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Introduction

The 11th Workshop on Multiword Expressions (MWE 2015) took place on June 4, 2015 in Denver,
Colorado, USA, in conjunction with the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics – Human Language Technologies (NAACL HLT 2015)
and was endorsed by the Special Interest Group on the Lexicon of the Association for Computational
Linguistics (SIGLEX), as well as SIGLEX’s Section dedicated to the study and research of Multiword
Expressions (SIGLEX-MWE).

The workshop has been held almost every year since 2003 in conjunction with ACL, EACL, NAACL,
COLING and LREC. By now, it provides the main venue of the field for interaction, sharing of resources
and tools and collaboration efforts for advancing the computational treatment of Multiword Expressions
(MWEs), attracting the attention of an ever-growing community from all around the world working on
a variety of languages and MWE types.

MWEs include idioms (storm in a teacup, sweep under the rug), fixed phrases (in vitro, by and large),
noun compounds (olive oil, laser printer), compound verbs (take a nap, bring about), among others.
These, while easily mastered by native speakers, are a key issue and a current weakness for natural
language parsing and generation, as well as real-life applications depending on some degree of semantic
interpretation, such as machine translation, just to name a prominent one among many. However, thanks
to the joint efforts of researchers from several fields working on MWEs, significant progress has been
made in recent years, especially concerning the construction of large-scale language resources. For
instance, there is a large number of recent papers that focus on acquisition of MWEs from corpora,
and others that describe a variety of techniques to find paraphrases for MWEs. Current methods use a
plethora of tools such as association measures, machine learning, syntactic patterns, web queries, etc.

In the call for papers we solicited submissions about major challenges in the overall process of MWE
treatment, both from the theoretical and the computational viewpoint, focusing on original research
related (but not limited) to the following topics:

• Lexicon-grammar interface for MWEs

• Parsing techniques for MWEs

• Hybrid parsing of MWEs

• Annotating MWEs in treebanks

• MWEs in Machine Translation and Translation Technology

• Manually and automatically constructed resources

• Representation of MWEs in dictionaries and ontologies

• MWEs and user interaction

• Multilingual acquisition
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• Multilingualism and MWE processing

• Models of first and second language acquisition of MWEs

• Crosslinguistic studies on MWEs

• The role of MWEs in the domain adaptation of parsers

• Integration of MWEs into NLP applications

• Evaluation of MWE treatment techniques

• Lexical, syntactic or semantic aspects of MWEs

Submission modalities included long papers and short papers. From a total of 27 submissions, of which
14 were long papers and 13 were short papers, we accepted 5 long papers for oral presentation and
3 as posters. We further accepted 3 short papers for oral presentation and 3 as posters. The overall
acceptance rate is 52%.

The workshop also featured an invited talk by Paul Kay (International Computer Science Institute,
UC Berkeley) and Laura A. Michaelis (Department of Linguistics and Institute of Cognitive Science,
University of Colorado Boulder) on "How Constructions Mean".
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Abstract

The paper describes the results of an empir-
ical study of integrating bigram collocations
and similarities between them and unigrams
into topic models. First of all, we propose
a novel algorithm PLSA-SIM that is a mod-
ification of the original algorithm PLSA. It
incorporates bigrams and maintains relation-
ships between unigrams and bigrams based on
their component structure. Then we analyze
a variety of word association measures in or-
der to integrate top-ranked bigrams into topic
models. All experiments were conducted on
four text collections of different domains and
languages. The experiments distinguish a sub-
group of tested measures that produce top-
ranked bigrams, which demonstrate signifi-
cant improvement of topic models quality for
all collections, when integrated into PLSA-
SIM algorithm.

1 Introduction

Topic modeling is one of the latest applications
of machine learning techniques to natural language
processing. Topic models identify which topics
relate to each document and which words form
each topic. Each topic is defined as a multinomial
distribution over terms and each document is de-
fined as multinomial distribution over topics (Blei
et al., 2003). Topic models have achieved notice-
able success in various areas such as information re-
trieval (Wei and Croft, 2006), including such appli-
cations as multi-document summarization (Wang et
al., 2009), text clustering and categorization (Zhou

et al., 2009), and other natural language process-
ing tasks such as word sense disambiguation (Boyd-
Graber et al., 2007), machine translation (Eidel-
man et al., 2012). Among most well-known mod-
els are Latent Dirichlet Allocation (LDA) (Blei et
al., 2003), which is based on Dirichlet prior distri-
bution, and Probabilistic Latent Semantic Analysis
(PLSA) (Hofmann, 1999), which is not connected
with any parametric prior distribution.

One of the main drawbacks of the topic models
is that they utilize “bag-of-words” model that dis-
cards word order and is based on the word inde-
pendence assumption. There are numerous studies,
where the integration of collocations, n-grams, id-
ioms and multi-word terms into topic models is in-
vestigated. However, it often leads to a decrease in
the model quality due to increasing size of a vo-
cabulary or to a complication of the model, which
require time-intensive computation (Wallach, 2006;
Griffiths et al., 2007; Wang et al., 2007).

The paper proposes a novel approach taking into
account bigram collocations and relationship be-
tween them and unigrams in topic models (such as
citizen – citizen of country – citizen of union – Eu-
ropean citizen – state citizen; categorization – docu-
ment categorization – term categorization – text cat-
egorization). This allows us to create a novel method
of integrating bigram collocations into topic mod-
els that does not consider bigrams being as “black
boxes”, but maintains the relationship between uni-
grams and bigrams based on their component struc-
ture. The proposed algorithm leads to significant im-
provement of topic models quality measured in per-
plexity and topic coherence (Newman et al., 2010)
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without complications of the model.
All experiments were carried out using PLSA al-

gorithm and its modifications on four corpora of dif-
ferent domains and languages: the English part of
Europarl parallel corpus, the English part of JRC-
Acquis parallel corpus, ACL Anthology Reference
corpus, and Russian banking magazines.

The rest of the paper is organized as follows. In
the section 2 we focus on related work. Section 4
describes the datasets used in experiments, all pre-
processing steps and metrics used to evaluate the
quality. Section 3 proposes a novel algorithm PLSA-
SIM that incorporates bigrams and similarities be-
tween them and unigrams into topic models. In the
section 5 we perform an extensive analysis of a va-
riety of measures for integrating top-ranked bigrams
into topic models. And in the last section we draw
conclusions.

2 Related Work

The idea of using collocations in topic models is
not a novel one. Nowadays there are two kinds of
methods proposed to deal with this problem: cre-
ation of a unified probabilistic model and prelimi-
nary extraction of collocations and n-grams with fur-
ther integration into topic models.

Most studies belong to the first kind of methods.
So, the first movement beyond “bag-of-words” as-
sumption has been made by Wallach (2006), where
the Bigram Topic Model was presented. In this
model word probabilities are conditioned on the im-
mediately preceding word. The LDA Collocation
Model (Griffiths et al., 2007) extends the Bigram
Topic Model by introducing a new set of variables
and thereby giving a flexibility to generate both uni-
grams and bigrams. Wang et al. (2007) proposed the
Topical N-Gram Model that adds a layer of com-
plexity to allow the formation of bigrams to be deter-
mined by the context. Hu et al. (2008) proposed the
Topical Word-Character Model challenging the as-
sumption that the topic of an n-gram is determined
by the topics of composite words within the colloca-
tion. This model is mainly suitable for Chinese lan-
guage. Johnson (2010) established connection be-
tween LDA and Probabilistic Context-Free Gram-
mars and proposed two probabilistic models com-
bining insights from LDA and Adaptor Grammars

to integrate collocations and proper names into the
topic model.

While all these models have a theoretically ele-
gant background, they are very complex and hard
to compute on real datasets. For example, Bigram
Topic Model has W 2T parameters, compared to
WT for LDA and WT + DT for PLSA, where W
is the size of vocabulary, D is the number of doc-
uments, and T is the number of topics. Therefore
such models are mostly of theoretical interest.

The algorithm proposed in (Lau et al., 2013) be-
longs to the second type of methods that use collo-
cations in topic models. The authors extract bigram
collocations via t-test and replace separate units by
top-ranked bigrams at the preprocessing step. They
use two metrics of topic quality: perplexity and topic
coherence (Newman et al., 2010) and conclude that
incorporating bigram collocations into topics results
in worsening perplexity and improving topic coher-
ence.

Our current work also belongs to the second type
of methods and distinguishes from previous papers
such as (Lau et al., 2013) in that our approach does
not consider bigrams as “black boxes”, but main-
tains information about the inner structure of bi-
grams and relationships between bigrams and com-
ponent unigrams, which leads to improvement in
both metrics: perplexity and topic coherence.

The idea to utilize prior natural language knowl-
edge in topic models is not a novel one. So, Andrze-
jewski et al. (2009) incorporated domain-specific
knowledge by Must-Link and Cannot-Link primi-
tives represented by a novel Dirichlet Forest prior.
These primitives control that two words tend to be
generated by the same or separate topics. How-
ever, this method can result in an exponential growth
in the encoding of Cannot-Link primitives and thus
has difficulty in processing a large number of con-
straints (Liu, 2012). Another method of incorpo-
rating such knowledge is presented in (Zhai, 2010)
where a semi-supervised EM-algorithm was pro-
posed to group expressions into some user-specified
categories. To provide a better initialization for EM-
algorithm the method employs prior knowledge that
expressions sharing words and synonyms are likely
to belong to the same group. Our current work
distinguishes from these ones in that we incorpo-
rate similarity links between unigrams and bigrams
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into the topic model in a very natural way counting
their co-occurrences in documents. The proposed
approach does not increase the complexity of the
original PLSA algorithm.

3 PLSA-SIM algorithm

As mentioned above, original topic models utilize
the “bag-of-words” assumption that assumes word
independence. And bigrams are usually added to
topic models as “black boxes” without any ties with
other words. So, bigrams are added to the vocabu-
lary as single tokens and in each document contain-
ing any of added bigrams the frequencies of unigram
components are decreased by the frequencies of bi-
grams (Lau et al., 2013). Thus “bag-of-words” as-
sumption holds.

However, there are many similar unigrams and bi-
grams that share the same lemmas (i.e, correction –
correction of word – error correction – spelling cor-
rection; rail – rail infrastructure – rail transport –
use of rail) and others in documents. We should note
such bigrams do not only have identical words, but
many of them maintain semantic and thematic simi-
larity. At the same time other bigrams with the same
words (i.e., idioms) can have significant semantic
differences. To take into account these different situ-
ations, we hypothesized that similar bigrams sharing
the same unigram components should often belong
to the same topics, if they often co-occur within the
same texts.

To verify this hypothesis we precompute sets of
similar unigrams and bigrams sharing the same lem-
mas and propose novel PLSA-SIM algorithm that is
the modification of the original PLSA algorithm. We
will rely on the description found in (Vorontsov and
Potapenko, 2014) and use the following notations
(further in the paper we will use notation “term”
when speaking about both unigrams and bigrams):

• D – the collection of documents;
• T – the set of inferred topics;
• W – the vocabulary (the set of unique terms

found in the collection D);
• Φ = {φwt = p(w|t)} – the distribution of

terms w over topics t;
• Θ = {θtd = p(t|d)} – the distribution of topics
t over documents d;

• S = {Sw} – the sets of similar terms (Sw is
the set of terms similar to w, that is Sw =
{w⋃

v
wv

⋃
v
vw}, where w is the lemmatized

unigram, while wv and vw are lemmatized bi-
grams);
• ndw, nds – the number of occurrences of the

terms w, s in the document d;
• n̂wt – the estimate of frequency of the term w

in the topic t;
• n̂td – the estimate of frequency of the topic t in

the document d;
• n̂t – the estimate of frequency of the topic t in

the text collection D;
• nd – the number of words in the document d.

The pseudocode of PLSA-SIM algorithm is pre-
sented in the Algorithm 1. The only modifications
of the original algorithm concern line 7, where we
take into account pre-computed sets of similar terms.
Thus, the weight of such terms is increased within
each document.

Algorithm 1: PLSA-SIM algorithm: PLSA with
similar terms

Input: collection of documents D, number of
topics |T |, initial distributions Θ and Φ,
sets of similar terms S

Output: distributions Θ and Φ
1 while not meet the stop criterion do
2 for d ∈ D, w ∈W , t ∈ T do
3 n̂wt = 0, n̂td = 0, n̂t = 0

4 for d ∈ D, w ∈W do
5 for t ∈ T do
6 P (t|d,w) = φwtθtd∑

s∈T

φwsθsd

7 n̂wt, n̂td, n̂t+ =
(ndw +

∑
s∈Sw

nds)P (t|d,w)

8 for d ∈ D, w ∈W do
9 φwt = n̂wt

n̂t

10 for d ∈ D, t ∈ T do
11 θtd = n̂td

nd

So, if similar unigrams and bigrams co-occur
within the same document, we try to carry them to
the same topics. We consider such terms having se-
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mantic and thematic similarities. However, if uni-
grams and bigrams from the same set Sw do not co-
occur within the same document, we do no modifi-
cations to the original algorithm PLSA. We consider
such terms having semantic differences.

4 Datasets and Evaluation

4.1 Datasets and Preprocessing
In our experiments we used English and Russian

text collections obtained from different sources:

• For the English part of our study we took three
different collections:

– Europarl multilingual parallel corpus.
It was extracted from the proceedings
of the European Parliament (http://
www.statmt.org/europarl). The
English part includes almost 54 million
words and 9672 documents.

– JRC-Acquis multilingual parallel corpus.
It represents selected texts of the EU
legislation written between the 1950s
and 2005 (http://ipsc.jrc.ec.
europa.eu/index.php?id=198).
The English part contains almost 45
million words and 23545 documents.

– ACL Anthology Reference Corpus. It
contains scholarly publications about
Computational Linguistics (http:
//acl-arc.comp.nus.edu.sg/).
The corpus includes almost 42 million
words and 10921 documents.

• For the Russian part of our study we
took 10422 Russian articles from several
economics-oriented magazines such as Audi-
tor, RBC, Banking Magazine, etc. These docu-
ments contain almost 18.5 million words.

At the preprocessing step documents were
processed by morphological analyzers. For the
English corpus we used Stanford CoreNLP tools
(http://nlp.stanford.edu/software/
corenlp.shtml), while for the Russian corpus
we used our own morphological analyzer. All words
were lemmatized. We consider only Adjectives,
Nouns, Verbs and Adverbs since function words do
not play significant role in forming topics. Besides,

we excluded words occurring less than five times
per the whole text collection.

In addition, we extracted all bigrams in forms of
Noun + Noun, Adjective + Noun and Noun + of +
Noun for all English collections, and Noun + Noun
in Genitive and Adjective + Noun for the Russian
collection. We should note that we consider trigrams
in forms Noun + of + Noun as bigrams since they
consist of two content words. We take into account
only such bigrams since topics are mainly identified
by nouns and noun groups.

4.2 Evaluation Framework

As for the inferred topics quality, we consider four
different intrinsic measures. The first measure is
Perplexity since it is the standard criterion of topic
models quality (Daud et al., 2010):

Perplexity(D) = exp (− 1
n

∑
d∈D

∑
w∈d

ndw ln p(w|d)),

(1)
where n is the number of all considered words in the
collection, D is the set of documents in the collec-
tion, ndw is the number of occurrences of the word
w in the document d, p(w|d) is the probability of
appearing the word w in the document d.

The less the value of perplexity is the better the
model predicts words w in documents D. Although
there were numerous studies arguing that perplex-
ity is not suited to topic model evaluation (Chang
et al., 2009; Newman et al., 2010), it is still com-
monly used for comparing different topic models.
Since it is well-known that perplexity computed on
the same training collection is susceptible to over-
fitting and can give optimistically low values (Blei
et al., 2003) we use the standard method of comput-
ing hold-out perplexity described in (Asuncion et al.,
2009). In our experiments we split the collections
randomly into the training sets D, on which mod-
els are trained, and the validation sets D′, on which
hold-out perplexity is computed (in the proportion
|D| : |D′| = 9 : 1).

Another method of evaluating topic model qual-
ity is using expert opinions. We provided anno-
tators with inferred topics from the same text col-
lections and instructed them to decide whether the
topic was to some extent coherent, meaningful and
interpretable. The indicator of topic usefulness is the
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ease by which one could think of a short label to de-
scribe a topic (Newman et al., 2010). In the Table 1
we present incoherent topic that cannot be given any
label and coherent one with label given by experts.

Top words from topic Label
have, also, commission, state, more, however –

vessel, fishing, fishery, community, catch, board fishing

Table 1: Examples of incoherent and coherent topics

Since involving experts is time-consuming and
expensive, there were several attempts to propose
a method for automatic evaluation of topic models
quality that would go beyond perplexity and would
be correlated with expert opinions. The formulation
of such a problem is very complicated since experts
can quite strongly disagree with each other. How-
ever, it was recently shown that it is possible to eval-
uate topic coherence automatically using word se-
mantics with precision, almost coinciding with ex-
perts (Newman et al., 2010; Mimno et al., 2011).
The proposed metric measures interpretability of
topics based on human judgement (Newman et al.,
2010). As topics are usually presented to users via
their top-N topic terms, the topic coherence evalu-
ates whether these top terms correspond to the topic
or not. Newman et al. (2010) proposed an automated
variation of the coherence score based on pointwise
mutual information (TC-PMI):

TC-PMI(t) =
10∑
j=2

j−1∑
i=1

log
P (wj , wi)
P (wj)P (wi)

, (2)

where (w1, w2, . . . , w10) are the top-10 terms in a
topic, P (wi) and P (wj) are probabilities of uni-
grams wi and wj respectively, while P (wj , wi) is
the probability of bigram (wj , wi). The final mea-
sure of topic coherence is calculated by averaging
TC-PMI(t) measure by all topics t.

This score is proven to demonstrate high correla-
tion with human judgement (Newman et al., 2010).
The proposed metric considers only top-10 words in
each topic since they usually provide enough infor-
mation to form the subject of the topic and distin-
guishing features from other topics. Topic coher-
ence is becoming more widely used to evaluate topic
model quality along with perplexity. For exam-
ple, Stevens et al. (2012) showed that this metric is

strongly correlated with expert estimates. Also An-
drzejewski et al. (2011) simply used it for evaluating
topic model quality.

Following the approach proposed by (Mimno et
al., 2011) we compute probabilities by dividing the
number of documents where the unigram or bigram
occurred by the number of documents in the collec-
tion. To avoid optimistically high values we use ex-
ternal corpus for this purpose – namely, Russian and
English Wikipedia. We should note that we do not
consider another variation of topic coherence based
on log conditional probability (TC-LCP) proposed
by (Mimno et al., 2011) since it was shown in (Lau
et al., 2013) that it works significantly worse than
TC-PMI.

We should note that while incorporating the
knowledge of similar unigrams and bigrams into
topic models in the proposed algorithm, we encour-
age such terms to be in the top-10 terms in inferred
topics. Therefore, we increase TC-PMI metric un-
intentionally since such terms are likely to co-occur
within the same documents. So we decided to use
also modification of this metric to consider the first
10 terms, no two of which are from the same set
of similar unigrams and bigrams (this metric will be
further called as TC-PMI-nSIM).

5 Integrating bigrams into topic models

To compare proposed algorithm with the original
one we extracted all bigrams found in each docu-
ment of collections. For ranking bigrams we uti-
lized Term Frequency (TF) or one of the following
16 word association measures:

1. Mutual Information (MI) (Church and Hanks,
1990);

2. Augmented MI (Zhang, 2008);
3. Normalized MI (Bouma, 2009);
4. True MI (Deane, 2005);
5. Cubic MI (Daille, 1995);
6. Symmetric Conditional Probability (Lopes and

Silva, 1999);
7. Dice Coefficient (DC) (Smadja et al., 1996);
8. Modified DC (Kitamura and Matsumoto,

1996);
9. Gravity Count (Daudarvičius and

Marcinkevičiené, 2003);
10. Simple Matching Coefficient (Daille, 1995);
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11. Kulczinsky Coefficient (Daille, 1995);
12. Yule Coefficient (Daille, 1995);
13. Jaccard Coefficient (Jaccard, 1901);
14. T-Score;
15. Chi Square;
16. Loglikelihood Ratio (Dunning, 1993).

According to the results of (Lau et al., 2013) we
decided to integrate top-1000 bigrams into all topic
models under consideration. We should note that in
all experiments described in the paper we fixed the
number of topics and the number of iterations of al-
gorithms to 100.

We conducted experiments with all 17 aforemen-
tioned measures on all four text collections in or-
der to compare the quality of the original algo-
rithm PLSA, PLSA with top-1000 bigrams added as
“black boxes”, and PLSA-SIM algorithm with the
same top-1000 bigrams.

According to the results of experiments we have
revealed two groups of measures.

The first group contains 11 measures: MI, Aug-
mented MI, Normalized MI, DC, Symmetrical Con-
ditional Probability, Simple Matching Coefficient,
Kulczinsky Coefficient, Yule Coefficient, Jaccard Co-
efficient, Chi-Square, and Loglikelihood Ratio. We
got nearly the same levels of perplexity and topic
coherence when top bigrams ranked by these mea-
sures were integrated into all tested topic models.
This is explained by the fact that these measures
rank up very special, non-typical and low frequency
bigrams. In the Table 2 we present results of inte-
grating top-1000 bigrams ranked by MI for all four
text collections.

The second group includes 6 measures: TF, Cu-
bic MI, True MI, Modified DC, T-Score, and Gravity
Count. We got worsened perplexity and improved
topic coherence, when top bigrams ranked by these
measures were integrated into PLSA algorithm as
“black boxes”. But when they were used in PLSA-
SIM topic models, it led to significant improvement
of all metrics under consideration. This is explained
by the fact that these measures rank up high fre-
quent, typical bigrams. In the Table 3 we present re-
sults of integrating top-1000 bigrams ranked by TF
for all four text collections.

So, we succeed to achieve better quality for both
languages using the proposed modification of the

Corpus Model Perplexity TC- TC-
PMI-

PMI nSIM

Banking

PLSA 1724.2 86.1 86.1
PLSA

1714.1 84.2 84.2
+ bigrams
PLSA-SIM

1715.4 84.1 84.1
+ bigrams

Europarl

PLSA 1594.3 53.2 53.2
PLSA

1584.6 55 55
+ bigrams
PLSA-SIM

1591.3 55.2 55.2
+ bigrams

JRC

PLSA 812.1 67 67
PLSA

815.4 66.3 66.3
+ bigrams
PLSA-SIM

815.6 66.4 66.4
+ bigrams

ACL

PLSA 2134.7 74.8 74.8
PLSA

2138.1 75.5 75.5
+ bigrams
PLSA-SIM

2144.8 75.8 75.8
+ bigrams

Table 2: Results of integrating top-1000 bigrams ranked
by MI into topic models

Corpus Model Perplexity TC- TC-
PMI-

PMI nSIM

Banking

PLSA 1724.2 86.1 86.1
PLSA

2251.8 98.8 98.8
+ bigrams

PLSA-SIM 1450.6 156.5 102.6+ bigrams

Europarl

PLSA 1594.3 53.2 53.2
PLSA

1993.5 57.3 57.3
+ bigrams

PLSA-SIM 1431.6 127.7 84.7+ bigrams

JRC

PLSA 812.1 67 67
PLSA

1038.9 72 72
+ bigrams

PLSA-SIM 743.7 108.4 76.9+ bigrams

ACL

PLSA 2134.7 74.8 74.8
PLSA

2619.3 73.7 73.7
+ bigrams

PLSA-SIM 1806.4 152.7 87.8+ bigrams

Table 3: Results of integrating top-1000 bigrams ranked
by TF into topic models

original PLSA algorithm and the second group of
measures.
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For the expert evaluation of topic model quality
we invited two linguistic experts and gave them top-
ics inferred by the original PLSA algorithm and by
the proposed PLSA-SIM algorithm with top-1000
bigrams ranked by TF (term frequency). The task
was to classify given topics into 2 classes: whether
they can be given a subject name (we will further
mark such topics as ’+’) or not (we will further mark
such topics as ’–’). In the Table 4 we present results
for all text collections except ACL Anthology Refer-
ence Corpus because for the correct markup advance
knowledge in computational linguistics is required.

Corpus Model Expert 1 Expert 2
+ – + –

Banking

PLSA 93 7 92 8
PLSA

92 8 95 5
+ bigrams

PLSA-SIM 95 5 97 3+ bigrams

JRC

PLSA 98 2 90 10
PLSA

96 4 97 3
+ bigrams

PLSA-SIM 100 0 100 0+ bigrams

Europarl

PLSA 91 9 99 1
PLSA

94 6 99 1
+ bigrams

PLSA-SIM 99 1 100 0+ bigrams

Table 4: Results of expert markup of topics

As we can see, in the case of PLSA-SIM al-
gorithm with top-1000 bigrams ranked by TF the
amount of inferred topics, for which labels can be
given, is increased for all text collections. It is also
worth noting that adding bigrams as “black boxes”
does not increase the amount of such inferred topics.
This result also confirms that the proposed algorithm
improves the quality of topic models.

