014. In Proceed-

ings of the 31st International Conference on Machine

Learning (ICML-14), pages 1188-1196.

Omer Levy, and Yoav Goldberg. Neural word embed-

ding as implicit matrix factorization. 2014. In Ad-

vances in Neural Information Processing Systems,
pages 2177-2185.

James Martens. Deep learning via Hessian-free optimi-

zation. 2010. In Proceedings of the 27th Internation-

al Conference on Machine Learning (ICML-10),

pages 735-742.

James Martens, and Ilya Sutskever. 2011. Learning re-

current neural networks with hessian-free optimiza-

tion. In Proceedings of the 28th International

Conference on Machine Learning (ICML-11), pages

1033-1040.

Grégoire Mesnil, Tomas Mikolov, Marc'Aurelio and

Yoshua Bengio. 2015. Ensemble of Generative and

Discriminative Techniques for Sentiment Analysis of

Movie Reviews. Submitted to the workshop track of
ICLR 2015.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan

Cernocký, and Sanjeev Khudanpur. Recurrent neural

network based language model. 2010. In

INTERSPEECH 2010, 11th Annual Conference of the

International Speech Communication Association,

Makuhari, Chiba, Japan, September 26-30, 2010,

pages 1045-1048.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-

rado, and Jeff Dean. Distributed representations of

words and phrases and their compositionality. 2013.

In Advances in Neural Information Processing Sys-
tems, pages 3111-3119.

Jeffrey Pennington, Richard Socher, and Christopher D.

Manning. 2014. Glove: Global vectors for word re-

presentation. In Proceedings of the Empiricial Me-

thods in Natural Language Processing (EMNLP

2014) page 12.

Michael Speriosu, Nikita Sudan, Sid Upadhyay, and

Jason Baldridge. 2011. Twitter polarity classification

with label propagation over lexical links and the fol-

lower graph. In Proceedings of the First workshop on

Unsupervised Learning in NLP, pages 53-63. Asso-

ciation for Computational Linguistics.
Richard Socher, Christopher D. Manning, and Andrew

Y. Ng. Learning continuous phrase representations

and syntactic parsing with recursive neural networks.

2010. In Proceedings of the NIPS-2010 Deep Learn-

ing and Unsupervised Feature Learning Workshop,

pages 1-9.

Richard Socher, and Chrisopher Manning. 2013. Deep

Learning for Natural Language Processing (without

Magic). 2013. Tutorial at NAACL HLT 2013.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason

Chuang, Christopher D. Manning, Andrew Y. Ng,

and Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-

bank. In Proceedings of the conference on empirical

methods in natural language processing (EMNLP),

vol. 1631, pages 1642.

Ilya Sutskever, James Martens, and Geoffrey E. Hinton.

2011. Generating text with recurrent neural networks.

In Proceedings of the 28th International Conference

on Machine Learning (ICML-11), pages 1017-1024.

47