In the Table 5 we present top-5 words from one
random topic for each corpus for original PLSA
and PLSA-SIM algorithms with top-1000 bigrams
ranked by TF. Within each text collection we present
topics discussing the same subject.

We should note that we used only intrinsic mea-
sures of topic model quality in the paper. In the
future we would like to test improved topic models
in such applications of information retrieval as text
clustering and categorization.

Banking Europarl
PLSA PLSA-SIM PLSA PLSA-SIM

Banking
Financial

Financial
Economic

system crisis

Bank
Financial

Crisis
Financial

market crisis

Sector
Financial

Have
European

sector economy

Financial
Financial

European
Time of
crisis

System
Financial

Market Crisis
institute

JRC-Acquis ACL
PLSA PLSA-SIM PLSA PLSA-SIM

Transport Transport Tag Tag

Road
Transport

Word
Tag

service set

Nuclear
Road

Corpus
Tag

transport sequence

Vehicle
Transport

Tagger
Unknown

sector word

Material
Air

Tagging
Speech

transport tag

Table 5: Top-5 words from topics inferred by PLSA and
PLSA-SIM algorithms

6 Conclusion

The paper presents experiments on integrating bi-
grams and similarities between them and unigrams
into topic models. At first, we propose the novel
algorithm PLSA-SIM that incorporates similar uni-
grams and bigrams into topic models and maintains
relationships between bigrams and unigram compo-
nents. The experiments were conducted on the En-
glish parts of Europarl and JRC-Acquis parallel cor-
pora, ACL Anthology Reference corpus and Russian
banking articles distinguished two groups of mea-
sures ranking bigrams. The first group produces top
bigrams, which, if added to topic models either as
“black boxes” or not, results in nearly the same qual-
ity of inferred topics. However, the second group
produces top bigrams, which, if added to the pro-
posed PLSA-SIM algorithm, results in significant
improvement in all metrics under consideration.
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Abstract

We present a novel approach for the identifica-
tion of multiword expressions (MWEs). The
methodology extracts a large set of recurring
syntactic fragments from a given treebank us-
ing a Tree-Kernel method. Differently from
previous studies, the expressions underlying
these fragments are arbitrarily long and can
include intervening gaps. In the initial study
we use these fragments to identify MWEs as a
parsing task (in a supervised manner) as pro-
posed by Green et al. (2011). Here we obtain
a small improvement over previous results. In
the second part, we compare various associ-
ation measures in reranking the expressions
underlying these fragments in an unsupervised
fashion. We show how a newly defined mea-
sure (Log Inside Ratio) based on statistical
parsing techniques is able to outperform classi-
cal association measures in the French data.

1 Introduction

According to many current linguistic theories, lan-
guage users produce and understand sentences with-
out necessarily fully decomposing them into ‘words’
and ‘rules’; rather, multiword units may function as
the elementary building blocks (Goldberg, 1995; Kay
and Fillmore, 1997; Stefanowitsch and Gries, 2003).
A growing literature is emerging which focuses on
“idiosyncratic interpretations that cross word bound-
aries (or spaces)” (Sag et al., 2002) also referred to as
multiword expressions (MWEs) . These expressions,
such as “to beat around the bush”, can be arbitrar-
ily long. An important question for computational
linguistics is how to identify such building blocks us-
ing statistical regularities in large corpora (Zuidema,
2006; Ramisch et al., 2012).

Most of the work on the identification of MWEs
has focused on very short expressions, typically bi-
grams (Evert, 2005) or trigrams (Lyse and Andersen,
2012) using unsupervised techniques based on word
association measures. Recent work (Green et al.,
2011, 2013) has incorporated full phrase-structure
trees in the process of multiword expression identifi-
cation, obtaining a 36.4% F1 absolute improvement
in MWE identification using a Tree-Substitution
Grammar over an n-gram surface statistics baseline
(Ramisch et al., 2010). However, one needs to note
that the French Treebank (Abeillé et al., 2003) used in
this study, contains explicitly tagged MWEs (as a spe-
cial phrasal category), and therefore the comparison
between supervised and unsupervised identification
is not entirely fair.

In the current work, we present a hybrid method
using both phrase-structure representation of MWEs,
and association measures for ranking them in an unsu-
pervised fashion (see table 1 for a quick comparison
between the current work and previous approaches).
We make use of a Tree-Kernel method (Collins and
Duffy, 2002) for extracting a large set of recurring
syntactic fragments from a given treebank.

The rest of the paper is organized as follows: in
section 2 we present the idea of adopting recurring
tree fragments extracted from a treebank using a Tree
Kernel. In section 3 we introduce the treebanks from
which tree fragments are extracted. Next we perform
two types of experiments: in section 4 we employ the
extracted fragments for supervised identification of
multiword expressions as a supervised parsing task;
in section 5, we compare how well different associa-
tion measures rerank the expressions underlying the
extracted fragments in an unsupervised fashion.
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Ramisch et al. (2010) Green et al. (2013) This work

Unsupervised Yes No Yes
Association measures Yes No Yes
Syntax POS tags flat rules hierarchical
Gaps No No Yes
Representation 〈 JJ mountain, NN bike 〉 MWN

NN

speech

IN

of

NN

part

VP

PP

NP

NN

ground

DT

the

IN

off

NPVB

get

Table 1: Comparison of the current work with previous approaches.

2 Recurring Fragments

In our work, we investigate ways of automatically
detecting MWEs in large treebanks by searching for
recurring patterns. The patterns consist of tree frag-
ments that occur two or more times in the treebank.
This is an ideal constraint if we want to assume that
a necessary condition for a fragment to yield a MWE
is to recur multiple times in a representative corpus.

This is also one of the original motivations be-
hind the Data-Oriented Parsing (DOP) framework in
which “idiomaticity is the rule rather than the excep-
tion” (Scha, 1990). For instance, if we have seen the
MWE “pain in the neck” several times before, we
should store the whole fragment for later use.

Data-Oriented Parsing has been most successfully
implemented (Bod, 1992; Bod et al., 2003) with Tree
Substitution Grammars (TSGs), A Tree-Substitution
Grammar consists of a bag of elementary trees. In
DOP, these are arbitrarily large fragments extracted
from a treebank corresponding to syntactic construc-
tions. They can include any number of lexical units,
with possible intervening gaps, and are therefore
very suited to represent MWEs ranging from fixed
idiomatic cases such as “kick the bucket” to more
flexible expressions such as “break X up” and “as far
as X is concerned” to even longer constructions such
as “everything you always wanted to know about X
but were afraid to ask.”

Since extracting all possible fragments from a
large treebank is impossible (the number of possi-
ble fragments grows exponentially with the size of
a tree) it is necessary to work with a restricted set
of fragments. Several sampling methods have been
proposed (Bod, 2001; Zuidema, 2007; Cohn et al.,

2010), but all include some limitations (e.g., use of
random sampling methods, restriction in the size of
the fragments, number of lexical items).

An alternative is to use a Tree Kernel which quan-
tifies the similarity of trees (Collins and Duffy, 2002).
Sangati et al. (2010) introduces FragmentSeeker,
an algorithm based on a Tree Kernel that makes the
similarities between trees explicit by extracting recur-
ring tree fragments. FragmentSeeker is based on
a dynamic programming algorithm which compares
every pair of trees of a given treebank and extracts
a list of maximal overlapping fragments in all the
pairs.

In a recent effort, van Cranenburgh (2014) devel-
oped an improved algorithm1 for fragment extraction
which runs in linear average time in the size of the
treebank (it is 30 times faster than the original im-
plementation on the Penn treebank). This substantial
speedup is due to the incorporation of the Fast Tree
Kernel (Moschitti, 2006), and opens up the possibil-
ity of handling much larger treebanks.

Figure 1 shows an example of a pair of trees shar-
ing a common fragment (with lexical items depicted
in blue and non-lexical terminals in green).

The fragments extracted with these tools have
proven to be successful for several NLP tasks such as
statistical parsing, as in DOP (Sangati and Zuidema,
2011; van Cranenburgh and Bod, 2013), author-
ship attribution (van Cranenburgh, 2012), and native
language detection (Swanson and Charniak, 2012,
2013).

1The tool is publicly available at https://github.com/
andreasvc/disco-dop
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MWN

N

force

P

de

N

Tour

(a) French treebank

MWU

N

hand

LID

de

VZ

aan
lit.: on the hand, “going on.”

(b) Dutch Lassy treebank

VP

PP

NP

NN

ground

DT

the

IN

off

NPVB

get

(c) Annotated English Gigaword

Figure 2: A comparison of treebanks and their MWE annotation. (a) French treebank; flat MWE annotation.
(c) Dutch Lassy treebank; flat MWE annotation. (b) Annotated English Gigaword; no MWE annotation.

S

VP

NP

NNP

Mary

VBP

saw

NP

NN

cat

DT

The

S

VP

NP

NN

dog

DT

the

VBP

saw

NP

NN

cat

DT

The

Figure 1: An example of two syntactic trees sharing
a common fragment (highlighted).

3 Treebanks

We are using three different treebanks for extracting
MWEs across three languages: French, Dutch and
English. See table 2 for statistics on treebank sizes
and number of fragments, and figure 2 for a compari-
son of the MWE annotations in the treebanks.

Treebank Trees Total Frags Selected Frags
French 13K 274K 86K
Dutch 52K 536K 193K
English 500K 4.3M 2.8M

Table 2: Treebank size and number of fragments
extracted and employed in the experiments. The
last column reports the number of fragments after
filtering out all those which do not contain at least a
content word and a non-punctuation word.

3.1 French Treebank
We adopt the version of the French Treebank (Abeillé
et al., 2003) from June 2010 used in Green et al.
(2011). In this treebank MWEs are annotated with

a flat bracketing (see figure 2a), that is, all words
are grouped non-hierarchically, immediately under
a single phrase which has a specific label per each
phrasal category (e.g., MWV for verbal expression,
MWN for nominal expressions, etc). We use this cor-
pus for both supervised (parsing) and unsupervised
(association measures) identification of MWEs .

3.2 Dutch Treebank
For Dutch, we employ the LASSY Small tree-
bank (Noord, 2009) which is a syntactically anno-
tated and manually verified corpus of 1 million words.
As shown in figure 2b, the MWE annotation is flat as
in the French Treebank, but a single category (MWU)
is used to label them. We use this treebank for both
supervised and unsupervised identification of MWEs.

3.3 Annotated English Gigaword
For English, we use the Annotated English Gigaword
treebank2 which contains more than 180 million au-
tomatically parsed sentences.

The size of this treebank is still prohibitively large
even for the fast version of FragmentSeeker. We
therefore decided to use only a sample of the treebank
by selecting one out of every 150 sentences. This
leaves us with a treebank of 500K structures, still 10
times larger than the Dutch treebank. However, since
we want to extract MWEs, we are only interested
in fragments with at least two lexical items. This
restriction enables us to apply a further optimization
to the algorithm which substantially boosts the ex-
traction speed: after indexing sentences by the words
they contain, we compare every tree structure only to
other structures sharing at least two words.

2http://catalog.ldc.upenn.edu/LDC2012T21

12



The annotation of the English Gigaword treebank
follows the Penn Treebank scheme (Marcus et al.,
1994) which does not include any special category
for MWEs. As we have no gold standard for MWE
annotation, we can only employ this treebank for
unsupervised experiments and qualitative analysis.
However, as shown in figure 2c, this annotation pre-
serves the full hierarchical structure of MWEs and
allows us to employ the full potential of Tree Kernels
for extracting arbitrarily large MWEs with possible
intervening gaps.

4 Finding MWEs by parsing

Green et al. (2011) introduce the idea of using a pars-
ing model to identify MWEs. This is a supervised
methodology as it requires a training treebank with
gold MWE labels. The experiments of this section
will therefore be performed on the French and Dutch
treebanks.

4.1 Parsing Methodology

As parsing model we use the Double-DOP (2DOP)
model (Sangati and Zuidema, 2011), as implemented
in the disco-dop parser (van Cranenburgh and Bod,
2013). The resulting TSG grammar is constituted by
the recurring fragments extracted from the training
portion of the treebank (as explained in section 2)
and additionally the Context-Free Grammar (CFG)
rules occurring once (in order to ensure better cov-
erage over the test sentences). In a TSG, fragments
are combined by means of the substitution operation
to derive the tree structures of novel sentences (see
figure 4 for an example of fragments combination).
We redirect the reader to Bod et al. (2003) for more
details about TSG parsing.

In our models we use simple relative frequencies as
fragment probabilities. As preprocessing we apply a
set of manual state splits, heuristics for head-outward
binarization, and an unknown word model for assign-
ing POS tags to out-of-vocabulary words. For Dutch,
we use the same preprocessing as described in van
Cranenburgh and Bod (2013). For French, we apply
similar preprocessing as Green et al. (2013)3.

3For the binarization we apply the markovization setting
h = 1, v = 1, i.e., no additional parent annotation, and every
child constituent is conditioned on the previous two siblings.Note
that Green et al. (2013) uses h = ∞, v = 1 markovization (Green,
personal communication).

4.2 Results

In table 3 we present the comparison of the overall
parsing results on the French and Dutch treebanks
together with the MWE detection score. The overall
parsing results (F1 score, exact match) are not spe-
cific to MWEs, but describe the general quality of the
parsing model. The MWE-F1 score is an F1 score of
correctly parsed MWE constituents.

For French we compare our model (2DOP) against
two systems reported in Green et al. (2013), i.e., the
factored Stanford parser and a TSG-DP parser in
which tree fragments are drawn from a Dirichlet pro-
cess (DP) prior (Cohn et al., 2010). Our system
performs better than the other systems, both in terms
of overall parsing results and MWE identification
specifically.

For Dutch, since this is the first attempt to extract
MWEs via parsing, we compare our result with a
simple PCFG baseline. Our 2DOP model performs
well above the baseline both in terms of parsing and
MWE identification.

Finally, table 4 presents the detailed results for the
identification of the MWEs for each category in the
French treebank. Our system performs better in 4 out
of 8 categories compared with the Stanford parser
and the DP-TSG model. The Dutch results consist
of a single category, so we do not report a further
breakdown.

Parser F1 EX MWE-F1

FRENCH
Green et al. (2013): DP-TSG 76.9 16.0 71.3
Green et al. (2013): Stanford 79.0 17.6 70.5
disco-dop, 2DOP 79.3 19.9 71.9

DUTCH
disco-dop, PCFG baseline 63.9 21.8 50.4
disco-dop, 2DOP 77.0 35.2 75.3

Table 3: Performance of the parsing models on the
French and Dutch treebanks, with respect to parsing
results (F1 score and exact match) and the MWE-F1
score, for sentences ≤ 40 words.

5 Identifying MWEs with Tree Fragments
and Association Measures

In this section we focus on the unsupervised detec-
tion of MWEs. We start with the same Tree Kernel
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#gold DP-TSG Stanford This work

MWN 457 65.7 64.8 68.9
MWADV 220 77.2 75.0 70.0
MWP 162 79.5 81.2 81.9
MWC 47 85.8 86.3 80.7
MWV 26 56.2 57.1 55.9
MWPRO 17 75.3 72.2 78.1
MWD 15 65.1 68.4 66.7
MWA 8 36.0 26.1 37.5

Total 955 71.3 70.5 71.9

Table 4: French MWE identification, F1 score per
category, for sentences ≤ 40 words.

methodology illustrated in section 2 for extracting the
set of recurring fragments from the various treebanks.
Next, we apply various association measures (AMs)
for ranking these fragments and compare how they
perform in distinguishing those fragments underlying
MWEs from the others.

In section 5.3 we conduct a case study on the En-
glish treebank for which we have no MWE annota-
tions, whereas in section 5.4 we apply a quantita-
tive analysis to assess how the AMs perform in the
French and the Dutch treebank (for which we have
gold MWE annotations).

5.1 Signatures

Differently from most existing works on MWEs dis-
covery, our methodology does not focus on MWEs of
a specific type or size. However, the association mea-
sures that are commonly employed are strongly influ-
enced by the length of the expressions, i.e., shorter
expressions tend to have higher association scores.
Moreover, since we also take into account fragments
with possible gaps, we need to be careful in distin-
guishing fully lexicalized expressions from those con-
taining intervening phrasal categories.

We therefore devise a way to partition the set of
extracted fragments into a number of bins. All frag-
ments belonging to the same bin share the same sig-
nature and are therefore mutually comparable (in
terms of their association scores). The signature of a
fragment is a sequence {L, X}+ of symbols obtained
by mapping each frontier node of the fragment to
L if it is a lexical node, or X if it is a non-lexical
node. Figure 3 shows an example of a fragment and
its corresponding signature.

VP

VBD

caught

NP

PP

IN

by

NP

NN

surprise sign.−−−→ L X L L

Figure 3: Example of a fragment (of length 4 with a
gap in the second position) with its signature.

5.2 Association Measures
A number of Association Measures (AM) have been
defined in the literature to assess the cohesiveness
of a potential MWE. In this work we take into con-
sideration two standard association measures, the
Pointwise Mutual Information (PMI) and the Log-
Likelihood Ratio (LLR). Both AMs are generalized
to arbitrarily long expressions, and are defined over
the sequence of symbols S 1, S 2, . . . , S n, where S i is
the pair 〈posi,wordi〉, with posi and wordi being the
pre-terminal label and lexical item of the i-th frontier
node, respectively; wordi = ∅ if the i-th frontier node
is a non-lexical item. In addition, we define a novel
association measure, namely the Log Inside Ratio
(LIR), based on probabilities of a probabilistic TSG
underlying the extracted fragments.

PMI The Multivariate Generalization of Pointwise
Mutual Information, also referred to as Total Corre-
lation (Watanabe, 1960) and Multi-Information (Stu-
denỳ and Vejnarová, 1998; Van de Cruys, 2011), is
defined as follows:

PMI(S 1, S 2, . . . , S n) = log
p(S 1, S 2, . . . , S n)∏n

i−1 p(S i)

where p(S 1, S 2, . . . , S n) is the relative frequency
with which the signature S 1, S 2, . . . , S n has been
seen within the set of fragments sharing the same
signature, and p(S i) is the relative frequency of see-
ing the symbol S i in the i-th position of the signature
within the same set of fragments.

LLR The Log-Likelihood Ratio generalized for a
sequence with an arbitrary number of symbols (Su,
1991) is defined as follows:

LLR(S 1, . . . , S n) = log
p(S 1, . . . , S n)∑

σ∈CSP(S 1,...,S n)
∏

s∈σ p(s)

where the numerator is as in PMI, while the denom-
inator represents the probability of the sequence to
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be derived from contiguous spans. More precisely,
CSP(S 1, . . . , S n) returns the ways (σ) of partitioning
the sequence S 1, . . . , S n in contigous spans (s).4

LIR The Log Inside Ratio is a newly derived asso-
ciation measure which specifies the probability that
a Probabilistic TSG (PTSG) grammar generates a
given fragment in a single step with respect to the
total probability of generating it in any possible way,
i.e., by combining smaller fragments together. Fig-
ure 4 shows an example of how a TSG can generate
the same fragment in multiple ways. The LIR is
computed as follows:

LIR(frag) = log
p(frag)

inside(frag)

where the numerator is the probability of the frag-
ment according to the PTSG extracted from the tree-
bank,5 while the denominator is the total probability
with which the grammar generates the given frag-
ment starting from its root category (in any possible
way).

VP

PP

NP

NN

account

IN

into

NPVB

take

VP

PPNPVB

take

◦ PP

NP

NN

IN

into

◦ NN

account

Figure 4: Example of how a TSG can generate the
same fragment in two different ways, i.e., in a single
step (above), and in 3 subsequent steps (below).

5.3 Case Study on English Treebank

We have conducted a case study on the English tree-
bank, for which no MWE gold labels are available.

4CS P stands for Contiguous Sequence Partition. As an
example, CSP(S 1, S 2, S 3) =

{[[S 1, S 2], [S 3]]; [[S 1], [S 2, S 3]]; [[S 1], [S 2], [S 3]]}
5Here we use the same PTSG as in the parsing experiments

of the previous section.

In this initial study we limited the qualitative analysis
to the PMI association measure.

The histogram in figure 5 reports the distribution
of the extracted fragments in the most common sig-
nature bins. This includes fragments with up to 7
terminals at the frontier nodes, with at most 3 non-
lexical nodes (X in the signatures). Tables 5 and 6
present a list of fragments starting with the verb take
with and without a gap in the second position, sorted
by the PMI measure. In both cases there is a contrast
between MWEs at the top of the list (e.g., take into
account) and more compositional expressions at the
bottom (e.g., take QP years to, take the money).
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Figure 5: Distribution of the 2.8M recurring frag-
ments extracted from the English treebank into the
various signature bins. Only bins with at least 100
fragment types are reported.

5.4 Quantitative Results on French and Dutch
Quantitative evaluation of MWE identification is a
non-trivial task. Typically, association measures are
tuned so that only expressions above a specific thresh-
old are considered MWEs. Alternatively, precision
and recall measures on a full reference data or on
n-best lists are used (Evert and Krenn, 2001). In
our case the task is more challenging as we would
need to fix a different threshold value for each set of
fragments sharing the same signature. We therefore
decided to resort to a novel evaluation metric which
would enable us to compare how the various AMs
rerank the full list of expressions sharing the same
signature in a more neutral and informative way.

We do so by calculating, for each signature bin, the
percentage of MWEs present in subsequently smaller
portions of the reranked list, limiting the evaluation
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PMI Freq. Sequence Pattern

18.0 6 VB take NP IN into NN account
14.6 6 VB take NP IN for VBN granted
13.6 7 VB take DT NN look IN at
12.9 6 VB take NP TO to NN court
12.5 6 VB take NN RB away IN from
12.4 17 VB take NP RB away IN from
12.0 6 VB take JJ NN action TO to
11.2 5 VB take NP RB away IN from
10.5 6 VB take QP NNS years TO to
8.3 10 VB take DT NN time TO to

Table 5: List of English fragments conforming to the
sequence pattern VB take X L L, sorted by PMI.

PMI Freq. Sequence Pattern

15.3 13 VB take IN into NN account
9.8 5 VB take NN responsibility IN for
9.7 8 VB take NN credit IN for
9.3 12 VB take DT a NN look
8.4 88 VB take NN advantage IN of
8.4 7 VB take NN place IN on
8.3 6 VB take NN effect IN in
8.1 14 VB take NNS steps TO to
· · · · · · · · ·
4.6 6 VB take DT the NN money

Table 6: A sample of English fragments conforming
to the sequence pattern VB take L L, sorted by PMI.

to fewer and fewer candidates at the beginning of
the list (as association measures tend to place MWEs
on top). This metric is similar to the “precision at k”
used in Information Retrieval, except that instead of
using a fixed integer k, we use varying portions of
the list (i.e., 1, 1/2, 1/3, . . . , 1/10).

Figure 6 shows the resulting graphs for the three
AMs and the most common signatures in the French
and Dutch treebanks. All curves are usually mono-
tonically increasing, indicating that for all measures
the concentration of MWEs increases at the top of the
reranked list. PMI and LLR often overlap (they are
mathematically identical for expressions of length 2),
with LLR being slightly better for French and PMI
for Dutch. Finally LIR is consistently better than the
other 2 AMs for French while being worse or on a
par with the others for Dutch. We are currently inves-
tigating the reason for this discrepancy. Our current
hypotheses are: (i) the French treebank makes use
of several MWE categories while the Dutch treebank
has a single MWE category, and (ii) Dutch MWEs
tend to be less rigid than the French ones.

Table 7 shows a single-figure F1 evaluation of
the three AMs, obtained by aggregating the top 1/5
candidates of each bin. For this evaluation, recall and
precision are computed, with the gold set consisting
of all the extracted lexicalized fragments with MWE
gold tags.6 According to these results the Log Inside
Ratio (LIR) performs best for both French and Dutch.
This evaluation is not ideal, as our method aims to go
beyond the small, contiguous MWE strings annotated
in the treebanks. In addition, manual inspection of

6Only fully lexicalized fragments are selected, since the tree-
banks do not annotate any MWEs with open slots.

the selected candidates reveals that many of them
are MWEs, while not part of the gold standard. This
should be addressed in future work with a manual
evaluation.

Treebank PMI LLR LIR

French 33.0 32.3 45.8
Dutch 49.4 46.6 50.5

Table 7: F1 scores for the top 1/5 candidates of each
bin as ranked by the three AMs evaluated against
MWEs in extracted recurring fragments.

6 Conclusion

We have presented a novel approach for the identifi-
cation of MWEs based on recurring fragments auto-
matically extracted from a treebank. We have shown
that a probabilistic tree-substitution grammar (PTSG)
constructed with these fragments outperforms previ-
ous results for the supervised identification of MWEs.
Finally we have conducted a study to asses how var-
ious association measures (AMs) can rerank the ex-
tracted fragments for the unsupervised identification
of MWE. Here we proposed a new measure based on
PTSG, the Log Inside Ratio, which shows compet-
itive results when compared against other classical
association measures.
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Figure 6: Results for the French and Dutch treebanks when ranking of the MWEs for various signatures
according to several association measures. Each line reports how the percentage of MWEs (y-axis) changes
when restricting the list to fewer and fewer top candidates. More specifically, we compute the percentage of
MWE in the full list of fragments (1), in the first half (1/2), the first third (1/3), and so on until the first tenth
(1/10).
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Abstract

Support-verb constructions (i.e., multiword
expressions combining a semantically light
verb with a predicative noun) are problem-
atic for standard statistical machine translation
systems, because SMT systems cannot distin-
guish between literal and idiomatic uses of
the verb. We work on the German to English
translation direction, for which the identifica-
tion of support-verb constructions is challeng-
ing due to the relatively free word order of
German. We show that we achieve improved
translation quality for verb-object support-
verb constructions by marking the verbs when
occuring in such constructions. Additional
evaluations revealed that our systems produce
more correct verb translations than a con-
trastive baseline system without verb markup.

1 Introduction

It is widely acknowledged in the NLP community
that multiword expressions (MWEs) are a challenge
for many NLP applications (Sag et al., 2002), due
to their idiosyncratic behaviour at different levels of
linguistic description. In this paper we address Ger-
man support verb constructions (SVCs) in statistical
machine translation.1

Support-verb constructions, also known as light-
verb constructions,2 are multiword expressions
combining a verb and a predicative noun. The
verb neither contributes its full meaning to the con-
struction, nor is the meaning completely void (Butt,

1The work presented in this paper is part of the Master’s
Thesis of Manju Nirmal, cf. (Nirmal, 2015).

2in German: Funktionsverbgefüge

2003; Langer, 2009). For example, the verb take
does not contribute its full meaning to the SVC take
a bath, but nevertheless its semantic contribution is
different to the verb make in the SVC make a bath
(Butt, 2003). Often, an SVC is close in meaning
to a corresponding full verb, e.g., the SVC make a
contribution is synonymous to the verb contribute.
Table 1 presents examples for English and for Ger-
man SVCs and synonymous full verbs, where the
predicative nouns are embedded in a noun phrase
(V+NP) or a prepositional phrase (V+PP).

English
V+NP make a contribution contribute
V+PP take into account consider

German
V+NP einen Beitrag leisten beitragen

lit. a contribution achieve to contribute
V+PP in Frage stellen hinterfragen

lit. in question put to question

Table 1: Examples of English and German SVCs.

Support-verb constructions are problematic for
phrase-based statistical machine translation (SMT)
systems, as these systems consider texts to consist
of word sequences, without distinguishing between
the literal meanings of the verbs vs. their idiomatic
meaning within an SVC. In this paper, we will show
that we can achieve improved translation quality by
marking the verbs that occur within V+NP SVCs.
The marking distinguishes the SVC verbs from in-
dependent occurrences of the verb and thus enables
the SMT system to learn different translations for the
different kinds of occurrences. We focus on German
SVCs, which are particularly challenging due to the
morphological richness and the relatively free word
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order in German. While Carpuat and Diab (2010)
included some English SVCs into their pilot study
on evaluating MWEs through SMT, to our knowl-
edge there is no other previous work on SVCs in the
context of SMT.

2 SVCs in Statistical Machine Translation

Default translation: In SMT, translations are
“learned” from parallel data. Out of a set of pos-
sible translations derived from that data, the SMT
decoder selects the most probable one. Today, most
SMT systems translate whole phrases instead of sin-
gle words, which allows to take some context of the
word into account. Moreover, a language model
and an reodering model are consulted in order to
promote fluent translations. Nevertheless it is of-
ten the most frequent translation of a word which
is chosed by the decoder. For example, the German
verb “vertreten” is most often translated as “repre-
sent” in the training data. A standard phrase-based
SMT system thus considers “represent” as a suitable
translation for “vertreten”. However, when occur-
ring in the context of an SVC like “die Auffassung
vertreten”, a translation into “represent the view”
is clearly wrong. Instead, “vertreten” should in this
case be translated into “take” in order to yield the
correct translation into “take the view”. However,
this is only one translation scenario. Sometimes, the
German SVC is not translated into an English SVC
but a different construction. For example, “Auffas-
sung vertreten” is often translated as “being of the
opinion that”. In other cases, the SVC is identical in
both languages: e.g. “Rolle spielen” - “play a role”.

Dazu leistet die Effizienz des Vermittlungsverfahrens
einen substanziellen Beitrag.
To that make the effectiveness of the codecision pro-
cedure a substantial contribution.
The effectiveness of the codecision procedure has
made a substantial contribution in this case .

Table 2: Example for a non-adjacent SVC.

Non-adjacent SVCs: If the verb and its object are
directly adjacent, a phrase-based system with suffi-
cient coverage of the SVC in question is likely to
correctly translate the SVC as one phrase. How-
ever, if the verb appears isolated, which is not un-

common in German, it is much more difficult for the
SMT system to recognize that the verb should not be
translated by its “default”, but by the SVC-specific
translation. The example in Table 2 illustrates that
several words may occur between the components
of the SVC “Beitrag leisten”.

Note that some SVCs allow for more intervening
words than others. In Table 3, the comparison of
the average distance between the verb and the noun
within the two SVCs “Beitrag leisten” and “Rech-
nung tragen” shows considerable differences.

SVC distance
Beitrag leisten to make a contribution 5.44
Rechnung tragen to account for 2.62

Table 3: Average distance of SVC components.

The mean distances are derived from 3,549 occur-
rences of the SVC “Beitrag leisten” and 1,868 oc-
currences of the SVC “Rechnung tragen” within the
Europarl corpus (Koehn, 2005). They were calcu-
lated by substracting the lower position in the sen-
tence from the higher position for either the noun or
the verb. Whenever the verb and the noun occurred
directly adjacent, the score yields “1”.

Methodology: In order to enable the SMT sys-
tem to distinguish occurrences of a verb within an
SVC from independent occurrences, we add a spe-
cial markup to the verbs occurring in an SVC. By in-
troducing this markup, the translations for indepen-
dent verbs with a literal meaning are separated from
those of verbs occurring in an SVC context. Thus,
the SMT system can learn the SVC-translation of
a verb not only when it occurs directly adjacent to
the noun, but also for SVCs with many intervening
words between the components. In such cases, the
SVC is chopped and stored in different phrases of
the SMT system. For a standard SMT system with-
out markup it is almost impossible to learn the cor-
rect translation of the verb.

3 Related Work

MWEs in general: Multiword expressions have
been a recurrent focus of attention within theoret-
ical, cognitive, and in the last decade also within
computational linguistics: The workshops on multi-
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word expressions attached to major CL conferences3

celebrated their 10th anniversary in 2014, and the
SIGLEX-MWE has initiated three special issues in
NLP journals.

After initial approaches mainly focused on char-
acterising the computationally challenging proper-
ties of multiword expressions (such as Sag et al.
(2002) and Villavicencio et al. (2005)) and automati-
cally identifying various types of multiword expres-
sions in corpora (such as Baldwin and Villavicen-
cio (2002), Villavicencio (2003) and Bannard (2007)
who extracted English particle verbs), the focus of
interest moved towards deeper semantic models of
specific types of multiword expressions and towards
integrating multiword expressions into applications.

Compositionality of MWEs: A wide range of se-
mantic approaches has been concerned with distin-
guishing degrees of compositionality within multi-
word expressions, addressing
• noun compounds (Zinsmeister and Heid

(2004), Reddy et al. (2011), Schulte im Walde
et al. (2013)),
• particle verbs (McCarthy et al. (2003), Bannard

(2005), Cook and Stevenson (2006), Ramisch
et al. (2008)),
• light-/support-verb constructions (Bannard

(2007), Fazly et al. (2007), Fazly et al. (2009)),
• various MWE types (Lin (1999), Katz and

Giesbrecht (2006), Fazly and Stevenson
(2008), Evert (2009))

The most prominent approach exploring measures of
association strength within multiword expressions,
in order to distinguish literal from collocational in-
terpretations, is probably (Evert, 2005).

Addressing the compositionality of multiword ex-
pressions is a crucial ingredient for lexicography
and NLP applications, to know whether the expres-
sion should be treated as a whole, or through its
parts, and what the expression means. Examples
of applications that have profited from integrating
the semantics of multiword expressions are Part-of-
Speech Tagging (Constant and Sigogne, 2011), Pars-
ing (Wehrli, 2014), Information Retrieval (Acosta
et al., 2011), and SMT (Carpuat and Diab, 2010;
Weller et al., 2014), see below for details.

3http://multiword.sourceforge.net

MWEs in SMT: Previous work regarding multi-
word expressions in SMTcan be divided into static
approaches, where the training data is modified in
order to facilitate a standard SMT system to learn
suitable MWE translations and dynamic approaches
where the modification takes place in the phrase ta-
ble of the SMT system.

Static approaches include (Lambert and Banchs,
2005), who first extract bilingual – English and
Spanish – MWEs based on parsed data and then
merge them into “super-tokens”, which later is
treated as a unit by the SMT system. Similarly,
Carpuat and Diab (2010) merge parts of English
MWEs extracted from lexica into larger units in or-
der to improve English to Arabic SMT. In addition,
they increase the maximal phrase size from 5 in con-
ventional systems to 10 words per phrase. More
recently, Cholakov and Kordoni (2014) described a
static approach to handle English phrasal verbs – ex-
tracted from lexical ressources – for translation into
Bulgarian, where the particles are usually not sepa-
rated from the verbs.

While static approaches have shown to improve
translation quality, they do not allow for context-
dependent decisions on how to translate MWEs.
Instead of modifying MWEs in the training data,
dynamic approaches handle MWEs directly in the
phrase table of the SMT system. Ren et al. (2009)
present an approach to handle bilingual Chinese -
English MWEs. These are extracted from domain-
specific parallel text and then added as separate
phrases to the training data. In a subsequent step,
the resulting phrase table is then annotated with a
boolean variable indicating the presence or absence
of an MWE. This approach was then taken one step
further by Carpuat and Diab (2010), who worked
with longer phrases and indicated not only the pres-
ence, but also the number of MWEs in each phrase.
Finally, Cholakov and Kordoni (2014) further im-
proved the dynamic approach in that they, in addi-
tion to the number of MWEs in a phrase, also en-
coded linguistic features of the phrasal verbs they
investigated, like transitivity or separability.

In terms of translation quality, both static and dy-
namic approaches performed more or less equally
well, except for (Cholakov and Kordoni, 2014), who
found considerable improvements for the dynamic
approach incorporating linguistic features.
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DE
“Sie wollen herausfinden, welche Rolle der Riesenplanet bei der Entwicklung des Sonnensystems gespielt hat.”

they wanted to find out, what role the giant-planet for the development of-the solar-system played has.

EN “They want to find our what role the giant planet has played in the development of the solar system .”

Table 4: German word order allows for many intervening words between a verb and its object, here: “Rolle gespielt”.

Relation to the presented work In this paper, we
pursue a static approach, i.e. we modify the training
data of the SMT system, but leave the system itself
as it is. We extract MWEs directly from the par-
allel training data (like Lambert and Banchs (2005)
and Ren et al. (2009)) using parsed data (to account
for the flexible word order of German) and word as-
sociation measures (similarly to Ren et al. (2009)).
In contrast to previous static approaches, where the
MWEs were joined together to form a single unit,
we only mark the verb of a support verb construc-
tion. We have shown with the example of “Beitrag
leisten” above that German word order allows for
many intervening words between the two compo-
nents. Joining German MWEs together may thus
lead to highly influent sentences.

4 Extraction and Markup of SVC verbs

This section provides more details on our method-
ology. The general procedure is done in five steps,
with steps 1–4 explained in the following subsec-
tions, and step 5 described in Section 5:

1. extract verb-object pairs (on lemma-level)
from the parsed training data

2. identify SVCs (on lemma-level) in this set
using standard word association measures

3. create several SVC sets with different de-
grees of idiomaticity

4. re-visit the training data and mark the verbs
of SVCs (on token-level) accordingly

5. run SMT systems trained on data with verb
markup based on the different SVC sets (cf.
Section 5)

4.1 Verb-Object Pair Extraction To obtain a set
of SVCs, we first extract verb-object pairs from
dependency-parsed data. In a second step, all of
these potential SVCs are scored and ranked by as-
sociation measures. The SVC candidates with the
highest association scores constitute the set of SVCs
to be marked in both the parallel training data as well

as in the data to be translated.
For extracting the SVC candidates, we follow

the extraction method outlined in Scheible et al.
(2013) who describe a set of guidelines to induce
the complete set of argument and adjunct phrases
from dependency-parses (Bohnet, 2010). While in
this study we focus on verb-object pairs, our ex-
traction method allows for an easy extension to
also cover other types of SVCs, such as preposi-
tion+noun+verb triples.

The example given in Table 4 illustrates the need
for parsed data when working with German: due to
the flexible word order already illustrated in Sec-
tion 2, verb and object are often not adjacent, but
allow for the insertion of several phrases ([the gi-
ant planet]SUBJ [for the development [of the so-
lar system]PP ]PP ) or sub-ordinate clauses between
them. Furthermore, parsed data allows for an extrac-
tion of verb-object pairs on lemma-basis in order to
generalise over the morphological variants of verbs
and nouns. From the example in Table 4, we would
extract the verb–object lemma pair “Rolle spielen”.

4.2 Identification of SVCs The resulting list of
SVC verb-object candidate pairs does not only con-
tain idiomatic SVCs, but also literal verb–object
combinations. In order to identify the subset of
SVCs, we measure the association strength between
the verb and the object. For this, we opted for the
often-used log-likelihood measure implemented in
the UCS-toolkit (Evert, 2005). Assuming that verb-
object pairs with a high association score are likely
to be idiomatic, we rank the SVC candidate pairs
according to their association scores.

4.3 Datasets Based on the ranked list of verb–
object pairs by a word association measure, we de-
cided to investigate different thresholds to the log-
likelihood scores in order to identify idiomatic SVCs
among the set of verb-object pairs and thus approx-
imate different degrees of idiomaticity. We set these
thresholds at log-likelihood scores of 1,000, 500,
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training testing
types token types token

all 30,6572 1,102,166 794 881
freq≥5 25,610 713,734 461 537
LL ≥ 1000 338 181,818 58 94
LL ≥ 500 693 240,369 95 139
LL ≥ 350 1,024 271,908 120 168
LL ≥ 250 1,473 304,148 142 191

Table 5: Number of SVCs in the training data and test set
when applying different log-likelihood (LL) thresholds.

350 and 250. Note that the degree of idiomatic-
ity decreases with the loglikelihood score, while the
amount of noise in form of literal verb-object pairs
being erroneosly taken for SVCs increases. Never-
theless, we performed no manual cleaning of these
lists. According to the various thresholds, we ob-
tained different sets of presumably idiomatic verb–
object pairs to be marked for the SMT system, and
all pairs occurring in the sets are considered SVCs.

Table 5 shows the number of all extracted verb-
object pairs from the German part of the parallel
data, and the number of pairs with a freqency ≥ 5.
Note that we discarded verb-object pairs with a fre-
quency < 5 as we consider these to be too sparse to
be translated adequately by an SMT system. Table 5
also shows the sizes of the resulting sets of SVCs,
both for the training data and the test data.

4.4 Verb Markup For each of the SVC sets given
in Table 5, the training data is re-visited and all verbs
occurring within SVCs receive a special markup.
Generally speaking, we follow here the same pro-
cedure as for the extraction. If a verb-object pair
occurs in the list of SVCs, the verb is marked by
adding the string “ SVC” to the verb. It is important
to note that, while the list of SVCs is lemmatized,
we keep the inflected verb form in the training data.
By introducing this markup, independent verbs with
a literal sense are distinct from verbs occurring in
SVCs. The SMT system can thus distinguish these
two types of verbs and learn different translations
for them. The example given in Table 6 illustrates a
marked occurrence of “geleistet” (in the context of
“Beitrag leisten” (= ”make a contribution”) as op-
posed to an independent occurrence, where “geleis-
tet” should be translated literally into “achieved”.
In addition to annotating the source-side part of the
DE–EN training data, we also need to annotate the

SVC
Das hat einen wichtigen Beitrag geleistet SVC.
This has an important contribution made.
This has made an important contribution.

other
Ich glaube , dass sie sehr viel Gutes geleistet hat .
I believe, that it very much good achieved has.
I believe that it has achieved a great deal of good .

Table 6: Illustration of SVC markup on verbs.

source-side part of the data to be translated, i.e. the
data set for parameter tuning and the test set on
which we evaluate our systems.

5 SMT Experiments

In order to assess the impact of our SVC verb
markup, we trained one baseline SMT system
without markup and 4 different systems with our
markup (one for each idiomaticity threshold, cf.
Table 5). Each of our SMT experiments consists of
the following steps:

1. add SVC verb markup to the parallel training
data (as described in Section 4)

2. train the SMT system, including word align-
ment, construction of a phrase-table and a re-
ordering table

3. tune translation parameters using minimun
error rate training

4. translate the test set and evaluate the output
against one human reference translation

In the following we give details on the data sets we
used and some further technical details on our SMT
systems. Apart from differing SVC verb markup, all
systems are trained identically.

5.1 SMT training data
We trained our systems on data from the annual
shared task for statistical machine translation, all of
which are accessible for free download.4 For train-
ing, we take the training data from the shared task
of 2009, which consists of roughly 1.5 million sen-
tences composed of mainly Europarl (Koehn, 2005)
and some news data. The English language model is
trained on the monolingual training data of the 2009
shared task, which roughly consists of 22 million
sentences. For parameter tuning, we used the test
set of the shared task 2013 and for testing the most
recent test set of 2014 (∼3,000 sentences each).

4www.statmt.org
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Experiments
BLEU BLEU
tuning1 tuning2

Baseline 20.43 20.49
Exp1000 21.04 21.01
Exp500 21.08 21.01
Exp350 20.86 20.89
Exp250 20.85 20.84

Table 7: BLEU scores on the 2014 testset.

5.2 System Details
We used the Moses toolkit (Koehn et al., 2007)
to train standard phrase-based systems with default
configurations. We trained an English 5-gram lan-
guage model using KenLM (Heafield, 2011). For
tuning the feature weights, we applied batch-mira
with -safe-hope (Cherry and Foster, 2012). In or-
der to ensure stable tuning, we performed two subse-
quent tuning procedures with identical starting con-
ditions and report on results for both of them.

6 Evaluation

In order to evaluate the translation quality of our sys-
tems in comparison to each other and also to a base-
line without any markup, we performed a standard
MT evaluation using the BLEU metric. In addition,
we also performed a semi-automatic evaluation with
a focus on verb translations.

6.1 Automatic MT Evaluation
It is common practise to evaluate the performance
of an SMT system by comparing its output to one
(or more) human reference translations. We fol-
low this line and calculate BLEU scores (Papineni
et al., 2001) for each of our systems. Our testset is
taken from the 2014 shared task on statistical ma-
chine translation (∼ 3,000 words). We tested all
BLEU scores for statistical significance using pair-
wise bootstrap resampling with sample size 1,000
and a p-value of 0.055. Results are givenin Table 7.
Compared to the baseline, we found that all of our
systems containing verb markup for SVC verbs lead
to a significant improvement in terms of BLEU.
The fact that all investigated sets of automatically
identified SVCs improve the translation quality in
the same magnitude shows that no manual filtering

5Code to be obtained from www.ark.cs.smu.edu/MT

System # sentences with at least one full verb
Reference 2,712
Baseline 2,378
Exp1000 2,412
Exp500 2,413
Exp350 2,412
Exp250 2,411

Table 8: Number of sentences produced by the systems,
which contain at least one full verb.

of the SVC sets is required to improve translation
quality. Even though the sets certainly contain lit-
eral verb-object pairs, their markup does not seem
to decrease translation quality. In future experiem-
nts, we will investigate the effect of manual filtering
the SVC lists on translation quality.

6.2 Improved Verb Translations

In addition to the standard evaluation using BLEU
scores, we investigated the effect of the SVC verb
markup on verb translations in general. In the past,
we often observed that verbs are missing in the SMT
output. Due to their primary role in the understand-
ing of a sentence, each missing verb translation has a
severe effect on the perception of translation quality
of humans. In Table 8, we give the number of sen-
tences in which at least one full verb has occurred
(note that auxiliary verbs were discarded in this eval-
uation). From these absolute numbers, it can be seen
that each of our systems produces more verbs when
compared to the baseline.
In a subsequent evaluation, we compared verb trans-
lations separately for each sentence, taking the refer-
ence translation the baseline translation and the out-
put of one of our systems (Exp250) into account.
The results of this evaluation are given in Table 9.
It can be seen that, compared to the baseline, our
system yields more verbs that match the reference
translation on lemma level (3,648 vs. 3,505).

system lemma matches the reference
Baseline X X
Exp250 X X
#verbs 3,505 3,648 2,436

Table 9: Overview of verb counts. ’X’ indicates a verb
matching the reference verb on lemma-level.
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(a) baseline: no verb translation, Exp250: correct translation of the SVC verb.

input
Sie wollen herausfinden, welche Rolle der Riesenplanet bei der Entwicklung des Sonnensystems gespielt hat.
They wanted to find out, what role the giant-planet for the development of-the solar-system played has.

reference They want to find out what role the giant planet has played in the development of the solar system.
baseline You want to find out what role the Riesenplanet in the development of the solar system.
Exp250 They want to find out what role the Riesenplanet played in the development of the solar system.

(b) baseline: default translation of the verb, Exp250: SVC translation of the verb.

input
“Ich vertrete die Auffassung, dass eine hinreichende Grundlage fr eine formelle Ermittlung besteht, sagte er.
I take the view that a sufficient basis for a formal investigation exists, said he.

reference “I am of the opinion that a sufficient basis exits” for a formal investigation, he said.
baseline I represent the view that a sufficient basis for a formal investigation is, he said.
Exp250 I take the view that a sufficient basis for a formal investigation is, he said.

(c) baseline & Exp250: same verb translation, but Exp250 with better noun translation.

input
UBS gab diese Woche bekannt , dass sie Schritte gegen einige ihrer Mitarbeiter unternommen habe
UBS announced this week, that they action against some of their employees taken have

reference UBS said this week it had taken action against some of its employees.
baseline UBS was announced this week that they take steps against some of their staff have done.
Exp250 UBS was announced this week that they take action against some of their staff, after.

Table 10: Comparison of translation outputs from the baseline and Exp250.

Recall that this verb evaluation happened with re-
spect to the verbs occurring in the reference set. We
already have seen from the improved BLEU scores
that our systems are more similar to the reference
translation than the Baseline system. While BLEU
scores are calculated on exact matches, the verb
evaluation in Table 9 has shown that we produce also
more verbs matching the reference on lemma level
(thus abstracting over morphological variants). But
even this number can only be seen as an approxima-
tion of the translation quality. Ideally, a later evalu-
ation would include the German source sentence in
the evaluation and reflect whether or not the present
verb is a correct translation of the German verb or
not (independent of which lexeme the human refer-
ence translator chose).
Finally, in Table 10, we give some interesting exam-
ples of SVC translations in the context of the whole
sentence in which they occurred. In Table 10(a), our
system was able to produce the SVC verb that was
missing in the baseline translation. In contrast, the
baseline produced a verb in Table 10(b), but instead
of the SVC verb, a default translation of the verb was
produced. This example is particularly interesting as
the correct translation of the SVC by our system has
no positive effect on the BLEU score, as the human
reference translator chose a different construction to

translate the SVC. Finally in Table 10(c) we give
an example where all systems produced the correct
verb (though in a different tense form than the ref-
erence), but in addition, our system also yielded an
improved translation of the SVC noun. The exam-
ples in Table 10 cannot considered to be more than
random samples, not strong enough to draw further
conclusions from them. However, they show that a
more detailed manual evaluation of the translation
quality may reveal even more significant improve-
ments of our systems.

6.3 Translation Probabilities

In this section, we study the effects of the verb
markup on the resulting translation probabilities. By
marking whether a verb appears in an SVC context
or not, we expect to see a difference in the respective
translation options and probabilities. Table 11 shows
entries for translations and the respective probabili-
ties for the verb treffen which often occurs in SVCs
such as Entscheidung treffen (to make/take a deci-
sion), Wahl treffen (to make a choice) or Vorkehrun-
gen treffen (to take precautions).

In the baseline, the predominant translation op-
tions are related to meet, with a second literal mean-
ing represented by hit. Options for translating SVCs
(e.g. make/take) are listed as well, but their trans-
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Baseline Exp1000
treffen treffen treffen SVC

prob transl. prob transl. prob transl.
0.295 meeting 0.315 meeting 0.237 take
0.105 meetings 0.112 meetings 0.176 make
0.086 take 0.074 take 0.032 will
0.059 make 0.048 make 0.022 decide
0.036 meet 0.039 meet 0.019 taken
0.013 be 0.012 be 0.012 reach
0.011 hit 0.012 hit 0.009 will take
0.010 affect 0.011 adopt 0.009 will make
0.010 adopt 0.011 affect 0.009 to take
0.007 taken 0.007 taken 0.009 to make

Table 11: Top-ranked translation possibilities (with prob-
abilities) for the verb treffen in the baseline, and its un-
marked and marked variants in Exp1000. Valid transla-
tions are highlighted.

lation probabilities are considerably smaller. The
top-ranked translation possibilities for treffen in the
Exp1000 system do not differ much from those in
the baseline, but the probabilities for the literal trans-
lations (highlighted) are higher than those in the
baseline, whereas the probabilities for translations in
an SVC context are slightly lower compared to the
baseline. We assume that the entries make/take for
the literal translations of treffen were derived from
usages in SVCs not listed in the set of SVCs on
which the annotation for this system was based –
keep in mind that 1000 was the highest of the thresh-
olds used and thus resulted in a list of SVCs with a
high level of idiomaticity.

When looking at the translation options for tref-
fen in an SVC context, we find that there is a con-
siderable change in comparison to the baseline and
non-markup entries: translation options for the lit-
eral meaning (meet/hit) are no longer top-ranked,
but instead there are verbs with a light meaning al-
lowing for the respective English SVCs to be real-
ized. While there are a number of variations of the
same lemma (take, taken, will take, to take), there is
also some lexical variation (take/make/reach [a de-
cision]) and also one full verb (decide) equivalent to
one of the SVCs in question.

The comparison of the translation options for the
different uses of treffen in table 11 illustrates how the
verb markup applied to verbs within an SVC sepa-
rates between the literal translation(s) and those ap-
propriate for an SVC context.

On a sidenote, the selectional preferences of the
different usages of treffen also reflect its respective
meaning: when used with the default meaning of
to meet6, the typical object is likely to be a person
whereas in the usage as part of an SVC, the object is
an abstract concept like decision or choice.

7 Conclusion and Future Work
We presented an approach to handle SVCs in an
German–English SMT system. By marking verbs
that occur within an SVC on the source-side, literal
translation options are separated from those appro-
priate in an SVC context. We investigated different
degrees of idiomaticity which all lead to significant
improvements in BLEU. An additional evaluation of
verbs confirmed that the systems with SVC-markup
produced more verbs than the baseline and that also
an increased amount of verbs matched with the ref-
erence translation.

We assume that our strategy of marking the (lim-
ited) set of light verbs is not running risk of intro-
ducing data sparsity, but the question of how to de-
cide on an optimal set of SVCs remains to be stud-
ied more thoroughly in future work. Moreover, we
may want to further distinguish the verb markup:
while the current markup separates literal transla-
tions from SVC-appropriate translations, we could
in the future explicitly distinguish translations of dif-
ferent SVCs that share the same verb in the source
language, but might need different translations as for
example in Massnahme ergreifen (lit: “to grasp mea-
sures”, “to take measures”) and Flucht ergreifen (lit:
“to grasp escape”, “to esacpe”).

An extension to different language pairs would
also be interesting – the presented approach can eas-
ily be extended to other languages as long as enough
data is available as a basis to extract a set of SVCs.

Acknowledgements
This project has received funding from the European
Unions Horizon 2020 research and innovation pro-
gramme under grant agreement No 644402. More-
over, it was funded by the DFG grants Distributional
Approaches to Semantic Relatedness and Models of
Morphosyntax for Statistical Machine Translation,
and the DFG Heisenberg Fellowship SCHU-2580/1.

6The same applies to the second literal meaning to hit.

26



References

Otavio Acosta, Aline Villavicencio, and Viviane Moreira.
2011. Identification and treatment of multiword ex-
pressions applied to information retrieval. In Proceed-
ings of the Workshop on Multiword Expressions: From
Parsing and Generation to the Real World, pages 101–
109, Portland, Oregon, USA.

Timothy Baldwin and Aline Villavicencio. 2002. Ex-
tracting the unextractable: A case study on verb parti-
cles. In Proceedings of the Sixth Conference on Com-
putational Natural Language Learning, pages 98–104,
Taipei, Taiwan.

Collin Bannard. 2005. Learning about the meaning of
verb–particle constructions from corpora. Computer
Speech and Language, 19:467–478.

Colin Bannard. 2007. A Measure of Syntactic Flexibility
for Automatically Identifying Multiword Expressions
in Corpora. In Proceedings of the ACL Workshop on A
Broader Perspective on Multiword Expressions, pages
1–8, Prague, Czech Republic.

Bernd Bohnet. 2010. Top accuracy and fast dependency
parsing is not a contradiction. In Proceedings of the
23rd International Conference on Computational Lin-
guistics, pages 89–97, Beijing, China.

Miriam Butt. 2003. The Light Verb Jungle. Working
Papers in Linguistics 9, Harvard University.

Marine Carpuat and Mona Diab. 2010. Task-based eval-
uation of multiword expressions: A pilot study in sta-
tistical machine translation. In Proceedings of the An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
242–245.

Colin Cherry and George Foster. 2012. Batch Tuning
Strategies for Statistical Machine Translation. In Pro-
ceedings of the Human Language Technology Confer-
ence of the North American Chapter of the Association
for Computational Linguistics, volume 12, pages 34–
35.

Kostadin Cholakov and Valia Kordoni. 2014. Better
statistical machine translation through linguistic treat-
ment of phrasal verbs. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing.

Matthieu Constant and Anthony Sigogne. 2011. MWU-
aware part-of-speech tagging with a CRF model and
lexical resources. In Proceedings of the Workshop on
Multiword Expressions: From Parsing and Genera-
tion to the Real World, pages 49–56, Portland, Oregon,
USA.

Paul Cook and Suzanne Stevenson. 2006. Classifying
particle semantics in English verb-particle construc-
tions. In Proceedings of the ACL/COLING Workshop

on Multiword Expressions: Identifying and Exploit-
ing Underlying Properties, pages 45–53, Sydney, Aus-
tralia.

Stefan Evert. 2005. The statistics of word cooccur-
rences: Word pairs and collocations. Ph.D. thesis,
University of Stuttgart, Germany.

Stefan Evert. 2009. Corpora and Collocations. In Anke
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Abstract

Scarcity of multiword expression data sets
raises a fundamental challenge to evaluating
the systems that deal with these linguistic
structures. In this work we attempt to ad-
dress this problem for a subclass of multi-
word expressions by producing a large data
set annotated by experts and validated by
common statistical measures. We present a
set of 1048 noun-noun compounds annotated
as non-compositional, compositional, conven-
tionalized and not conventionalized. We build
this data set following common trends in pre-
vious work while trying to address some of
the well known issues such as small number
of annotated instances, quality of the annota-
tions, and lack of availability of true negative
instances.

1 Introduction

The lack of practical data sets that can be used in
the training and evaluation of multiword expression
(MWE) related systems is a notorious problem (Mc-
Carthy et al., 2003; Hermann et al., 2012). It is
partly due to the heterogeneous nature of MWEs,
partly due to their frequency, and partly due to
the unclear boundaries between MWEs and regular
phrases. These issues have made the compilation of
useful MWE data sets challenging, and any effort to
create them invaluable.

In this work we present a data set of two-word
English noun-noun compounds which are annotated
for two properties: non-compositionality and con-
ventionalization. Although non-compositionality

can apply at different levels, from syntactic to se-
mantic, by non-compositionality we strictly mean
semantic non-compositionality. Semantic non-
compositionality in simple terms is the property of
a compound whose meaning can not be readily in-
terpreted from the meanings of its components.

Conventionalization meanwhile refers to the situ-
ation where a sequence of words that refer to a par-
ticular concept is commonly accepted in such a way
that its constituents cannot be substituted for their
near-synonyms, according to some cultural or histor-
ical convention. Conventionalization can also be re-
ferred to as institutionalization or statistical idiosyn-
crasy (Sag et al., 2002), and is closely related to
the concept of collocation (Baldwin and Kim, 2010).
Conventionalization is a very broad concept and can
apply to a wide range of compounds. Although a
large fraction of compounds are to some extent con-
ventionalized, we are interested in and annotate only
clear and well-known conventionalizations, which
we refer to as “marked conventionalization”. For
instance, although exit door and floor space have
some elements of conventionalization, this property
is more conspicuous in weather forecast, car wash,
and traffic light. We assume that non-compositional
compounds are by definition conventionalized and
annotate this property only when a compound is
compositional.

Our data set comprises 1048 compounds which
are annotated with binary decisions about whether
they are (i) non-compositional and (ii) conventional-
ized. Although non-compositionality can be a grey
area and a non-binary decision may be more precise,
eventually this decision must be reduced to a binary
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one: whether or not a compound should be lexical-
ized due to its non-compositionality.

The main contributions of this work can be de-
scribed as follows: coverage for two major prop-
erties of MWEs (non-compositionality and conven-
tionalization); providing both positive and negative
instances of non-compositional and conventional-
ized classes, allowing the evaluation of MWE identi-
fication/extraction systems in terms of both true pos-
itive and true negative rates; incorporating a larger
number of annotated instances compared to related
data sets.

2 Related work

The most important related work is that of Reddy
et al. (2011), which provides 90 compounds with a
mean compositionality score between 0 and 5. They
acquired their annotations using Amazon Mechani-
cal Turk from 30 turkers. They detect and discard
poor annotations using Spearman Coefficient Corre-
lation. The number of instances in their final data
set, however, might not be enough for evaluation
purposes. Moreover, it might not be a trivial task to
adapt an identification/extraction system to produce
a similar non-compositionality ranking. Korkontze-
los and Manandhar (2009) present a data set that
comprises 19 non-compositional and 19 composi-
tional instances. In this work the size of the data set
is small and compound selection process and the ra-
tionale behind decisions about non-compositionality
is not expounded. Other related but slightly dif-
ferent works are Biemann and Giesbrecht (2011)
who present a set of adjective-noun, verb-subject,
and verb-object pairs and their non- composition-
ality judgments, and McCarthy et al. (2003) who
present a set of 116 phrasal verbs and rank their non-
compositionality between 0 and 9.

Data sets that incorporate conventionalization are
rather difficult to come by. The closest are colloca-
tion sets which are also scarce in their own right.
Most collocation sets that we could find were ei-
ther commercial or not publicly available. More-
over, since collocation can refer to a wide range of
MWEs and human agreement on statistical idiosyn-
crasy is not high enough, it is hard to find an an-
notated collocation set. Instead, extraction systems
have been used to automatically produce such sets

and the outcomes have been commonly evaluated
by either manual evaluation (Smadja, 1993), or by
ranking the collocation candidates and calculating
precision and recall of the extraction system for the
set of n highest ranking candidates (Evert, 2005).

Schneider et al. (2014) is another related work
in which generic MWEs are annotated in a 55K-
word English web corpus. Their work covers a
broad range of “multiword phenomena” with em-
phasis on heterogeneity, gappy grouping and expres-
sion strength which represents the level of idiomatic-
ity of a MWE. They build a corpus of MWEs with-
out restricting themselves to any syntactic categories
and they argue that this can to some extent address
the problem of heterogeneity of MWEs.

3 Data Preparation

We downloaded English Wikipedia, removed the
tags and segmented it into sentences. We then fil-
tered very short and very long sentences, sentences
which were not in English, and sentences which con-
tained only numbers and non-alphanumeric charac-
ters. This resulted in a clean corpus with 24 million
sentences (512 million words). We tagged this cor-
pus using Stanford POS tagger and extracted a list
of distinct contiguous noun-noun pairs (≈ 2.6 mil-
lion) and their frequencies. We filtered out low fre-
quency pairs by removing the pairs whose frequency
of occurrence in the corpus was below 10. This led
to a set of 169, 000 pairs (filtered_list here-
after). We divided this set into 5 frequency classes
and randomly extracted 250 pairs from each of those
frequency classes (selected_list hereafter) in
line with McCarthy et al. (2003). Frequency classes
were chosen in a way that each class holds approxi-
mately the same number of pairs.

Compositional compounds tend to be much more
frequent than non-compositional ones: this might
lead the data set to be inundated with compo-
sitional compounds. To mitigate this problem
we asked two experts with backgrounds in cor-
pus linguistics to each provide us with 501 exam-
ples that they thought were partly or fully non-
compositional. These examples were mainly ex-
tracted from two non-overlapping random divisions

1The choice of this number was made taking into account
our time and financial constraints.
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of filtered_list, whilst also ensuring that
there was no overlap with selected_list. Fur-
thermore, the experts were provided with, and al-
lowed to extract the examples from a set of frequent
adjective-noun pairs which incorporate a relatively
large number of non-compositional compounds such
as hard disk and big shot. These 100 examples were
then added to selected_list. The linguists
who performed this selection did not participate in
the annotation task.

Finally, we manually removed pairs with foreign
or inappropriate/offensive words, those with incor-
rect POS tags, and the few pairs used to help describ-
ing the task to the annotators (see Section 4), from
selected_list. We also removed those pairs
for which a unified form was more common in the
corpus (e.g. ice berg, paper work and life style for
which iceberg, paperwork and lifestyle were more
frequently occurring).

4 Annotations

We assigned the annotation task to three native and
two non-native but fluent speakers of English. We
chose to hire experts to perform the annotation task
rather than using crowd-sourcing systems such as
Amazon Mechanical Turk, where the results can be
flawed for various reasons including scammers and
low quality of the annotations (Biemann and Gies-
brecht, 2011; Reddy et al., 2011). All of our an-
notators had advanced knowledge of English gram-
mar and the majority had a background in linguis-
tics. We provided the annotators with a detailed set
of instructions about non-compositionality and con-
ventionalization. The instructions were extensively
exemplified by examples from Reddy et al. (2011),
Hermann et al. (2012) and Baldwin and Kim (2010).

For each compound, we asked the annotators to
make binary decisions about non-compositionality
and marked conventionalization. We explained non-
compositionality as being the property of com-
pounds whose meanings cannot be readily inter-
preted from the meaning of their constituents. The
annotators were asked to use the label 0 when they
thought a compound was more compositional than
non-compositional, and 1 when they thought the
compound was more non-compositional than com-
positional.

Conventionalization, meanwhile, was defined as
the main property of compounds that are colloca-
tional and whose constituents co-occur more than
expected by chance. We introduced the annotators to
the non-substitutability test which can help to decide
if a compound is conventionalized: if neither of the
constituents of the word pair can be substituted for
their near synonyms (Manning and Schütze, 1999)
we have a conventionalization. Taking weather fore-
cast as an example, although weather prediction and
climate forecast are syntactically correct and seman-
tically plausible alternatives, they are not considered
proper English compounds. The non-substitutability
test often fails in compounds with less noticeable
conventionalization; for instance we can still say exit
gate instead of exit door or floor area instead of floor
space. Identifying conventionalization is not a triv-
ial task and human agreement on this property can
be relatively low (Krenn et al., 2001). Therefore, we
emphasized that we were only interested in marked
conventionalization and that this property should be
annotated only when the annotator was certain about
its presence.

We asked the annotators to make decisions about
marked conventionalization only when they anno-
tated a compound as compositional: we assumed
that non-compositional compounds are by defini-
tion conventionalized. In practice however, in or-
der to avoid overestimated scores and loose over-
all judgements, we do not regard conventionaliza-
tion based on non-compositionality and convention-
alization annotated on a compositional compound as
equal. Instead we define a third labelX and assign it
to the marked conventionalization field whenever a
compound is annotated as non-compositional. This
means the marked conventionalization field in fact
has three possible labels (0, 1, and X). Through-
out the paper, the scores and data set statistics for
marked conventionalization are calculated based on
these three labels. Nevertheless, the user of the data
set retains the option of merging X and 1 and bene-
fiting from a larger set of markedly conventionalized
instances for particular tasks.

5 Validation of the Annotations

To ensure that the annotations are sound and in order
to eradicate possible problems caused by human er-
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ror, we calculated Spearman Correlation Coefficient
(ρ) between all the annotations and took the average
Spearman ρ for each annotator. This was done sepa-
rately for non-compositionality and marked conven-
tionalization. The results are shown in Table 1.

average ρ
(non-comp.)

average ρ
(marked conv.)

annotator1 0.58 0.60
annotator2 0.34 0.46
annotator3 0.52 0.57
annotator4 0.54 0.63
annotator5 0.59 0.64

Table 1: The average Spearman ρ for non-
compositionality and conventionalization.

We used Spearman ρ as a means to filter the less
reliable annotations (Reddy et al., 2011) by discard-
ing the annotations that had an average Spearman ρ
of below 0.50. This left us with four sets of annota-
tions for each property.

6 Inter-Annotator Agreement

We calculated inter-annotator agreement in terms of
Fleiss’ kappa between the four remaining annota-
tions. A summary of Fleiss’ kappa scores and their
interpretation according to Landis and Koch (1977)
is presented in Table 2.

non-comp. marked conv.
Fleiss’s kappa 0.62 0.55
kappa error 0.012 0.009
interpretation substantial

agreement
moderate
agreement

Table 2: Inter-annotator agreement in terms of Fleiss’
kappa for non-compositionality and conventionalization.

The observered moderate agreement on conven-
tionalization is consistent with the findings of Krenn
et al. (2001), and in accordance with our claim that
conventionalization can be more difficult than non-
compositionality for humans to distinguish.

7 Results

Our final data set contains a list of 1048 com-
pounds and, for each compound, four judge-

ments about non-compositionality and four judg-
ments about marked conventionalization. Essen-
tially, our data set consists of three classes of com-
pounds: (i) non-compositional (ii) compositional
but markedly conventionalized (iii) compositional
and non-conventionalized. These three classes can
be described as follows in the context of training
and evaluation tasks: (i) positive instances of non-
compositional compounds (ii) negative instances of
non-compositional but positive instances of conven-
tionalized compounds, and (iii) negative instances of
both previous types. We make the data set available
as a set of compounds and (2 × 4) judgments for
each (raw_dataset hereafter). raw_dataset
can be used in various formats. For instance we gen-
erated a set of compounds that were judged to be
non-compositional and conventionalized based on
the decision of the majority (3 or more out of 4)
and extracted several examples of different classes
which are presented in Table 3.

non-
compositional

compositional
but convention-
alized

compositional
and not conven-
tionalized

battle cry bulletin board area director
flag stop cable car art collection
gun dog car chase ankle injury
jet lag food court animal life
lead time wish list bus service
face value speed limit computer usage
mind map background check wrestling fan

Table 3: Examples of different classes of compounds that
were classified based on the decision of the majority.

One can also generate a set of judgements based
on the unanimous decision of the annotators. In each
of these two formats, however, some good exam-
ples of MWEs are missed due to the fact that half of
the annotators marked them as conventionalized due
to non-compositionality (label X) while the other
half marked them as conventionalized compositional
nouns (label 1). One can therefore generate another
format that covers such compounds. In such cases it
is up to the user of the data set to decide whether they
want to regard such instances as non-compositional,
as solely conventionalized, or simply as an instance
of an MWE. Table 4 presents the key statistics relat-
ing to the data set.
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Non-Compositionality
Annotated as non-comp. by the
majority

140 (out of
which 82 are
unanimous)

Annotated as comp. by the ma-
jority

840 (out of
which 763 are
unanimous)

Annotated as comp. by half and
non-comp. by the other half

62

Marked Conventionalization
Annotated as comp. but conv. by
the majority

155 (55 of which
are unanimous)

Annotated as comp. and non
conv. by the majority

570 (467 of
which are unani-
mous)

Annotated as conv. by half and
non-conv. by the other half

76

Other2 241

Table 4: Data set statistics.

8 Conclusion

We presented a data set of English noun-noun com-
pounds which are judged for two major properties
of MWEs: non-compositionality and conventional-
ization (statistical idiosyncrasy). The data set con-
sists of both positive and negative instances of non-
compositional and conventionalized MWEs and can
effectively be used in evaluation and training of
MWE identification and extraction systems. We re-
cruited expert annotators and validated the reliabil-
ity of their judgments using common statistical mea-
sures. We calculated inter-annotator agreement in
terms of Fleiss’ kappa, showing moderate and sub-
stantial agreements between the annotators for the
two properties. The strengths of this data set are its
granularity, incorporating both positive and negative
instances of MWEs, and the credibility of the judge-
ments as a result of recruiting expert annotators and
using statistical validations.

2As mentioned before, non conv. in practice has three labels
(0, 1, X). “Other” means either the compound was annotated as
conv. (1) by half and non-comp. (X) by the other half, or the
majority annotated these instances as non-compositional (X),
however a minority annotated them as something else (0, 1), or
the annotation for these instances includes all labels (0, 1, X) so
that none of the labels are the majority.
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Abstract

The focus of this work is statistical idiosyn-
crasy (or collocational weight) as a discrimi-
nant property of multiword expressions. We
formalize and model this property, compile a
2-class data set of MWE and non-MWE ex-
amples, and evaluate our models on this data
set. We present a possible empirical imple-
mentation of collocational weight and study
its effects on identification and extraction of
MWEs. Our models prove to be more effec-
tive than baselines in identifying noun-noun
MWEs.

1 Introduction

Multiword Expressions (MWEs) are sequences of
words that show some level of idiosyncrasy. For in-
stance they can be semantically idiosyncratic (i.e.,
their meaning cannot be readily inferred from the
meaning of their components, e.g., flea market),
syntactically idiosyncratic (their syntax cannot be
extracted from the syntax of their components, e.g.,
at large), statistically idiosyncratic (their compo-
nents tend to co-occur more often than expected by
chance, e.g., drug dealer), or have other forms of
idiosyncrasy. MWEs comprise several types and
sub-types. Although it is not always clear where
to draw the line between various types of MWEs,
the two broadest categories are lexicalized MWEs
and institutionalized MWEs (Sag et al., 2002). The
main property of lexicalized MWEs is syntactic or
semantic idiosyncrasy and the main property of in-
stitutionalized MWEs is statistical idiosyncrasy. Se-
mantic idiosyncrasy is closely related to the concept

of non-compositionality. It is important to note that
a MWE is often idiosyncratic in more than one way
(Baldwin and Kim, 2010). This means lexicalized
MWEs can be statistically idiosyncratic, and institu-
tionalized MWEs can be semantically idiosyncratic.
Institutionalized MWEs are closely related to col-
locations.1 They can be compositional (seat belt)
or non-compositional (hard drive), but statistically
they co-occur more often than expected by chance.

Efficient extraction and identification of MWEs
can positively influence some important Natural
Language Processing (NLP) tasks such as parsing
(Nivre and Nilsson, 2004) and Statistical Machine
Translation (Ren et al., 2009). Identification and ex-
traction of MWEs are therefore important research
questions in the area of NLP.

In this work we refer to statistical idiosyncrasy
as collocational weight and present a method of
modeling this property for noun-noun compounds.
Comparative evaluation reveals better performance
of proposed models compared to that of the base-
lines.

In previous work, it has often been suggested
that collocations can be identified by their non-
substitutability. This means we cannot replace a
collocation’s components with their near synonyms
(Manning and Schütze, 1999). For instance we can-
not say brief film instead of short film. Pearce (2001)
defines collocations as pairs of words where “one of
the words significantly prefers a particular lexical re-

1Although the major property of collocations is known to be
statistical idiosyncrasy, in many works, semantically idiosyn-
cratic multiword expressions have also been regarded as collo-
cation.

34



alization of the concept the other represents.” To the
best of our knowledge, however, non-substitutability
(with near synonyms) or in other words colloca-
tional weight has never been explicitly and empir-
ically tested. In this work, we present two models
that partially, and fully, model collocational weight,
and investigate its effects on extraction of MWEs.

2 Related work

Extraction of MWEs has been widely researched
from different perspectives. Various models from
rule-based to statistical have been employed to ad-
dress this problem.

Examples of rule-based models are Seretan
(2011) and Jacquemin et al. (1997) who base their
extraction on linguistic rules and formalism in or-
der to identify and filter MWE candidates, and Bald-
win (2005) who aims at extracting verb particle con-
structions based on their linguistic properties using
a chunker and dependency grammar.

Examples of statistical models are Pecina (2010),
Evert (2005), Lapata and Lascarides (2003), and
the early work Xtract (Smadja, 1993). Farahmand
and Martins (2014) present a method of extracting
MWEs based on their statistical contextual proper-
ties and Hermann et al. (2012) employ distributional
semantics to model non-compositionality and use it
as a way of identifying lexicalized compounds.

There are also hybrid models in the sense that
they benefit from both statistical and linguistic in-
formation (Seretan and Wehrli, 2006; Dias, 2003).
Ramisch (2012) implements a flexible platform that
accepts both statistical and deep linguistic criteria in
order to extract and filter MWEs.

There are also bilingual models which are mostly
based on the assumption that a translation of a
source language MWE exists in a target language
(Smith, 2014; Caseli et al., 2010; Ren et al., 2009).

A similar work to ours is Pearce (2001) who uses
WordNet in order to produce anti-collocations from
synonyms of the components of a MWE candidate,
and decides about “MWEhood” based on these anti-
collocations. Another similar work is Ramisch et
al. (2008) who use WordNet Synsets as one of their
resources in order to calculate the entropy between
the components of verb particle constructions.

3 Method

Following previous work by Manning and Schütze
(1999), and Pearce (2001), we define collocational
weight -a discriminant property of mainly institu-
tionalized but also lexical MWEs, for noun-noun
pairs according to the following hypotheses:

Simplified Hypothesis For a given two-word
compound, the head word is more likely to co-occur
with the modifier than with synonyms of the modifier.

Main Hypothesis For a given two-word com-
pound, the head word is more likely to co-occur with
the modifier than with synonyms of the modifier, and
the modifier is more likely to co-occur with the head
than with synonyms of the head.

We formalize these hypotheses in the form of M1

and M2 models which implement the simplified and
main hypotheses and are described by equations (1)
and (2), respectively.

M1 : P (w2|w1) > αP (w2|Syns(w1)) (1)

where:

P (w2|w1) =
#(w1w2)
#(w1)

and

P (w2|Syns(w1)) =

∑
w′

1∈Syns(w1)

#(w′1w2)∑
w′

1∈Syns(w1)

#(w′1 + L)

w1w2 represents a compound. Syns(w) repre-
sents a set of synonyms of w, and in order to obtain
such a set we use WordNet’s synset() function. L
is the smoothing factor, which is set to 0.1, and α is
a parameter that we altered between [1− 30]. L and
α are also present in M2 and are assigned the same
values as in M1.
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M2 : P (w2|w1) > αP (w2|Syns(w1)) (2)

&& P (w1|w2) > αP (w1|Syns(w2))

where:

P (w2|w1) =
#(w1w2)
#(w1)

P (w1|w2) =
#(w1w2)
#(w2)

and

P (w2|Syns(w1)) =

∑
w′

1∈Syns(w1)

#(w′1w2)∑
w′

1∈Syns(w1)

#(w′1) + L

P (w1|Syns(w2)) =

∑
w′

2∈Syns(w2)

#(w1w
′
2)∑

w′
2∈Syns(w2)

#(w′2) + L

4 Experiments

In order to test our hypotheses, we implement the
two models described above and two baselines, and
run a comparative evaluation. We divide our data
into two subsets: development and test sets. The
evaluation is carried out in two phases. In the first
phase we perform model selection and find the op-
timal parameters for various models on the develop-
ment set. In the second phase we evaluate the se-
lected models with optimal parameters on the test
set, which remains unseen by the models up to this
phase.

4.1 Data

Although there exist a few data sets for English
compounds (Baldwin and Kim, 2010; Reddy et al.,
2011), to the best of our knowledge there is no data
set with annotations for both MWE and non-MWE
classes. We required this for the evaluation of our
models therefore we compiled our own data set. We
randomly extracted a set of 3000 noun-noun pairs
that had the frequency of greater than 10 from across
POS-tagged English Wikipedia. We kept only the
pairs whose both head and modifier had more than
one synonym according to WordNet. In cases were

a given compound had different POS tags, we se-
lected the most frequent tags. We asked two compu-
tational linguists with background in MWE research
to annotate the pairs as MWE and non-MWE. Pairs
which were either semantically or statistically id-
iosyncratic, or both were annotated as MWE. Pairs
which were neither semantically nor syntactically
nor statistically idiosyncratic were annotated as non-
MWE. To asses the inter annotator agreement we
calculated Cohen’s kappa (κ) and to measure the
pairwise correlation among the annotators we cal-
culated Spearman’s rank correlation coefficient (ρ).
The Spearman ρ was equal to 0.66. The Cohen’s
kappa was equal to 0.64 (with the error of 0.02)
which can be interpreted as “substantial agreement”
according to Landis and Koch (1977). In the final
data set, the instances which were judged as MWE
by both annotators were regarded as MWE and the
instances which were judged as non-MWE by both
annotators were regarded as non-MWE. This re-
sulted in a set of 262 instances of MWE and 560
instances of non-MWE classes. To avoid the possi-
ble bias of the results towards non-MWE class, we
reduced the size of non-MWE class to 262 by ran-
domly removing 298 instances. Afterward we di-
vided the data into development (2/3) and test (1/3)
sets, which contain the same proportion of MWE
and non-MWE instances. An overview of the data
set is presented in Table 1.

Set MWE non-MWE
original set 262 262
dev. set 174 174
test set 88 88

examples

gold rush, role
model, family tree,
city center, bow
saw, life cycle

chess talent, bus
types, attack dam-
age, player skill, oil
storage, lobby area

Table 1: Dataset statistics.

4.2 Evaluation

We implement the following two baselines: (1)
Multinomial likelihood (Evert, 2005), which calcu-
lates the probability of the observed contingency ta-
ble for a given pair under the null hypothesis of in-
dependence. (2) Mutual information (Church and
Hanks, 1990), which calculates the mutual depen-
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dency of words of a co-occurrence, and has been
proved efficient in identification and extraction of
MWEs (Pecina, 2010; Evert, 2005). With respect to
the range of scores, we set and alter a threshold for
multinomial likelihood (M.N.L hereafter) and mu-
tual information (M.I. hereafter). Pairs that obtain a
score above the threshold are considered MWE, and
pairs that obtain a score below the threshold are con-
sidered non-MWE. Figure 1 illustrates the precision-
recall curve for our models and the baselines on the
development set.
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Figure 1: Precision-recall curve for various models.

The two baseline models i.e., M.N.L. and M.I.
reach a high precision only at the cost of a dramatic
loss in recall. They behave similarly, however, M.I.
in general performs better. M2 clearly performs bet-
ter compare to all other models. It reaches a high
precision and recall, however, its precision declines
rather quickly when recall increases. M1 shows a
more steady behaviour in the sense that reaching a
higher recall doesn’t significantly impact its preci-
sion. Figure 2 shows how F1 score changes for var-
ious models when changing parameters in order to
go from high precision to high recall. M1 and M2

constantly have a higher F1 score, where M.I. and
M.N.L. start off with a low score and reach a score
which is comparable with that of the other models.

Out of the four tested models, with respect to F1

scores, we select M1, M2, and M.I. for further ex-
periments. We set the relevant parameters to opti-
mal values2 (obtained by looking at the highest F1

scores) and run the next experiments on the test set,
which has remained unseen by the models up to this

2Optimal values of the parameters are as follows: α in M1 :
15, α in M2 : 20 and threshold for M.I. : 0.2
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Figure 2: F1 score for various models.

point. Table 2 shows the result of these experiments.
The performance of all three models on the test set
is consistent with their performance on the develop-
ment set. M2 reaches the highest precision and F1

score. M.I. has the highest recall but a low preci-
sion, and M1 has a high recall and a reasonable but
not very high precision.

model precision recall F1

M1 0.57 0.88 0.69
M2 0.75 0.86 0.80
M.I. 0.51 0.95 0.66

Table 2: Evaluation results in terms of precision, recall
and F1 score for the three selected models.

5 Conclusions

We showed that statistical idiosyncrasy can play
a significant role in identification and extraction
of MWEs. We showed that this property can be
used efficiently to extract idiosyncratic noun com-
pounds which constitute the largest subset of En-
glish MWEs. We referred to statistical idiosyncrasy
as collocational weight and formalized this property
and implemented two corresponding models. We
empirically tested the performance of these mod-
els against two baselines and showed that one of
our models constantly outperforms the baselines and
reaches an F1 score of 0.80 on the test set.
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Abstract

We present a domain-independent clustering-
based approach for automatic extraction
of multiword expressions (MWEs). The
method combines statistical information from
a general-purpose corpus and texts from
Wikipedia articles. We incorporate associa-
tion measures via dimensions of data points to
cluster MWEs and then compute the ranking
score for each MWE based on the closest
exemplar assigned to a cluster. Evaluation
results, achieved for two languages, show
that a combination of association measures
gives an improvement in the ranking of
MWEs compared with simple counts of co-
occurrence frequencies and purely statistical
measures.

1 Introduction

Extraction of multiword expressions (MWEs) is a
challenging and well-known task, aimed at identi-
fying lexical items with idiosyncratic interpretations
that can be decomposed into single words (Sag et al.,
2002). In this study, we primarily focus on the ex-
traction of two-word expressions in Russian.
A number of lexical association measures and

their combinations have been employed in previous
studies about extraction of general-purpose collo-
cations and domain-specific terms (Krenn and Ev-
ert, 2001; Pearce, 2002; Evert, 2004; Pecina and
Schlesinger, 2006; Hoang et al., 2009; Hartmann et
al., 2012). Ranked collocations with higher associ-
ation scores are selected into the n-best list. These
simple approaches are limited by the size of corpora
and the effect of low frequency on ranking (Krenn
and Evert, 2001; Evert and Krenn, 2005; Bouma,

2009). Most studies regard MWE as a classifica-
tion task and based on supervised methods to predict
the class (collocations or non-collocations) to which
an MWE candidate relates (Pecina and Schlesinger,
2006; Ramisch, 2015). There is no labeled training
set in Russian for these approaches, and data anno-
tation is time-consuming. The task could be seen
as a ranking task: ranking model group compara-
ble entities into queries by criteria and construct-
ing a ranking model using training data with exem-
plars to predict a ranking score. However, there are
no formal principles on how to detect comparable
MWEs from general-purpose corpora for Russian.
Therefore, in this study we focus on clustering se-
mantically similar MWE candidates using associa-
tion measures, calculated on a general-purpose cor-
pora and Wikipedia.
A particular general-purpose corpus, such as the

Russian National Corpus or the British National Cor-
pus, provides only a partial coverage of the modern
language. Although association measures have been
widely applied, they have a limitation: the computed
probabilities may be small in the particular corpus,
which gives a lower rank for MWE in the n-best
list. To avoid this situation, we incorporate the stan-
dard statistical measure, computed from the general-
purpose corpus, with Wikipedia, that contains a vast
amount of knowledge (e.g., named entities, domain-
specific terms, and disambiguation of word senses).
Given a small number of most representative

MWEs as exemplars, our primary goal is to iden-
tify MWE noun candidates, considering similarity
between a candidate and the exemplars, based on
association scores in both resources. Our method
consists of three steps: (i) extracting bigrams that
serve as MWE candidates, adopting Wikipedia arti-
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cles, and using predefined morphosyntactic patterns;
(ii) grouping the candidates using clustering tech-
niques; and (iii) rankingMWE candidates by a score,
which is computed based on the distance between the
candidate and the closest exemplar multiplied by the
percent of exemplars in the cluster. The third step
relies on the intuition that MWEs are highly ranked
in clusters with a higher number of exemplars due to
strong similarity between these expressions.
We demonstrate that combining association mea-

sures from two resources is effective, and improve-
ment according to precision-recall curves can be
achieved by a small number of measures combined.

2 Related Work

Over the last few decades, a large number of
works in computational corpus linguistics have been
published concerning the extraction of multiword
terms, collocations, and keyphrases that is well
described in Evert (2004), Gries, (2013), Hasan
and Ng (2014), and Ramisch (2015). The re-
search area covers several different methods, for
example, ranking MWEs by association measures
(Krenn and Evert, 2001; Pearce, 2002; Evert, 2004;
Braslavski and Sokolov, 2006); contrastive filter-
ing of domain-specific MWEs (Bonin et al., 2010);
methods that combine statistic measures to find
complex ranking functions, using clustering algo-
rithms and neural networks (Pecina and Schlesinger,
2006; Antoch et al., 2013); machine learning ap-
proaches to classify MWEs into predefined cat-
egories (Pecina and Schlesinger, 2006; Ramisch,
2015); and Wikipedia-based approaches (Medelyan
et al., 2009a; Medelyan et al., 2009b).
Many methods combine the different properties

of two or more association measures to find high-
ranking collocations with a strong association based
on these measures (Church et al., 1991; Pecina and
Schlesinger, 2006; Liu et al., 2009). Church et
al. (1991) used an association measure constructed
from mutual information (MI) and t-score formu-
lae with scaling functions for collocation identifica-
tion. Pecina and Schlesinger (2006) presented su-
pervised methods based on 82 association measures
to define a ranker function. They did not select the
“best universal method” for combining association
measures because the task depends on many factors,

such as language and data, among others. Liu et al.
(2009) adopted Wikipedia to compute term related-
ness based on a vector of Wikipedia concepts for
keyphrase extraction. They selected four measures
to group terms of a given document based on the se-
mantic relatedness between them. These measures
are cosine similarity, Euclidean distance, pointwise
mutual information (PMI), and normalized similar-
ity distance. Antoch et al. (2013) combined associa-
tion measures considered as binary classifiers using
receiver operating characteristic curves. They used
a hierarchical clustering algorithm to achieve better
results by clustering thesemeasures. The authors ob-
served that high efficiency of combining representa-
tives of the clusters of equivalent association mea-
sures depends on a dataset. Jain (2010) proposed that
there is no single clustering algorithm that is able to
outperform other algorithms across all applications.

3 The Clustering-based Approach for
Ranking MWEs

In this section, we describe the proposed clustering-
based approach. In contrast to classification meth-
ods that predict whether a MWE is a true collocation
or not, the goal is to determine which MWE candi-
dates are best statistically similar to a small set of ex-
emplars. Exemplars are MWEs (e.g., from the gold
standard set) with a rather high degree of association
between the word components. We employ Wik-
tionary to extract MWE exemplars. We perform the
clustering of the extracted MWEs using a k-means
algorithm and log-likelihood measure.
The proposed approach is composed of three

steps: (i) extracting a list of MWEs from Wikipedia
article titles, (ii) computing the log-likelihood of the
MWE data given the general-purpose corpus and
texts from Wikipedia, and (iii) grouping MWE can-
didates by the k-means clustering algorithm and then
ranking cluster points by measuring the distance
from these points to the closest exemplar multiplied
by the percent of exemplars in the cluster.

3.1 Selecting MWE Candidates

We selected MWE candidates from Wikipedia arti-
cle titles due to the following reasons: (i) the Rus-
sian sentence structure is very flexible, and extrac-
tion of bigrams by the patterns, where words are con-
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sidered neighbors (adjacent words), is insufficient;
and (ii) Wikipedia article titles have explicit phrase
boundaries, marked by human editors in Wikipedia
markup (Hartmann et al., 2012). The following fil-
ter was applied to all the two-word sequences: the
candidates were not allowed to contain punctuation
marks except hyphenated expressions, and the candi-
dates were not allowed to contain proper names and
common geographic locations. The extracted candi-
dates were then filtered by predefined morphosyn-
tactic patterns (e.g., adjective + noun, noun + noun).
The morphosyntactic analyzer Mystem1 and NLTK
library are applied for Russian and English, respec-
tively. We used a list of patterns fromBraslavski and
Sokolov’s (2008) and Manning’s papers (1999) for
texts in Russian and English, respectively.

3.2 Clustering MWE Candidates and Ranking
The proposed approach assigns MWE candidates to
the clusters based on the distribution of statistical
measures associated with each candidate in general-
purpose corpora. The clustering method we apply
is k-means that has been widely used with the Eu-
clidean metric for computing the distance between
points and cluster centers (Jain, 2010). As indicated
from the results, reported in Section 4 of this paper
and recent studies (Evert, 2004; Evert and Krenn;
2005), log-likelihood achieves better results than
ranking by other statistical measures, such as t-score
and MI. Therefore, we compute log-likelihood as
statistical characteristics of MWE candidates, based
on two different resources of texts.
In this approach, MWE candidates are represented

as points in a two-dimensional space, where each
dimension represents by log-likelihood. We make
assumption that (i) the distribution over all exem-
plars is similar to a distribution over all words in
the corpus, and (ii) MWEs are independently dis-
tributed and probabilities are estimated as frequency
ratios, which is similar to the naive Bayes assump-
tion (Baker andMcCallum, 1998). MWE candidates
are ranked by the following formula, that shows the
ranking score of MWE j in cluster cl:

score(mwe = j) = (1−mini=1,...,ncl
d(j, gsi)

rcl
)∗npcl

(1)
1Mystem is available at https://tech.yandex.ru/mystem/.

where ncl indicates the number of exemplars in clus-
ter cl, npcl denotes ncl in percent, d(j, gsi) denotes
Euclidean distance between MWE j and the exem-
plar gsi in cluster cl, rcl denotes radius of cluster cl.

4 Evaluation

We use the Russian National Corpus (RNC) and
the British National Corpus (BNC) as the general-
purpose corpus of the Russian language and the En-
glish language, respectively. For corpora in Russian,
we generated frequency lists of bigrams in singu-
lar and plural forms. We adopt n-gram data of En-
glish Wikipedia and the BNC, extracted by Lin et al.
(2010) and Leech and Rayson (2014). We suppose
that all MWE candidates occur at least once in cor-
pora due to frequency thresholds in the lists. Table 1
shows MWEs that are top-ranked by our approach.

Russian MWEs English MWEs
мировая война (mirovaya voyna) ‘world war’ world war
советский союз (sovetskiy soyuz) ‘soviet union’ soviet union
настоящее время (nastoyashchee vremya) ‘present time’ feature film
чемпионат мира (chempionat mira) ‘world cup’ binomial name
населенный пункт (naselennyy punkt) ‘human settlement’ world champion
водные ресурсы (vodnye resursy) ‘water resources’ popular culture

Table 1: Sample of top-ranked collocations.

We adopt Wiktionary as the gold standard dataset
for Russian and English due to use of Russian Wik-
tionary as a data source for WordNet-like resources.
The single-word nouns from Wiktionary were used
as “raw materials” for the Yet Another RussNet
(YARN) project (Braslavski et al., 2014). Compar-
ison of vocabularies in the English and Russian edi-
tions of Wiktionary is described in (Krizhanovsky
and Smirnov, 2013). The gold standard set for Rus-
sian was filtered to remove non-collocations. Table
2 shows a summary of MWEs for two languages.
We compute the precision-recall curves of the n-

best lists to evaluate our approach. For comparison,
we use n-best lists that are ranked by popular as-
sociation measures: t-score, log-likelihood, and MI.
Wermter andHahn (2006) proposed that purely asso-
ciation measures could not reveal any significant im-
provement over co-occurrence frequency. We have
also used frequencies of MWEs as a baseline mea-
sure for ranking. The types of corpus are followed
by a subscript: 1 refers to the general-purpose cor-
pus, and 2 refers to texts from Wikipedia articles.

41



Language Russian English
No. of tokens in the
general-purpose corpus

364,881,378 110,691,482

No. of Wikipedia arti-
cles

1,172,000+ 4,675,000+

No. of MWE candidates 164,805 135,659
No. of MWEs, extracted
from Wiktionary

7433 40996

No. of MWEs, selected
for the gold standard

3670 40996

Intersection of the sets 2216 6342

Table 2: Summary of the list of MWE candidates.

Figure 1: Precision-recall curves of the proposed ap-
proach and association measures (for Russian).

Figure 2: Precision-recall curves of the proposed ap-
proach and association measures (for English).

The results, shown in Figures 1 and 2, indicate that
the proposed approach outperforms baseline ranking
by association measures, but the precision of the n-
best list is significantly decreased with increase of
recall. In order to evaluate the impact of a varied
number of clusters, we conduct experiments on the

Figure 3: Comparison of F-measure curves of the pro-
posed approach based on different statistical measures.

dataset in Russian using log-likelihood. We change
the number of clusters from 5 to 30 to achieve the
maximum F-measure with the minimum number of
n-best ranked MWEs. Results, shown in Table 3,
indicate that n equals 3,500 for each experiment, and
the number of clusters is 5.

No. of clusters P@n R@n F-measure
5 0.553 0.6029 0.5769
10 0.5438 0.5928 0.5672
15 0.568 0.5418 0.5546
20 0.5634 0.5374 0.5501
25 0.5431 0.5181 0.5303
30 0.5371 0.5124 0.5245

Table 3: Evaluation results with a varied number of clus-
ters, n equals to 3,500 (for Russian).
To confirm that a combination of association mea-

sures from two resources significantly helps in the
task of extracting MWEs, we compare our results
with different combinations of measures according
to F-measure. Figure 3 shows that the combination
of log-likelihood, based on two corpora in Russian,
gives the best results compared with others.

5 Conclusion and Future Work

In this paper, we proposed a clustering-based ap-
proach for the extraction of multiword expressions
(MWEs). We incorporated association measures,
computed from two corpora, by representing each
MWE as a two-dimensional data point. The method
assigned MWEs to clusters using k-means cluster-
ing and then ranked MWEs by Euclidean distance to
the nearest exemplar from the gold standard set. The
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efficiency of our approach depends on MWE prob-
abilities in two corpora, and the small set of multi-
word exemplars is required. For future works, we
plan to split MWE candidates into small queries of
comparableMWEs by linguistic criteria and then use
query-dependent ranking for each query-MWE pair.
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One of the major motivations for a construction-
based approach to syntax is that a given rule of syn-
tactic formation can often be associated with more
than one semantic specification. For example, a
pair of expressions like purple plum and alleged
thief call on different rules of semantic combina-
tion. The first involves something related to inter-
section of sets: a purple plum is a member of the
set of purple things and of the set of plums. But an
alleged thief is not a member of the intersection of
the set of thieves and the set of alleged things. In-
deed, that intersection is empty, since only a propo-
sition can be alleged and a thief is never a propo-
sition. Constructional approaches recognize as in-
stances of compositionality cases in which two dif-
ferent meanings for the same syntactic form are li-
censed by two different collections of form-meaning
licensors, i.e., by two different collections of con-
structions. Construction-based grammars are nev-
ertheless compositional in the usual sense: if you
know the meanings of the words and you know all
the rules that combine words and phrases into larger
formal units, while simultaneously combining the
meanings of the smaller units into the meanings of
the larger ones, then you know the forms and mean-
ings of all the larger units, including all the sen-
tences. Constructional approaches focus on the fact
that there are many such rules, and especially on
the rules that assign meanings to complex structures.
Such approaches do not draw a theoretical distinc-
tion between those rules thought to be in the core and
those considered peripheral. The construction gram-
marian conceives of a language as a continuum of
generality of expressions; a construction grammar

models this continuum with an array of construc-
tions of correspondingly graded generality (Fillmore
et al. 1988).

This paper surveys the various ways meanings can
be assembled in a construction-based grammar, with
a focus on the continuum of idiomaticity, a gradi-
ent of lexical fixity stretching from frozen idioms,
like the salt of the, earth, in the doghouse and un-
der the weather, on the one hand, to fully produc-
tive rules on the other, e.g., the rule licensing Kim
blinked (the Subject-Predicate construction). The
semantics of constructions is the semantics to be dis-
covered along the full length of this gamut. Mean-
ings discussed include: literal meaning, the mean-
ings of constructions that regulate argument expres-
sion, context indexation, less commonly recognized
illocutionary forces, metalinguistic commentary and
topic-focus alignment. We conclude that the seam-
less integration of relatively idiomatic constructions
with more productive ones in actual sentences un-
dermines the notion of a privileged core grammar.
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Abstract

This paper introduces NEMWEL, a sys-
tem that performs Never-Ending Mul-
tiWord Expressions Learning. Instead
of using a static corpus and classifier,
NEMWEL applies supervised learning on
automatically crawled news texts. More-
over, it uses its own results to periodically
retrain the classifier, bootstrapping on its
own results. In addition to a detailed de-
scription of the system’s architecture and
its modules, we report the results of a man-
ual evaluation. It shows that NEMWEL is
capable of learning new expressions over
time with improved precision.

1 Introduction
Multiword expressions (MWEs) are combina-
tions of two or more lexemes which present some
lexical, syntactic, semantic, pragmatic or sta-
tistical idiosyncrasies with respect to regular
combinations (Baldwin and Kim, 2010). Ex-
amples include idioms (saw logs as to snore),
phrasal verbs (pull over, give up), noun com-
pounds (machine learning, support vector ma-
chine) and complex function words (as well as,
with respect to).
In human languages, such constructions are

very frequent, as native speakers rarely realize
how often they employ them (Sag et al., 2002;
Jackendoff, 1997b). However, they are not fre-
quent in NLP resources such as lexicons and
grammars, and this represents a bottleneck for
building robust and accurate NLP applications.

Since the construction of such resources is
onerous and demands highly qualified linguis-
tic expertise, automatic MWE lexicon extrac-
tion is an attractive alternative which has been
one of the most active topics in the MWE re-
search community. Proposed methods are often
based on supervised and unsupervised learning
of MWE lists from textual corpora (Evert and
Krenn, 2005; Pecina, 2008). In spite of the avail-
ability of very large corpora like the Gigaword
or WaC (Baroni et al., 2009), these methods are
still limited by the coverage of the texts in the
source corpus.
This paper presents NEMWEL, a machine

learning system able to learn MWEs follow-
ing the never-ending approach (Mitchell et al.,
2015). NEMWEL automatically extracts MWE
candidates from a corpus periodically crawled
from a Brazilian online news portal. Then,
based on supervised training, NEMWEL classi-
fies the candidates and promotes some of them
to the status of “true MWEs”, which are used
to retrain the classifier. This process is re-
peated endlessly, taking into consideration the
true MWEs learned in previous steps. By doing
so, NEMWEL tries to resemble the way human
beings learn.
We have developed a prototype that imple-

ments this idea. To the best of our knowledge,
this is the first attempt to build MWE lexicons
using a never-ending learning approach. We
have manually evaluated the extracted MWEs
and we show that the precision of the learner
seems to increase with time.
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The remainder of this paper is structured as
follows: we discuss related work on MWE ex-
traction (Section 2) and never-ending learning
methods (Section 3). Then, we present the ar-
chitecture and detail the modules in NEMWEL
(Section 4). Finaly, we present the results of
automatic and manual evaluation in Brazilian
Portuguese (Section 5) and ideas for future work
(Section 6).

2 MWE Extraction
Automatic unsupervised MWE learning from
corpora has been proposed based on pairwise
association measures (Church and Hanks, 1990;
Smadja, 1993; Pedersen et al., 2011), string
matching (Duan et al., 2006), extraction pat-
terns based on expert linguistic knowledge and
automatic analysis (Justeson and Katz, 1995;
Seretan and Wehrli, 2009) or a combination of
these methods (Araujo et al., 2011).
Supervised machine learning methods have

also been used for MWE lexicon learning.1
Pecina (2008) proposes a logistic regression clas-
sifier which uses as features a set of 84 differ-
ent lexical association measures. Ramisch et al.
(2008) use decision trees for classifying MWEs
based on standard association measures as well,
but they add variation entropy. In terms of clas-
sifiers, many alternatives have been tested like
bayesian networks (Dubremetz and Nivre, 2014)
and support vector machines (Farahmand and
Martins, 2014). Zilio et al. (2011) use a stable
set of features, but compare several classifica-
tion algorithms implemented in Weka. Further-
more, in-context MWE tagging has been per-
formed using sequence learning models like con-
ditional random fields (Constant and Sigogne,
2011) and structured perceptron (Schneider et
al., 2014).2
Many alternative sources and methods have

been tested for MWE extraction, like parallel
texts (Caseli et al., 2010; Tsvetkov and Wint-
ner, 2010), bilingual lexicons (Salehi and Cook,
2013), Wikipedia interlingual links (Attia et al.,

1Usually, such methods require a list of candidate ex-
pressions annotated as true or false MWEs.

2Such models require corpora where sentences are an-
notated with the MWE sequences they contain.

2010), WordNet synonyms (Pearce, 2001) and
distributional neighbors (Reddy et al., 2011).
The web has also been considered as a source for
MWE learning, often using page hit counts from
search engines (Lapata and Keller, 2005; Kim
and Nakov, 2011). However, in related work,
candidates are not extracted from web texts, but
from traditional corpora.
Differently from previous corpus-based or

web-based learning approaches, our goal is not
to build one static MWE lexicon. Instead, we
propose to build a system that continuously
learns new expressions from the web. It pop-
ulates and enriches the lexicon with new MWEs
every day. Our proposal is to employ bootstrap-
ping on a traditional supervised machine learn-
ing setting, enriched with new features and dy-
namically crawled corpora. At any given time, a
snapshot of the database will include the current
MWE lexicon, which can be exported, evaluated
and used to retrain the classifier. To the best of
our knowledge, this is the first time never-ending
learning is applied to MWE lexicon discovery.

3 Never-Ending Learning

In traditional machine learning, an algorithm is
usually applied to learn a model from a fixed
amount of labeled training data. Although ef-
fective in many applications, this way of learn-
ing is very limited and also far from the way
that human beings learn. Never-ending learn-
ing is an approach that tries to resemble the
way humans learn, taking into account different
sources of information and using previous expe-
rience to guide subsequent learning (Mitchell et
al., 2015). It can be classified as a bootstrapping
algorithm. It requires a small set of annotated
items, used to initialize the model, and then it
uses its own results to retrain the classifier in
future iterations.
The main system developed following the

never-ending learning approach is the Never-
Ending Language Learner (NELL) of Carlson
et al. (2010). NELL is the learning system of
the Read the Web project3 and it is running
24 hours/day since 2010. NELL’s goals are (1)

3http://rtw.ml.cmu.edu/rtw/
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to read the web extracting beliefs (true facts)
that populate a knowledge base and (2) to learn
better day by day. To do so, NELL is able to
perform different learning tasks (category clas-
sification, relation classification, etc.) and com-
bine different learning functions to make deci-
sions and improve its learning methods (Mitchell
et al., 2015).
In this paper we describe the Never-Ending

MultiWord Expressions Learner (NEMWEL).
Different from NELL, NEMWEL is in its first
year of life and is intended only to learn MWEs.
But, following the main never-ending learning
premise, NEMWEL uses its previously learned
knowledge to better learn new MWEs.
According to Jackendoff (1997a), there are as

many MWEs in a lexicon as single words. For
Sag et al. (2002) this is an underestimation and
the real number of MWEs grows with language
evolution. These findings corroborate our idea
that a never-ending learning system is a good
solution to tackle the MWE extraction problem.

4 The Never-Ending MWE Learner

The NEMWEL was developed in Java and is
divided into four modules – crawler, extractor,
processor and promoter – explained in the next
subsections. These four modules are applied
in sequence and repeatedly in each iteration of
NEMWEL.

4.1 Crawler
The first module, the Crawler, is responsible for
collecting texts from the web to build a cor-
pus. In our current prototype, in each itera-
tion, 40 different articles from the G1 news por-
tal4 are downloaded randomly, cleaned by re-
moving HMTL markup and boilerplate content,
and concatenated in one unique file. Figure 1
shows an excerpt of a text from one iteration of
the Crawler module.

4.2 Extractor
After collecting and cleaning the texts, the Ex-
tractor annotates the tokens in each text with its
surface form, part-of-speech tag and lemma. To

4http://g1.globo.com

Mais de 100 famílias de baixa renda ocu-
param casas de um conjunto habita-
cional, em Paulínia (SP), na madrugada
desta quarta-feira (19).
More than 100 low-income families occu-
pied houses of a housing development in
Paulinia (SP) in the early hours of this
Wednesday (19).

Figure 1: Excerpt of a text crawled from the news
portal. Original text (in Brazilian Portuguese) and
its English translation (manually prepared for this
paper).

do so, we used the TreeTagger (Schmid, 1994)
with a model trained for Portuguese5. Tagging
the corpus is required because we evaluate our
learner using nominal MWEs, thus we need to
be able to identify nouns and their complements.
The TreeTagger was chosen because it is free,
easy to use and fast, enabling us to quickly pro-
cess large amounts of crawled texts. The same
excerpt of Figure 1 processed by the Extractor
is shown in Figure 2.
The sequences of tagged tokens in the crawled

texts are processed by the mwetoolkit (Ramisch,
2015), which is the core of our Extractor and
Processor modules. In the Extractor, a list
of MWE candidates is obtained by matching a
multilevel regular-expression pattern (Figure 3)
against the tagged corpus. Figure 4 shows an
example of MWE candidate extracted from our
example sentence, using the pattern of Figure 3.
The pattern is based on intuitive noun phrase
descriptions, but it also captures more candi-
dates, that are not necessarily nominal com-
pounds. Further filters must be applied to re-
move regular noun phrases and keep only nom-
inal MWEs.

4.3 Processor
In this module, the mwetoolkit calculates some
association measures that will be used by the
Promoter in the next step. These measures are
calculated based on the number of occurrences
of the MWE candidate and of the words that

5http://gramatica.usc.es/~gamallo/tagger\
_intro.htm
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Mais ADV mais
de PRP de
100 CARD @card@
...
casas NOM casa
de PRP de
um DET um
conjunto NOM conjunto
habitacional ADJ habitacional
, VIRG ,
em PRP em
Paulínia NOM paulínia
( QUOTE (
SP NOM SP
) QUOTE )
, VIRG ,
na PRP em
madrugada NOM madrugada
desta PRP de
quarta-feira NOM quarta-feira
( QUOTE (
19 CARD @card@
) QUOTE )
. SENT .

Figure 2: The excerpt from Figure 1 after part-of-
speech tagging by TreeTagger.

<patterns>
<pat>

<w pos=”NOM”/>
<pat repeat=”{1,3}”/>

<either>
<pat>

<w pos=”PRP*” lemma=”de”/>
<w pos=”NOM”/>

</pat>
<pat>

<w pos=”ADJ”/>
</pat>

</either>
</pat>

</pat>
</patterns>

Figure 3: List of part-of-speech sequences describ-
ing nominal multiword expressions in Brazilian Por-
tuguese. They correspond to a noun followed by 1
to 3 complements, which can be either an adjective
or a prepositional phrase introduced by de.

<cand candid=”684”>
<ngram>

<w lemma=”conjunto”>
<freq name=”g1” value=”10”/>
<freq name=”plnbr” value=”3005”/>

</w>
<w lemma=”habitacional”>

<freq name=”g1” value=”3”/>
<freq name=”plnbr” value=”359”/>

</w>
<freq name=”g1” value=”3”/>
<freq name”plnbr” value=”86”/>

</ngram>
. . .

</cand>

Figure 4: MWE candidate extracted from the sen-
tence of Figure 1 using the pattern of Figure 3.

compose it. In our experiments, these numbers
of occurrences were calculated using the G1 cor-
pus and also the PLN-BR corpus6, which con-
tains around 29 million words of news articles
from the Folha de São Paulo newspaper, from
1994 to 2004. The use of the larger, static cor-
pus may help because it provides more accurate
association measures as features. For instance,
in Figure 4, we can see that G1 returns 3 oc-
currences for conjunto habitacional, and 10 and
3 occurrences for the individual words. It is
known that association measures are sensitive
to low-frequency data, so it is probably a good
idea to complement this with a measure calcu-
lated on PLN-BR, where the frequencies are of
86 occurrences for the expression, 3006 occur-
rences for the first words and 359 occurrences
for the second word.

4.3.1 Features
The next module, the Promoter, uses super-

vised training performed using the 17 features
defined below.

• Association measures – measure of the
strength of the association between the fre-
quency of an n-gram and the frequency of
each word that forms the n-gram. In our
experiments, four measures were used: nor-
malized frequency, Student’s t score, point-

6http://www.nilc.icmc.usp.br/plnbr
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wise mutual information and Dice’s coeffi-
cient. All of these measures were calculated
by the mwetoolkit in the two corpora: G1
and PLN-BR. Thus, in total, we have eight
features based on association measures.

• Translatability – measure based on the
non-translatability property of true MWEs.
First, we estimate the probability of a con-
tent word w7 to be translated into a word x
in English (en) and then back to Portuguese
(pt), using a bilingual weighted lexicon:

T (w) =
∑

x

Ppt→en(w, x) × Pen→pt(x, w)

Two new features were proposed based on
this probability:

translatability_mult =
n∏

i=1
T (wi)

translatability_mean = 1
n

n∑
i=1

T (wi)

Figure 5 shows an example of these features
for the candidate expression taxa de juros
(interest rate).

• POS context – the part of speech of
the three previous and the three next to-
kens around the MWE candidate. We
also use the concatenated parts of speech
of the words that form the MWE candi-
date. When there are more than one possi-
ble contexts, the most frequent one is cho-
sen. Thus, seven features are based on the
POS context, three in each direction and
the POS sequence of the target candidate.

The new features proposed in this paper,
based on translatability, are based on linguis-
tic tests that show that MWEs have limited
variability and thus, in most cases, cannot be
translated word by word. It is calculated us-
ing two probabilistic bilingual dictionaries gen-
erated by NATools8 from the FAPESP par-
allel corpus corpus9. This corpus contains

7In our experiments, content words are nouns and ad-
jectives.

8http://corpora.di.uminho.pt/natools
9http://www.nilc.icmc.usp.br/nilc/tools/

FapespCorpora.htm

T (taxa) = Ppt→en(taxa, rate)×
Pen→pt(rate, taxa)+
Ppt→en(taxa, level)×
Pen→pt(level, taxa)+
Ppt→en(taxa, interest)×
Pen→pt(interest, taxa)
= 0.583 × 0.537 + 0.251 × 0.096+
0.008 × 0
= 0.3372

T (juros) = Ppt→en(juros, interest)×
Pen→pt(interest, juros)+
Ppt→en(juros, rates)×
Pen→pt(rates, juros)+
= 0.628 × 0.032 + 0.372 × 0.114
= 0.0625

translatability_mult
= T (taxa) × T (juros)
= 0.0211

translatability_mean
= 1

2T (taxa) + T (juros)
= 0.1998

Figure 5: Example of the two features based on
translatability of the MWE candidate taxa de juros
(interest rate).

a set of sentence-aligned Portuguese-English
and English-Portuguese articles about research
projects. From this corpus, NATools outputs,
for each source word, a list of up to 10 best
translations accompanied by its probability.
To the best of our knowledge, this is the

first time that translatability is implemented for
MWE automatic extraction using automatically
built bilingual lexicons. Related methods are
based on non weighted, standard bilingual lexi-
cons like PanLex or Wikipedia titles (Salehi and
Cook, 2013; Attia et al., 2010).

4.4 Promoter
The last module, the Promoter, analyses the
MWE candidates and promotes to beliefs the
ones with the best scores. Beliefs are candidates
that were classified as true MWEs in a previous
iteration of the learner.
The Promoter applies a classification model

trained using Weka (Hall et al., 2009) as a wrap-
per and LibSVM (Chang and Lin, 2011) as the
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core. The result is a support vector machine
that distinguishes true MWEs from ordinary
noun phrases. As training data, it uses pre-
viously annotated instances. The Promoter is
generated based on examples that were already
classified, either manually, for the Promoter-0,
or manually+automatically, for the Promoters
built in subsequent iterations.
SVM was the chosen classifier because it

has presented good performance on diverse
NLP tasks such as text categorization (Sassano,
2003), sentiment analysis (Mullen and Collier,
2004) and named entity recognition (Li et al.,
2008), as well as standard corpus-based MWE
extraction (Farahmand and Martins, 2014).

5 Evaluation
An initial training corpus was generated from
texts of the G1 news portal. From this corpus,
NEMWEL extracted 1,100 candidate MWEs
which were manually annotated by two native
speakers of Brazilian Portuguese: 600 candi-
dates for each one with an intersection of 100
candidates. The annotation interface showed
the candidate and the sentences from the G1
corpus from which the candidate was extracted
(see Figure 6). The annotators had to per-
form a binary choice as to whether the candi-
date was a true MWE (“Sim”) or not (“Não”).
Each annotator cross-checked the other one’s
items. This last cross-checking step was cru-
cial because, even though some guidelines were
provided, some cases were hard to decide and
required discussion. From this first annotation,
19% of the candidates were evaluated as true
MWEs. The kappa agreement (Cohen, 1960)
was 0.85, which indicates a very good agree-
ment.
The annotated set was used to train

our Promoter-0 as explained in section 4.4.
NEMWEL, then, run for 15 iterations and, at
each 5 iterations (a generation), a new Promoter
was trained using the beliefs and false MWEs
classified in the previous iterations.10 After
these 15 iterations, a new sample of 1,200 MWE

10Thus, in our experiments, three Promoters were gen-
erated: (1) Promoter-0, trained only with manually an-
notated data, run from iteration 1 to 5 (first generation);

Iterations
1-5 6-10 11-15 All

Precision 24.6% 32.2% 34.3% 30.5%
Recall 55.6% 65.5% 52.3% 57.0%
F1 34.1% 43.2% 41.4% 39.7%
Accuracy 85.5% 87.5% 83.8% 85.6%

Table 1: Results of NEMWEL’s evaluation after 15
iterations and 3 generations of new Promoters.

candidates was manually evaluated by the two
native speakers, but with no overlap between the
annotators. To allow the analysis of the learning
curve over time, this sample contained 400 can-
didates extracted in each generation, from which
each annotator judged half, that is, 600 candi-
dates per annotator, 200 for each generation.
From the 1,200 candidates, 15.6% were clas-

sified as true MWE. The results are shown in
Table 1 in terms of precision, recall, F-measure
and accuracy calculated regarding true positives
(TP), false positives (FP), true negatives (TN)
and false negatives (FN):

• Precision = T P
T P +F P

• Recall = T P
T P +F N

• F1 = 2 × P×R
P +R

• Accuracy = T P +T N
T P +F P +T N+F N

As we can notice from Table 1, the preci-
sion rises 10 percentage points from the first to
the last iteration, indicating that NEMWEL is
capable of improving its learning performance,
as expected for a never-ending learning system.
The decay in recall from 65.5% to 52.3% from
the second to the third generation seems to be
related to overfitting. Another possible expla-
nation for this decay is that only the candi-
date MWEs annotated as true by both anno-
tators were taking into account. Furthermore,
since the dataset is unbalanced, the classifier
(2) Promoter-1, trained with manually annotated data
and the true/false MWEs learned in the first generation,
run from iteration 6 to 10; and (3) Promoter-2, trained
with manually annotated data and the true/false MWEs
learned in the first two generations, run from iteration 11
to 15.
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Figure 6: Interface for manual annotation of MWE candidates.

may tend to classify new candidates always as
non MWEs. New experiments will be carried
out to investigate this decay. Table 2 shows
some examples of MWE candidates extracted by
NEMWEL.

6 Conclusions

From the results presented in this paper, it is
possible to conclude that the never-ending learn-
ing approach can be applied to the automatic
extraction of MWEs. Although with just a few
iterations (15), it was already possible to see
that NEMWEL is able to improve its learning
based on previously learned knowledge, with an
increase of 10 percentage points in precision.

The next steps of this work include running
NEMWEL for a long period, ideally 24 hours
per day, continuously. It is also our intention
to expand NEMWEL to be able to learn other
MWEs, from other sources and for different lan-
guages, such as English, maybe following a mul-
tilingual extraction process. Finally, some new
features can be added such as the one that
tests the substitutability of a MWE candidate,
i.e., the non-replacement of words that form
the MWE candidate by synonyms. NEMWEL’s
source code and search interface will be avail-
able soon at: http://www.lalic.dc.ufscar.
br/never-ending/.

MWE candidate NEWMEL Reference
horário comercial F T
business hours

dona de casa F T
housewife

dor de cabeça F T
headache

fogo de artifício T T
firework

empate técnico T T
technical draw

terminal de ônibus T T
bus terminal

estado do Rio F F
state of Rio

ano passado F F
last year

local de exame F F
test site

redução de custo T F
cost reduction

banco traseiro T F
rear seat

processo de seleção T F
selection process

Table 2: Examples of true MWE candidates ex-
tracted by NEMWEL, respectively: false negatives,
true positives, true negatives and false positives.
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Abstract

In this paper, we present the first attempt
to integrate predicted compositionality scores
of multiword expressions into automatic ma-
chine translation evaluation, in integrating
compositionality scores for English noun
compounds into the TESLA machine trans-
lation evaluation metric. The attempt is
marginally successful, and we speculate on
whether a larger-scale attempt is likely to have
greater impact.

1 Introduction

While the explicit identification of multiword ex-
pressions (“MWEs”: Sag et al. (2002), Baldwin
and Kim (2009)) has been shown to be useful in
various NLP applications (Ramisch, 2012), recent
work has shown that automatic prediction of the
degree of compositionality of MWEs also has util-
ity, in applications including information retrieval
(“IR”: Acosta et al. (2011)) and machine transla-
tion (“MT”: Weller et al. (2014), Carpuat and Diab
(2010) and Venkatapathy and Joshi (2006)). For
instance, Acosta et al. (2011) showed that by con-
sidering non-compositional MWEs as a single unit,
the effectiveness of document ranking in an IR sys-
tem improves, and Carpuat and Diab (2010) showed
that by adding compositionality scores to the Moses
SMT system (Koehn et al., 2007), they could im-
prove translation quality.

This paper presents the first attempt to use MWE
compositionality scores for the evaluation of MT
system outputs. The basic intuition underlying this
work is that we should sensitise the relative reward

associated with partial mismatches between MT out-
puts and the reference translations, based on com-
positionality. For example, an MT output of white
tower should not be rewarded for partial overlap
with ivory tower in the reference translation, as
tower here is most naturally interpreted composi-
tionally in the MT output, but non-compositionally
in the reference translation. On the other hand, a par-
tial mismatch between traffic signal and traffic light
should be rewarded, as the usage of traffic is highly
compositional in both cases. That is, we ask the
question: can we better judge the quality of trans-
lations if we have some means of automatically es-
timating the relative compositionality of MWEs, fo-
cusing on compound nouns, and the TESLA machine
translation metric (Liu et al., 2010).

2 Related Work

In this section, we overview previous work on MT
evaluation and measuring the compositionality of
MWEs.

2.1 Machine Translation Evaluation

Automatic MT evaluation methods score MT system
outputs based on similarity with reference transla-
tions provided by human translators. This scoring
can be based on: (1) simple string similarity (Pap-
ineni et al., 2002; Snover et al., 2006); (2) shallow
linguistic information such as lemmatisation, POS
tagging and synonyms (Banerjee and Lavie, 2005;
Liu et al., 2010); or (3) deeper linguistic informa-
tion such as semantic roles (Giménez and Màrquez,
2008; Padó et al., 2009).

In this research, we focus on the TESLA MT eval-
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uation metric (Liu et al., 2010), which falls into the
second group and uses a linear programming frame-
work to automatically learn weights for matching
n-grams of different types, making it easy to incor-
porate continuous-valued compositionality scores of
MWEs.

2.2 Compositionality of MWEs

Earlier work on MWE compositionality (Bannard,
2006) approached the task via binary classification
(compositional or non-compositional). However,
there has recently been a shift towards regression
analysis of the task, and prediction of a continuous-
valued compositionality score (Reddy et al., 2011;
Salehi and Cook, 2013; Salehi et al., 2014). This
is the (primary) approach we take in this paper, as
outlined in Section 3.2.

3 Methodology

3.1 Using compositionality scores in TESLA

In this section, we introduce TESLA and our method
for integrating compositionality scores into the
method.

Firstly, TESLA measures the similarity between
the unigrams of the two given sentences (MT out-
put and reference translation) based on the following
three terms for each pairing of unigrams x and y:

Sms =
{

1 if lemma(x) = lemma(y)
a+b
2 otherwise

Slem(x, y) = I(lemma(x) = lemma(y))
Spos(x, y) = I(POS (x) = POS (y))

where:

a = I(synset(x) ∩ synset(y))
b = I(POS (x) = POS (y))

lemma returns the lemmatised unigram, POS re-
turns the POS tag of the unigram, synset returns the
WordNet synsets associated with the unigram, and
I(.) is the indicator function.

The similarity between two n-grams x = x1,2,...,n

and y = y1,2,...,n is measured as follows:

s(x, y) =
{

0 if ∃i, s(xi, yi) = 0
1
n

∑n
i=1 s(x

i, yi)) otherwise

TESLA uses an integer linear program to find
the phrase alignment that maximizes the similarity
scores over the three terms (Sms, Slem and Spos) for
all n-grams.

In order to add the compositionality score to
TESLA, we first identify MWEs in the MT output
and reference translation. If an MWE in the ref-
erence translation aligns exactly with an MWE in
the MT output, the weight remains as 1. Other-
wise, we replace the computed weight computed
for the noun compound with the product of com-
puted weight and the compositionality degree of the
MWE. This forces the system to be less flexible
when encountering less compositional noun com-
pounds. For instance, in TESLA, if the reference
sentence contains ivory tower and the MT output
contains white building, TESLA will align them with
a score of 1. However, by multiplying this weight
with the compositionality score (which should be
very low for ivory tower), the alignment will have
a much lower weight.

3.2 Predicting the compositionality of MWEs

In order to predict the compositionality of MWEs,
we calculate the similarity between the MWE and
each of its component words, using the three ap-
proaches detailed below. We calculate the overall
compositionality of the MWE via linear interpola-
tion over the component word scores, as:

comp(mwe) = αcompc(mwe, w1) +
(1− α)compc(mwe, w2)

where mwe is, without loss of generality, made up of
component wordsw1 andw2, and compc is the com-
positionality score between mwe and the indicated
component word. Based on the findings of Reddy et
al. (2011), we set α = 0.7.

Distributional Similarity (DS): the distributional
similarity between the MWE and each of its com-
ponents (Salehi et al., 2014), calculated based on
cosine similarity over co-occurrence vectors, in
the manner of Schütze (1997), using the 51st–
1050th most frequent words in the corpus as dimen-
sions. Context vectors were constructed from En-
glish Wikipedia.
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All sentences Contains NC
METEOR 0.277 0.273
BLEU 0.216 0.206
TESLA 0.238 0.224
TESLA-DS 0.238 0.225
TESLA-SS+DS 0.238 0.225
TESLA-0/1 0.238 0.225

Table 1: Kendall’s (τ ) correlation over WMT 2013 (all-
en), for the full dataset and also the subset of the data
containing a noun compound in both the reference and
the MT output

All sentences Contains NC
METEOR 0.436 0.500
BLEU 0.272 0.494
TESLA 0.303 0.467
TESLA-DS 0.305 0.464
TESLA-SS+DS 0.305 0.464
TESLA-0/1 0.308 0.464

Table 2: Pearson’s (r) correlation results over the WMT
all-en dataset, and the subset of the dataset that contains
noun compounds

SS+DS: the arithmetic mean of DS and string sim-
ilarity (“SS”), based on the findings of Salehi et
al. (2014). SS is calculated for each component
using the LCS-based string similarity between the
MWE and each of its components in the original lan-
guage as well as a number of translations (Salehi
and Cook, 2013), under the hypothesis that com-
positional MWEs are more likely to be word-for-
word translations in a given language than non-
compositional MWEs. Following Salehi and Cook
(2013), the translations were sourced from PanLex
(Baldwin et al., 2010; Kamholz et al., 2014).

In Salehi and Cook (2013), the best translation
languages are selected based on the training data.
Since, we focus on NCs in this paper, we use
the translation languages reported in that paper to
work best for English noun compounds, namely:
Czech, Norwegian, Portuguese, Thai, French, Chi-
nese, Dutch, Romanian, Hindi and Russian.

4 Dataset

We evaluate our method over the data from WMT
2013, which is made up of a total of 3000 transla-

tions for five to-English language pairs (Bojar et al.,
2013). As our judgements, we used: (1) the original
pairwise preference judgements from WMT 2013
(i.e. which of translation A and B is better?); and (2)
continuous-valued adequacy judgements for each
MT output, as collected by Graham et al. (2014).

We used the Stanford CoreNLP parser (Klein
and Manning, 2003) to identify English noun com-
pounds in the translations. Among the 3000 sen-
tences, 579 sentences contain at least one noun com-
pound.

5 Results

We performed two evaluations, based on the two sets
of judgements (pairwise preference or continuous-
valued judgement for each MT output). In each
case, we use three baselines (each applied at the seg-
ment level, meaning that individual sentences get a
score): (1) METEOR (Banerjee and Lavie, 2005), (2)
BLEU (Papineni et al., 2002), and (3) TESLA (with-
out compositionality scores). We compare these
with TESLA incorporating compositionality scores,
based on DS (“TESLA-DS”) and SS+DS (“TESLA-
SS+DS”). We also include results for an exact match
method which treats the MWEs as a single token,
such that unless the MWE is translated exactly the
same as in the reference translation, a score of zero
results (“TESLA-0/1”). We did not experiment with
the string similarity approach alone, because of the
high number of missing translations in PanLex.

In the first experiment, we calculate the segment
level Kendall’s τ following the method used in the
WMT 2013 shared task, as shown in Table 1, in-
cluding the results over the subset of the data which
contains a compound noun in both the reference and
the MT output (“contains NC”). When comparing
TESLA with and without MWE compositionality,
we observe a tiny improvement with the inclusion of
the compositionality scores (magnified slightly over
the NC subset of the data), but not great enough to
boost the score to that of METEOR. We also ob-
serve slightly lower correlations for TESLA-0/1 than
TESLA-DS and TESLA-SS+DS, which consider de-
grees of compositionality, for fr-en, de-en and es-en
(results not shown).

In the second experiment, we calculate Pearson’s
r correlation over the continuous-valued adequacy
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Language Pair comp P→N N→P ∆
fr-en DS 17 18 1

SS+DS 14 16 2
0/1 30 29 −1

de-en DS 21 24 3
SS+DS 14 18 4
0/1 48 40 −8

es-en DS 12 18 6
SS+DS 11 17 6
0/1 20 25 5

cs-en DS 21 23 2
SS+DS 14 16 2
0/1 46 49 3

ru-en DS 38 51 13
SS+DS 29 39 10
0/1 65 80 15

Table 3: The number of judgements that were ranked cor-
rectly by TESLA originally, but incorrectly with the in-
corporation of compositionality scores (“P→N”) and vice
versa (“N→P”), and the absolute improvement with com-
positionality scores (“∆”)

judgements, as shown in Table 2, again over the
full dataset and also the subset of data containing
compound nouns. The improvement here is slightly
greater than for our first experiment, but not at a
level of statistical significance (Graham and Bald-
win, 2014). Perhaps surprisingly, the exact compo-
sitionality predictions produce a higher correlation
than the continuous-valued compositionality predic-
tions, but again, even with the inclusion of the com-
positionality features, TESLA is outperformed by
METEOR. The correlation over the subset of the data
containing compound nouns is markedly higher than
that over the full dataset, but the r values with the
inclusion of compositionality values are actually all
slightly below those for the basic TESLA.

As a final analysis, we examine the relative impact
on TESLA of the three compositionality methods, in
terms of pairings of MT outputs where the ordering
is reversed based on the revised TESLA scores. Ta-
ble 3 details, for each language pairing, the number
of pairwise judgements that were ranked correctly
originally, but incorrectly when the compositional-
ity score was incorporated (“P→N”); and also the
number of pairwise judgements that were ranked in-
correctly originally, and corrected with the incorpo-

ration of the compositionality judgements (“N→P”).
Overall, the two compositionality methods per-

form better than the exact match method, and utilis-
ing compositionality has a more positive effect than
negative. However, the difference between the num-
bers is, once again, very small, except for the ru-en
language pair. The exact match method (“0/1”) has
a bigger impact, both positively and negatively, as a
result of the polarisation of n-gram overlap scores
for MWEs. We also noticed that the N→P sentences
for SS+DS are a subset of the N→P sentences for
DS. Moerover, the N→P sentences for DS are a sub-
set of the N→P sentences for 0/1; the same is true
for the P→N sentences.

6 Discussion

As shown in the previous section, the incorporation
of compositionality scores can improve the quality
of MT evaluation based on TESLA. However, the
improvements are very small and not statistically
significant. Part of the reason is that we focus ex-
clusively on noun compounds, which are contigu-
ous and relatively easy to translate for MT systems
(Koehn and Knight, 2003). Having said that, prelim-
inary error analysis would suggest that most MT sys-
tems have difficulty translating non-compositional
noun compounds, although then again, most noun
compounds in the WMT 2013 shared task are highly
compositional, limiting the impact of composition-
ality scores. We speculate that, for the method
to have greater impact, we would need to target
a larger set of MWEs, including non-contiguous
MWEs such as split verb particle constructions (Kim
and Baldwin, 2010).

Further error analysis suggests that incorrect iden-
tification of noun compounds in a reference sentence
can have a negative impact on MT evaluation. For
example, year student is mistakenly identified as an
MWE in ... a 21-year-old final year student at Tem-
ple ....

Furthermore, when an MWE occurs in a reference
translation, but not an MT system’s output, incorpo-
rating the compositionality score can sometimes re-
sult in an error. For instance, in the first example in
Table 4, the reference translation contains the com-
pound noun cash flow. According to the dataset, the
output of MT system 1 is better than that of MT sys-
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Reference This means they are much better for our cash flow.
MT system 1 That is why they are for our money flow of a much better.
MT system 2 Therefore, for our cash flow much better.
Reference ‘I felt like I was in a luxury store,’ he recalls.
MT system 1 ‘I feel as though I am in a luxury trade,’ recalls soldier.
MT system 2 ‘I felt like a luxury in the store,’ he recalled the soldier.

Table 4: Two examples from the all-en dataset. Each example shows a reference translation, and the outputs of two
machine translation systems. In each case, the output of MT system 1 is annotated as the better translation.

tem 2. However, since the former translation does
not contain an exact match for cash flow, our method
decreases the alignment score by multiplying it by
the compositionality score for cash flow. As a result,
the overall score for the first translation becomes less
than that of the second, and our method incorrectly
chooses the latter as a better translation.

Incorrect estimation of compositionality scores
can also have a negative effect on MT evaluation.
In the second example in Table 4, the similarity
score between luxury store and luxury trade given
by TESLA is 0.75. The compositionality score, how-
ever, is estimated as 0.22. The updated similarity
between luxury trade and luxury store is therefore
0.16, which in this case results in our method in-
correctly selecting the second sentence as the better
translation.

7 Conclusion

This paper described the first attempt at integrating
MWE compositionality scores into an automatic MT
evaluation metric. Our results show a marginal im-
provement with the incorporation of compositional-
ity scores of noun compounds.
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Abstract

We argue that many multi-word domain terms
are not (and should not be regarded as) strictly
atomic, especially from a parser’s point of
view. We introduce the notion of Lexical Ker-
nel Units (LKUs), and discuss some of their
essential properties. LKUs are building blocks
for lexicalizations of domain concepts, and as
such, can be used for compositional derivation
of an open-ended set of domain terms. Ben-
efits from such an approach include reduction
in size of the domain lexicon, improved cover-
age for domain terms, and improved accuracy
for parsing.

1 Introduction

Knowledge about collocations and multi-word ex-
pressions (MWEs) can be beneficial for parsing, ul-
timately improving a parser’s accuracy (Nivre and
Nilsson, 2004; Korkontzelos and Manandhar, 2010;
Wehrli, 2014). Typically such knowledge is made
present by treating collocations and MWEs as sin-
gle lexical and syntactic units (Baldwin and Kim,
2010; Escartı́n et al., 2013; Fotopoulou et al., 2014).
This practice is also reflected in domain adapta-
tion, where domain-specific lexicons hold colloca-
tions and MWEs with ‘domain terms’ status.

In the medical domain, terminological and lexi-
cal resources list collocations and MWEs as varied
as history of trauma to toes of both feet and morn-
ing after pill as single “words with spaces” (Sag et
al., 2002). As mandated by the lexicon-parser inter-
face, such domain terms parse as single lexical units,
which improves parser performance by reducing the

lexical, structural, and distributional complexity of
these noun phrases. This simplification is intuitively
appealing. However, when closely-related, or simi-
lar, multi-word domain terms such as day after pill
or history of trauma to toes of left foot are unlisted in
the terminology lexica, the potential for parse error
resurfaces. Relying on explicitly listed terms alone
compromises parser accuracy.

We present here an approach to lexicon enrich-
ment, which mitigates the inherent incompleteness
of such lists, inevitably arising during processes of
populating domain term banks. In our work on ex-
tracting domain-specific terms from a medical ter-
minology resource,1 we observe certain composi-
tional properties of a large subset of such domain-
specific terms.2 In particular, this subset is open-
ended: through generative patterns, even if some
such domain terms are not in the lexicon, a mech-
anism can be construed which can license them
as terms (virtual entries in the lexicon). These
patterns operate on smaller expressions, which ex-
hibit a much more atomic status than the terms
proper, and enable—through compositionality—the
dynamic generation and interpretation of the longer
domain terms. Such smaller expressions we call lex-

1Proper domain multi-word terms are derived from the Uni-
fied Medical Language System (UMLS) (NIH, 2009) knowl-
edge bases (KBs), which contain medical concepts, relations,
and definitions, spread over millions of concepts and terms from
over 160 source vocabularies. Not all entries in UMLS qual-
ify for ‘term’ status; term extraction proper is, however, out-
side of the scope of this paper. The UMLS-derived terminology
lexicon—close to 56 million tokens comprising over 8 million
terms—is the source data of our analysis.

2We focus on noun phrases of varying structural complexity.
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ical kernel units (LKUs).
For example, in the set of medical domain terms

history of spastic paraplegia, spastic paraplegia
with retinal degeneration, and family history of spas-
tic paraplegia with Kallmann’s syndrome, we see re-
peated patterns of behavior of the same multi-word
expression, spastic paraplegia: it can be governed
by history of ; it co-occurs with the preposition with;
an instance of history of is pre-modified by the noun
family.

Spastic paraplegia is a lexical kernel unit. Re-
garding it as a ‘kernel’ for an open-ended set of ex-
pressions like the ones above—and deploying ap-
propriate generative patterns and devices—we argue
that a newly-encountered word grouping like family
spastic paraplegia with neuropathy can be licensed
as a domain-specific term, available to a parser, even
if the term is a virtual one, absent from the static
domain-dependent terminology lexicon.

This paper discusses the nature and some practi-
cal consequences of LKUs. Given that ours is very
much work in progress, the intent is to hint at an
algorithmic procedure for the identification and ex-
traction of LKUs from an externally provided ter-
minology lexicon. Additionally, the paper aims to
show the ability afforded by LKUs to transform
a finite, static, lexicon of domain collocations and
multi-word expressions to an open-ended, dynamic
(or virtual) lexicon which can better support parsing.
While not in a position to present a formal evaluation
of the benefit of an LKU lexicon, we offer examples
of how such a lexicon benefits a parser.

2 Mining LKUs from terminology lexica

The essence of what makes lexical kernel units
atomic can be illustrated by an analysis of sample
subsets3 of domain terms from which LKU status
for certain word sequences can be inferred.

Consider the subset of term entries containing
(not necessarily consecutively) the words in the
multi-word expression spastic paraplegia:

a. spastic paraplegia syndrome,
b. spastic congenital paraplegia,
c. infantile spastic paraplegia,

3We will not discuss here the process of deriving such sub-
sets from the terminology lexicon.

d. familial spastic paraplegia with Kallmann’s
syndrome,

e. familial spastic paraplegia with neuropathy and
poikiloderma,

f. familial spastic paraplegia, mental retardation, and
precocious puberty,

g. slowly progressive spastic paraplegia,
h. hereditary x linked recessive spastic paraplegia,
i. onset in first year of life of spastic paraplegia.

Spastic and paraplegia appear in domain terms of
varying length and with different noun phrase struc-
tures; additionally, the two words may or may not
be adjacent. In the entries d.–f., spastic paraplegia
shares the adjective familial on its left; but it can also
co-occur with other adjectives as pre-modifiers, in-
fantile, hereditary, and progressive among them (b.–
c. and g.–h.) Further, the phrases to the right of spas-
tic paraplegia in entries d.–f. are of different phrase
types. For instance, in entries d.–e., spastic paraple-
gia, is immediately adjacent to the preposition with.

Looking at the examples together, it is intuitively
clear that variability around (an LKU) phrase exists
across all the elements of the term subset; further-
more, this variability can be captured by a relatively
small number of patterns.

To reinforce the confidence with which spastic
paraplegia can be putatively assigned lexical kernel
unit status, these patterns can be put to the test by a
broader search, against the terminology lexicon. A
pattern like [LKU [with NP]] (see Section 3) in-
spired by the domain entries d. and e., can be tested
with the query string spastic paraplegia with.

Such search returns, among many, the domain
terms spastic paraplegia with amyotrophy of dis-
tal muscle wasting, spastic paraplegia with men-
tal handicap, spastic paraplegia with mental retar-
dation, and spastic paraplegia with amyotrophy of
hands and feet (although the terminology lexicon
does not list either spastic paraplegia with amyotro-
phy of hands or spastic paraplegia with amyotrophy
of feet as domain terms).

As another example, of an LKU with different
profile and distributional properties, consider the
[noun]-of collocation instantiated by history of. In
the terminology lexicon, there are 7,087 domain
terms with the anchor history of. A few are:

a. current social history of patient,
b. current history of allergies,
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c. family history of alcohol abuse,
d. history of current illness,
e. history of domestic violence at home,
f. history of falling into a swimming pool,
g. history of freckles,
h. past medical history of drug abuse,
i. personal history of alcohol abuse,
j. past personal history of allergy to other anti-infective

agents.

A cursory analysis of the semantic and syntac-
tic composition of the above domain terms reveals
that they are unexceptional (even though statistically
salient in the domain). Looking at all examples to-
gether, an important question to consider is whether
the variability in the terms is expressed by the con-
texts around history of or around history alone. A
search keyed off the word history and based on a
pattern with prepositional placeholder [history

[prep]] returns, among many, the domain terms
history in family of hypertension, medical history re-
lating to child, and current history with assessment
of changing moles. Clearly, in addition to of, his-
tory sanctions prepositional collocations in, relating
to, and with. This is supporting evidence that LKU
status can be attributed to history; it is also indica-
tive of the kind of lexical (collocational) knowledge
that needs to be associated with the LKU entry for
history.

3 Capturing the essence of domain terms

The examples above suggest that spastic paraplegia
and history function as building blocks from which
an open-ended set of larger domain terms can be
compositionally built, and interpreted. The many
multi-word domain terms found in the terminology
lexicon that contain spastic paraplegia and history
can be informally represented with the following
patterns:

a. [[adjective* and/or noun*]

spastic paraplegia [with [noun]]]

b. [[adjective* and/or noun*] history

[[in | of | with] [noun]]]

These capture the essence of multi-word expres-
sions and collocations that can have many do-
main term instantiations—including ones beyond
the closed sets which prompted the patterns (Sec-
tion 2). The free slots, noun and adjective, must

be filled by collocations with the appropriate part of
speech, some of which can be LKUs themselves.

The many variations—potentially an open-ended
set—of domain terms are thus collapsed into a sin-
gle pattern, anchored by a putative LKU, and aug-
mented with linguistic and usage information (part-
of-speech, semantic types, collocation preferences,
etc...) extracted from the terminology lexicon.

It may be tempting to collapse the patterns, and
seek generalizations covering sets of LKUs: re-
placing the kernel units spastic paraplegia and his-
tory with a place-holder would have pattern a. to
be subsumed by pattern b. This would be counter-
productive, however: it would allow for over-
generation, as well as fail to distinguish between
frame-specific lexical knowledge to be associated
with the individual LKUs (e.g. we would not want
spastic paraplegia to allow for the full set of prepo-
sitional complements compatible with history).

The lexical knowledge discovered during this
LKU extraction and captured in the domain terms
patterns eventually ends up in LKU entries. For in-
stance, from the patterns above, the preposition col-
locations would induce appropriately specified lex-
ical frames. These would allow for uniform treat-
ment, by a parser, of similar noun phrases—even if
some of them lack ‘domain term’ status: e.g. both
spastic paraplegia with retinal degeneration (a term,
and therefore a single syntactic unit) and spastic
paraplegia with no retinal degeneration (not desig-
nated a term, but inferred as such), would keep the
with- PP attached to spastic paraplegia.

4 Some characteristics of LKUs

Lexical kernel units can be single- or multi-word
sequences, as exemplified by the earlier analyses
of spastic paraplegia and history. The degree to
which LKUs by themselves are representative of
a domain varies. However, what is more impor-
tant is that through composition, they combine with
other words or LKUs to construct larger, domain-
specific, terms (consider, for example, history of
spastic paraplegia). It is through analysis of such
terms that an LKU lexicon is compiled.

Multi-word LKUs tend to be invariable and func-
tion as domain-specific, atomic, language units. A
large subset of such LKUs have some of the linguis-
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tic features of MWEs. Two characteristics are par-
ticularly descriptive.

First, LKUs can display various degrees of se-
mantic and syntactic opaqueness (e.g. popcorn lung
or airway morbidity), as well as transparency (small
intestine or airway passage).

Second, substitutability of a word within the LKU
word sequence by another of the same or similar cat-
egory may be barred. Popcorn lung and popcorn dis-
ease symptom cannot be substituted by *maize lung
or *edible corn disease symptom.

As atomic units at the kernel of larger, composi-
tionally built domain terms, it is much more reveal-
ing to look at what determines the exocentric pull
(or valency) of LKUs, than analyzing their internal
structure. LKUs determine the range and type of the
larger phrases that can be construed around them.

While they serve as atoms for the creation of
novel, longer domain expressions which can reflect
a more general property of grammar as in popcorn
lung disease symptom and airway morbidity disor-
der, the pool of words which LKUs can use to cre-
ate longer domain units can be small and is highly
domain-specific. Many collocations and novel cre-
ations are constrained by the semantics of the do-
main. In the medical and clinical domains, we do
not see *popcorn lung morbidity, *popcorn lung re-
habilitation, or *popcorn lung remission.

Finally, they need not operate in text as stand-
alone words. For instance, the LKU Silver Russell
does not function in domain texts as an individual
noun compound. Silver Russell only functions as
an LKU in longer domain terms as in Silver Russell
dwarfism or Silver Russell syndrome.

5 Parsing with LKUs

The LKU notion allows for the creation of a domain-
specific lexicon with a minimal number of entries
that describe the nature of a given domain. As we
saw in Section 2, there are thousands of domain
terms anchored by collocations of the LKU history
with prepositions of, in, or with, with variations both
to the left (family history of ..., medical history of ...,
and so forth) and right (history of panic disorder ...,
history of falling into ..., history of drug and alco-
hol abuse ..., and so forth) of the anchor. Even so,
it is unrealistic to expect that all instances of similar

terms can be discovered for capture in a terminol-
ogy lexicon. We also saw, however, that very simple
patterns can be very expressive. Leveraging the con-
textual information captured in, for instance, pattern
(b.; Section 3), as part of the lexical representation
of the LKU entry for history, makes such discovery
unnecessary, even for terms as complex in structure
as the examples above.

When a lexical kernel unit becomes a part of the
domain-dependent lexicon, none of the terms which
were analyzed to derive it needs to be listed in that
lexicon. Thus the 7,087 domain terms anchored by
history+of (Section 2) can be replaced by a single,
one-token, LKU entry (history) in the domain lex-
icon. This same entry would also account for the
extra domain terms anchored by history+in and his-
tory+with.

While not in any way a formal evaluation, a pre-
liminary, small scale experiment to determine im-
pact of LKUs on parser4 performance shows im-
provements, in particular in the area of coordina-
tion (itself a long-standing challenge to parsing). We
created two domain lexicons (DLs): DL1 included
all well-formed terms from the terminology lexicon
with the words history and spastic paraplegia,; DL2
listed history and spastic paraplegia as LKU entries,
while it eliminated the 7,000+ domain terms from
the lexicon. Randomly extracted segments from
medical corpus were parsed, in alternative regimes,5

with DL1, and then with DL2.
Consider the segment Bupropion has two abso-

lute clinical contraindications (i.e., current or past
history of seizures). DL1 contains an entry for past
history of seizures (but not one for current history
of seizures). The parse derived with DL1 is wrong:
current gets a ‘noun’ analysis, coordinated with the
noun phrase past history of seizures. The correct
analysis—a coordinated node joining current and
past, and pre-modifying history—is achieved, how-
ever, with DL2, whose atomic history LKU allows
a granular structured interpretation of what DL1 de-
clares to be a single multi-word unit.

Another example illustrates the benefits of captur-
ing the word-specific collocations within the repre-

4We use the English Slot Grammar (ESG) parser (McCord,
1990; McCord et al., 2012).

5We skip over how the parser interprets LKU entries, dy-
namically creating virtual domain terms anchored by the LKUs.
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sentation of an LKU. In the DL1 parse of segment
Familial hereditary spastic paraplegias (paralyses)
are a group of single-gene disorders, the adjective
familial pre-modifies both the noun hereditary spas-
tic paraplegia (listed as a term in DL1) and the ma-
terial in parentheses.6 With the LKU-enabled DL2,
ESG is instructed by the lexical information associ-
ated with the LKU spastic paraplegia (pattern (a.);
Section 3) to treat both familial and hereditary as
sister pre-modifiers to spastic paraplegia in particu-
lar.

6 Conclusion

Lexical kernel units give an embodiment to an in-
tuition concerning the compositional aspects of do-
main terms in a conventional terminology lexicon.
To the best of our knowledge, no attempts have been
made to question the ‘term entries are atomic’ as-
sumption.

We propose a view where lexical kernel units pro-
vide a more uniform partitioning of a terminology
lexicon, teasing out its prominent lexical colloca-
tions. Once captured into an LKU lexicon, lexical
kernel units allow for a granular view into that do-
main; this, in itself, is beneficial to a parser. Also,
by virtue of being relevant to domain concepts, they
allow for a degree of open-endedness of such a lexi-
con: in effect, they underpin a compositional mech-
anism to domain term identification and interpreta-
tion. Thanks to a pattern-driven generative device,
instead of parsing with a fixed size terminology lexi-
con, we leverage a process aiming to license domain
terms ‘on demand’.

Pilot experiments to date show that LKUs have
a positive impact on parsing. Future work will ar-
ticulate an algorithm and heuristics for identifying
and extracting LKUs from terminological lexica and
other resources. In particular, we will address the
questions of generating the sets of terms indicative
of LKUs, abstracting the pattern specifications for
LKU-to-term derivations, and deriving fully instan-
tiated (canonical) LKU lexicon entries. We will also
conduct an extensive contrastive evaluation of LKU-
based parsing of medical corpora.

6ESG analyzes most parenthetical, appositive, constructions
as coordinations around the opening parenthesis.
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Abstract

Past approaches to translate a phrase in a lan-
guage L1 to a language L2 using a dictionary-
based approach require grammar rules to re-
structure initial translations. This paper intro-
duces a novel method without using any gram-
mar rules to translate a given phrase in L1,
which does not exist in the dictionary, to L2.
We require at least one L1–L2 bilingual dic-
tionary and n-gram data in L2. The average
manual evaluation score of our translations is
4.29/5.00, which implies very high quality.

1 Introduction

This paper tackles the problems of phrase transla-
tion from a source language L1 to a target language
L2. The common approach translates words in the
given phrase to L2 using an L1–L2 dictionary, then
restructures translations using grammar rules which
have been created by experts or are extracted from
corpora. We propose a new method for phrase trans-
lation using an L1–L2 dictionary and n-gram data in
L2, instead of grammar rules, with a case study in
translating phrases from Vietnamese to English. We
note that the given Vietnamese phrases for transla-
tion do not exist in the dictionary. For example, we
translate Vietnamese phrases “bộ môn khoa học máy
tính”, “thuế thu nhập cá nhân” and “đợi một chút”
to English: “computer science department”, “indi-
vidual income tax”, and “wait a little”, respectively.
In particular, given a Vietnamese phrase, our algo-
rithms return a list of ranked translations in English.

One purpose of the phrase translations in our work
is to support language learners. Assume that, us-

ing a Vietnamese-English dictionary, a learner has
looked up translations of “bộ môn”, “khoa học” and
“máy tính” as “department/faculty”, “science” and
“calculator/computer”, respectively. Now, he wants
to obtain the translation of “bộ môn khoa học máy
tính”, a phrase which does not exist in the dictionary.
We present a method to generate phrase translations
based on information in the dictionary.

2 Overall Vietnamese morphology

Vietnamese is an Austroasiatic language (Lewis et
al., 2014) and does not have morphology (Thomp-
son, 1963) and (Aronoff and Fudeman, 2011). In
Vietnamese, whitespaces are not used to separate
words. The smallest meaningful part of Vietnamese
orthography is a syllable (Ngo, 2001). Some exam-
ples of Vietnamese words are shown as following:

– Single words: “nhà”- house, “lụa”- silk,
“nhặt”- pick up, “mua”- buy and “bán”- sell.

– Compound words: “mua bán”- buy and sell,
“bàn ghế”- table and chair, “đồng ruộng”- rice
field, “mè đen”- black sesame, “cây cối”- trees,
“đường xá”- street, “mẫu giáo”- kindergarden,
“hành chánh”- administration, “thổ cẩm”- bro-
cade, “vàng vàng”- yellowish, “ngại ngại”- hes-
itate, “gật gà gật gù”- nod repeatedly out of sat-
isfaction, “lải nhải”- annoyingly insistent.

Thus, what we call a word in Vietnamese may con-
sist of several syllables separted by whitespaces.

3 Related work

The two methods, commonly used for phrase trans-
lation, are dictionary-based and corpus-based. A
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dictionary-based approach, e.g., (Abiola et al., 2014)
generate translation candidates by translating the
given phrase to the target language using a bilin-
gual dictionary. The candidates are restructured
using grammar rules which are developed manu-
ally or learned from a corpus. In corpus-based ap-
proaches, a statistical method is used to identify
bilingual phrases from a comparable or parallel cor-
pus (Pecina, 2008), (Koehn and Knight, 2003), and
(Bouamor et al., 2012). Researchers may also ex-
tract phrases from a given monolingual corpus in
the source language and translate them to the tar-
get language using a bilingual dictionary (Cao and
Li, 2002), and (Tanaka and Baldwin, 2003). Finally,
a variety of methods are used to rank translation
candidates. These include counting the frequency
of candidates in a monolingual corpus in the target
language, standard statistical calculations (Pecina,
2008), or even using Naïve Bayes Classifiers and
TF-IDF vectors with the EM algorithm (Cao and
Li, 2002). (Mariño et al., 2006) extract translations
from a bilingual corpus using an n-gram model aug-
mented by additional information, target-language
model, a word-bonus model and two lexicon mod-
els.

More pertinent to our work is (Hai at al.,
1997), who introduced a phrase transfer model for
Vietnamese-English machine translation focusing
on one-to-zero mapping, which means that a word
in Vietnamese may not have appropriate single-word
translation(s) and may need to be translated into a
phrase in English. They translate Vietnamese words
to English using a bilingual dictionary, then use con-
version rules to modify the structures of the En-
glish translation candidates. The modifying process
builds phrases level-by-level from simple to com-
plex, restructures phrases using a syntactic parser
and additional rules, and applies measures to solve
phrase conflict.

4 Proposed approach

This section introduces a new simple and effective
approach to translate from Vietnamese to English
using a bilingual dictionary and n-gram data. An
entry in n-gram data is a 2-tuple < wE , frq >,
where wE is a sequence of n words in English and
frq is the frequency of wE . An entry in a bilin-

gual dictionary is also a 2-tuple < ws, wt >, where
ws and wt are a word or a phrase in the source lan-
guage and its translation in the target language, re-
spectively. If the word ws has many translations in
the target language, there are several entries such as
< ws, wt1 >, < ws, wt2 > and < ws, wt3 >. We
note that an existing bilingual dictionary may con-
tain phrases and their translations. Our work finds
translations for phrases which do not exist in the dic-
tionary. The general idea of our approach is that we
translate each word in the given phrase to English
using a Vietnamese-English dictionary, then use n-
gram data to restructure translations. Our work is
divided into 4 steps: segmenting Vietnamese words,
filtering segmentations, generating ad hoc transla-
tions, selecting the best ad hoc translation, and find-
ing and ranking English translation candidates.

4.1 Segmenting Vietnamese words

A Vietnamese phrase P, consisting of a sequence of
n syllables < s1 s2 ... sn >, can be segmented in
different ways, each of which will produce a seg-
mentation S. A segmentation S is defined as an or-
dered sequence of words wi separated by semicolons
“;” such as S =< w1; w2; w3; ...; wi; ...; wm >,
where m is the number of words in S, m ≤ n and
1 ≤ i ≤ m. We note that a word may contain one
or more syllables s. Generally, we have 2n−1 pos-
sible segmentations for a Vietnamese phrase P. For
example, the phrase “khoa khoa học” - science de-
partment/faculty, has 4 possible segmentations:
S1 = <khoa; khoa; học>, S2 = <khoa; khoa học>,
S3 = <khoa khoa; học>, and S4 = <khoa khoa học>.

4.2 Filtering segmentations

Each word in each segment may have k ≥ 0 transla-
tions in English. The total number of English trans-
lation candidates for a Vietnamese phrase, with m
words, is O(2n−1 ∗ mk). To reduce the number
of candidates, we check whether or not every Viet-
namese word in each segmentation has an English
translation in a Vietnamese-English dictionary. If
at least one word does not have a translation in the
dictionary, we delete that segmentation. For exam-
ple, we delete S3 and S4 because they contain the
words “khoa khoa” and “khoa khoa học” which do
not have translations in the dictionary. As a result,
the phrase “khoa khoa học” has 2 remaining seg-
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mentations: S1=<khoa; khoa; học> and S2=<khoa;
khoa học>.

4.3 Generating ad hoc translations

To generate an ad hoc translation T, we translate
each word in a segmentation S to English using the
Vietnamese-English dictionary. The ad hoc transla-
tions of a given phrase are the translations of seg-
mentations. For instance, the translations of the
segmentation S1 for “khoa khoa học” are <faculty;
faculty; study>, <department; department; study>,
<subject of study; subject of study; study>; and the
translations for S2 are <faculty; science>, <depart-
ment; science>, <subject of study; science>. There-
fore, the six ad hoc translations of “khoa khoa học”
are T1=“faculty faculty study”, T2=“department de-
partment study”, T3=“subject of study subject of
study study”, T4=“faculty science”, T5=“department
science”, and T6= “subject of study science”.

4.4 Selecting the best ad hoc translation

We have generated several ad hoc translations by
simply translating each word in the segmentations
to English. Most are not grammatically correct. We
use a method, presented in Algorithm 1, to reduce
the number of ad hoc translations. We consider
words in each entry in the English n-gram data as a
bag of words NB (lines 1-3), i.e., the words in each
entry is simply considered a set of words instead of
a sequence. For example, the 3-gram “computer sci-
ence department” is considered as the set {computer,
science, department}. Each ad hoc translation T ,
created in Section 4.3, is also considered a bag of
words TB (lines 4-6). For every bag of words TB,
we find each bag of words NB′, belonging to the set
of all NBs, such that NB′ contains all words in TB
(lines 7-9), i.e., TB ⊆ NB′. Each bag of words
TB is given a score scoreTB which is the sum of
frequency of all bags of words NB′ (line 10). The
bag of words TB with the greatest score is consid-
ered the best ad hoc translation (lines 12-18).

After this step, only one ad hoc translation T will
remain. For example, we eliminate 5 ad hoc transla-
tions (viz., T1, T2, T3, T4 and T6) of the Vietnamese
phrase “khoa khoa học”, and select “department sci-
ence” (T5) as the best ad hoc translation of it. We
note that the best ad hoc translation may still be
grammatically incorrect in English.

Algorithm 1 Selecting the best ad hoc translation
Input: all ad hoc translations T s
Output: the best ad hoc translation bestAdhocTran

1: for all entries N ∈ n-gram data do
2: generate bags of words NB
3: end for
4: for all ad hoc translations T do
5: generate bags of words TB
6: end for
7: for all TB do
8: scoreTB = 0
9: Find all NB′ ∈ set of all NBs that contain

all words in TB
10: scoreTB =

∑
Frequency(NB′)

11: end for
12: bestAdhocTran=TB0

13: for all TB do
14: if scoreTB > scorebestAdhocTran then
15: bestAdhocTran=TB
16: end if
17: end for
18: return bestAdhocTran

4.5 Finding and ranking translation candidates
To restructure translations, we use n-gram data in-
stead of grammar rules. We take advantage that the
n-gram information implicitly “encodes” the gram-
mar of a language. Having the best ad hoc transla-
tion TB and several corresponding bags NB′ from
the previous step, we find and rank the translation
candidates. For every NB′, we retrace its corre-
sponding entry in the n-gram data, and mark the
words in the entry as a translation candidate cand.
Then, we rank the selected translation candidates.
• If there exists one or many cands such that the

sizes of each cand and TB are equal, these
cands are more likely to be correct translations
than other candidates. We simply rank cands
based on their n-gram frequencies. The candi-
date cand with the greatest frequency is consid-
ered the best translation. For example, the best
ad hoc translation of “khoa khoa học” is “de-
partment science”. In the n-gram data, we find
an entry <“science department”, 112> which
contains exactly the same words in the best ad
hoc translation found. We accept “science de-
partment” as a correct translation of “khoa khoa
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học” and its rank is 112, which is the n-gram
frequency of “science department’.

• The rest of the candidates are ranked using the
following formula:

rank(cand) = Frequency(cand)
|size(cand)−size(TB)|∗100 .

Our motivation for the rank formula is the fol-
lowing. If a candidate has a greater frequency,
it has a greater likelihood to be a correct trans-
lation. However, if the size of the candidate
and the size of TB are very different, that can-
didate may be inappropriate. Hence, we divide
the frequency of cand by the difference in the
number of words between cand and TB. To
normalize, we divide results by 100.

5 Experiments

We work with the Vietnamese-English dictionary
obtained from EVbcorpus1. The dictionary contains
about 130,000 entries. We also use the free lists of
English n-gram data available at the ngrams.info2

Website. The free lists have the one million most
frequent entries for each of 2, 3, 4 and 5-grams. The
n-gram data has been obtained from the corpus of
contemporary American English3.

Currently, we limit our experiments to translation
candidates with equal or smaller than 5 syllables.
We obtain 200 common Vietnamese phrases, which
do not exist in the dictionary, from 4 volunteers who
are fluent in both Vietnamese and English. Later,
these volunteers are asked to evaluate our transla-
tions using a 5-point scale, 5: excellent, 4: good, 3:
average, 2: fair, and 1: bad.

The average score of translations created using
the baseline approach, which is simply translating
words in segments to English, is 2.20/5.00. The av-
erage score of translations created using our pro-
posed approach is 4.29/5.00, which is quite high.
The rating reliability is 0.72 obtained by calculating
the Intraclass Correlation Coefficient (Koch, 1982).
Our approach returns translations for 101 phrases
out of the 200 input phrases. This means the pre-
cision and recall of our translations are 85.8% and
50.5%, respectively.

1https://code.google.com/p/evbcorpus/
2http://www.ngrams.info/
3http://corpus.byu.edu/coca/

We also compute the matching percentage be-
tween our translations and translations performed by
the Google Translator. The matching percentage of
our translations for phrases is 42%. The translations
marked as “unmatched” do not mean our transla-
tions are incorrect. A few such examples are pre-
sented in Table 1.

Table 1: Some translations we create are correct but do
not match with translations from the Google Translator.

The average score of our translations is high;
however, the recall is low. If our algorithms can re-
turn a translation for an input phrase, that translation
is usually specific, and is evaluated as excellent or
good in most cases. Our approach relies on an exist-
ing bilingual dictionary and n-gram data in English.
If we have a dictionary covering the most common
words in Vietnamese, and the n-gram data in English
is extensive with different lengths, we believe that
our approach will produce even better translations.

6 Conclusion and future work

We have introduced a new method to translate a
given phrase in Vietnamese to English using a bilin-
gual dictionary and English n-gram data. Our ap-
proach can be applied to other language pairs that
have a bilingual dictionary and n-gram data in one of
the two languages. We plan to compute Vietnamese
n-gram data from a Wikipedia dump and try to trans-
late phrases from English to Vietnamese next.
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Abstract

Multiword expressions (MWEs) present par-
ticular and distinctive semantic properties,
hence their automatic extraction receives spe-
cial attention from the natural language pro-
cessing (NLP) and corpus linguistics commu-
nity, and is still an active research area. Unfor-
tunately, the creation of necessary resources
for this task is quite rigorous and many lan-
guages suffer from the lack of these; as in the
case for Turkish.

This study presents our MWE annotations
on recently introduced Turkish Treebanks,
which focuses on annotating various types
of linguistic units and expressions, includ-
ing named entities, numerical expressions, id-
iomatic phrases, verb phrases with auxiliaries
and duplications. The paper aims to provide
a benchmark and pave the way towards fur-
ther MWE extraction research for Turkish. To
this end, the paper also introduces our experi-
mental results with seven baseline approaches,
a dependency parser and a previously intro-
duced rule-based extractor on these annotated
corpora. Our highest performances achieved
over these resources are about 60% F-scores.

1 Introduction

Automatic extraction of multiword expressions
(MWEs) is an important and challenging task in
natural language processing (NLP). They are in-
troduced to be a key problem for the development
of large-scale NLP technology (Sag et al., 2002).
Multiword expressions are lexical items that can be
decomposed into single words where these single
words represent most of the time a totally differ-
ent meaning compared to word sets within which

they occur. Thus, MWEs pose significant prob-
lem for NLP and machine translation (MT) appli-
cations. The effect and the importance of MWE
extraction techniques are being investigated by the
NLP and CL communities. A recent ICT-Cost Ac-
tion (IC1207-PARSEME “PARSing and Multi-word
Expressions”) focuses only on MWEs in a multi-
disciplinary level from different perspectives.

In the literature some studies are focused on de-
riving automatic MWE extraction techniques with-
out using annotated data. Attia (2006) investigates
the automatic acquisition of Arabic MWEs and pro-
poses three complementary approaches to extract
related MWEs automatically. Piao et al. (2006)
propose similar approaches automatically identify-
ing Chinese MWEs and achieve precision ranging
from 61.16% to 93.96% for different types. Schone
and Jurafsky (2001) seek a knowledge-free method
for inducing MWEs from text corpora and provide
two major evaluations of nine existing collocation-
finders. Metin and Karaoğlan (2010) tries to explore
Turkish collocations by using standard statistical
methods (e.g Chi-square hypothesis test and mutual
information). Tsvetkov and Wintner (2012) extract
MWEs by using monolingual and parallel corpora
(Hebrew-English), and then use the outcome to train
a machine translation system. As mentioned in most
of the aforementioned studies, although it might be
feasible to automatically identify MWEs using these
approaches, yet they need to be improved further.
The need for and the importance of manually anno-
tated large-scale data for MWE extraction purpose
is not negligible. There exist many recent works on
creating language resources for MWEs e.g. MWE
databases, corpora and treebanks. The French cor-
pora (Laporte et al., 2008a; Laporte et al., 2008b)
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and the Prague Dependency Treebank (Bejček and
Straňák, 2010) may be given as examples of these
studies among many others.

Dependency parsers are capable of providing
quite acceptable performances for MWE extraction.
Nivre and Nilsson (2004), Eryiğit et al. (2011),
Vincze et al. (2013) and Candito and Constant
(2014) investigate the impact of dependency parsers
on Swedish, Turkish and Hungarian MWE extrac-
tion. Vincze et al. (2013) show that their results out-
performed those achieved by state-of-the-art tech-
niques for Hungarian LVC detection. Eryiğit et al.
(2011) show that in the training stage, the unifica-
tion of MWEs of a certain type, namely compound
verb and noun formations, has a negative effect on
parsing accuracy by increasing the lexical sparsity.
In spite of their syntactic relations, MWEs still need
special treatments in terms of semantic relations.

Inspired by these recent studies, to shed light and
provide a direction for future studies on adequate
MWE extraction techniques for Turkish, in this pa-
per we present our annotation for MWEs on recently
introduced Turkish Treebanks. We focus on anno-
tating various types of linguistic units and expres-
sions, including named entities, numerical expres-
sions, idiomatic phrases, verb phrases with auxil-
iaries and duplications. The paper experiments with
different lexical approaches together with automatic
named entity recognition (NER). The results are
compared with those of an available collocation ex-
traction tool (Oflazer et al., 2004) and a dependency
parser (Eryiğit et al., 2008). Although, the newly
introduced methods improved the previous results
by almost 20 percentage points (yielding ∼60% F-
score), we treat these results as the state-of-the-art
baselines for Turkish.

The paper is structured as follows: Section 2 in-
troduces the used language resources, Section 3 dis-
cusses MWEs in Turkish, Section 4 presents mod-
els for MWE extraction, Section 5 gives the exper-
imental results and discussions, Section 6 presents
the conclusion.

2 Language Resources

We use four different treebanks in our experiments,
three of which have been annotated within this
study. The first treebank, METU-Sabancı Tree-

bank, (MST) (Oflazer et al., 2003) is from Eryiğit
et al. (2011) where the authors state that most of
the MWEs in the original treebank are not anno-
tated. They use a semi-automatic way for anno-
tating these MWEs. To this end, they first ex-
tracted a MWE list consisting the 30150 MWEs
available in the Turkish Dictionary (TDK, 2011) and
then automatically listed the entire treebank sen-
tences where the lemmas of the co-occurring words
could match the lemmas of the MWE constituents in
the list. They then manually marked the sentences
where the co-occurring words may be actually ac-
cepted as a MWE (but somehow missed during the
construction of the original treebank). This semi-
automatic annotation approach is incapable of de-
tecting non-adjacent MWE constituents. IMST, IVS
and IWT are recently introduced Turkish treebanks
annotated with a new dependency scheme (Suluba-
cak and Eryiğit, 2014).

IMST contains exactly the same sentences thus
the same MWEs as MST. But differing from the pre-
vious work, the annotation of MWEs are done fully
manually without using a semi-automatic selection
as explained above. The MWEs are annotated by
the use of a specific dependency label (MWE) re-
gardless of their category. In this study, we present
our MWE annotations on these three treebanks: IVS
with 300 sentences, IMST with 5,635 sentences col-
lected from formally-written data and IWT with
5,009 sentences collected from Web 2.0.

Table 1 presents the resulting MWE statistics on
each of these datasets. Since a MWE may consist
of two or more words, the table provides both the
exact number of MWEs (in the second line) and the
total number of MWE relations between MWE con-
stituents (in the first line). As may be noticed from
this table, IMST contains almost 50% more MWE
annotation than MST of Eryiğit et al. (2011) due to
the full manual annotation. Finally the last line of
the table gives the number of MWEs with different
lengths.

3 MWEs in Turkish

Due to its morphological typology, MWE annotation
and extraction methodologies developed for most
prominent languages are not suitable for Turkish.
Whereas the most well-researched European lan-
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MST IMST IVS IWT
# of MWE relations 2432 3544 295 2780
exact # of MWEs 2038 3069 269 2597
exact # of MWEs L=2 L=3 L>3 L=2 L=3 L>3 L=2 L=3 L>3 L=2 L=3 L>3
with Word Lengths 1792 159 87 2757 205 107 247 18 4 2444 127 26

Table 1: MWEs in Turkish Treebanks

guages are typically fusional or analytic, Turkish is
an agglutinative language, meaning that it is possible
to derive and inflect words indefinitely through cas-
cading suffixes. In fact, the derivation is so common
that most sentences contain several derived words
incorporating one or more suffixes, even in the col-
loquial language. The constituents of MWEs also
commonly undergo inflection (Oflazer et al., 2004;
Savary, 2008), giving way to numerous forms of
the same expression each appropriate for a differ-
ent syntactic function. Furthermore, many idiomatic
MWEs may also be interpreted literally—that is,
there are permissible expressions used in their lit-
eral meaning that are morphosyntactically identical
to a MWE. Another point is that the constituents of
a MWE may occur at nonadjacent positions in the
sentence. Figure 1 gives an example for the MWE
“ekmeğini yemek” (to gain one’s livelihood from
(someone)). In the given sentence, the words com-
posing the MWE are both inflected (the first word
“ekmek” (bread) with 1st person possessive agree-
ment suffix in accusative form and the second word
“yemek” (to eat) in past tense with 2nd singular
person agreement) and written separately from each
other.

For these reasons, ordered surface word form
matches do not suffice in properly assessing the se-
mantic quality of expressions. Therefore, the disam-
biguation of MWEs is a more complicated problem
than could be resolved by use of look-up tables.

In the rest of this section, we describe the ex-
tent of MWEs we specified in our framework. We
specify six major categories for MWEs, consider-
ing common idiosyncratic formations in Turkish in
addition to well-recognized global conventions. We
consider any word falling under these categories to
be a MWE, as we later build our extraction models
around them. The categories are given below:

Named Entities: Proper names and titles of

unique persons such as “Genel Sekreter Ban Ki-
moon” (Secretary-General Ban Ki-moon), organi-
zations such as “Avrupa İnsan Hakları Mahkemesi”
(European Court of Human Rights) and locations
such as “Papua Yeni Gine” (Papua New Guinea) oc-
cur very frequently in both edited and unedited texts.
Commonly recognized as named entities, these ex-
pressions often span multiple words, thereby form-
ing a category of MWEs.

Numerical Expressions: We mark any group of
contiguous tokens denoting a numerical expression
as MWEs, including spelled out numbers, quanti-
ties such as currency values and percentages, and
temporal expressions such as date and time phrases.
Such expressions are often considered to be a sub-
group of named entities, but since they are among
the most frequently encountered MWEs, we handle
them under a separate category to emphasize their
importance.

Idiomatic Phrases: Many common idiomatic
phrases in Turkish are also occasionally used in
their literal meanings, such as “yola düşmek” (hit
the road, or lit. fall on the road). Since both
meanings of the phrase would appear morphosyn-
tactically similar, such cases lead to ambiguities in
meaning that must be resolved using contextual in-
formation. For this reason, we consider idiomatic
phrases to be a most challenging category of MWEs.

Light verb constructions: Turkish has a way
of forming verb phrases using auxiliary verbs such
as “olmak” (to be), “etmek” (to do), “yapmak” (to
make) and “kılmak” (to render). Among the ex-
amples, especially the first two are extremely pro-
ductive and often used in very common expressions
like “teşekkür etmek” (to thank, or lit. to do thank).
Although the figurative meanings of such phrases
are usually predictable, they still comprise idiomatic
phrases. We handle these outside the previous cat-
egory due to their prevalence, much like numerical
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Figure 1: A sample Turkish MWE

expressions.

Compound Function Words: We include any
compound particles, multi-word interjections and
other function word compounds under MWEs. This
category excludes function words modified by in-
tensifiers such as “de” and “ise”, which also regu-
larly modify content words, as in “ya da” (or). Ul-
timately, there are few permissible function word
compounds in Turkish, but they are often commonly
used phrases, and warrant a category of MWEs.

Duplications: It is common to use word dupli-
cation as a grammatical mechanism in both formal
and informal Turkish. Duplicating an adjective al-
lows the word to be used as an adverb much like
affixation, such as in “yavaş yavaş” (slowly, or lit.
slow slow). Onomatopoeic or gibberish (and usu-
ally rhyming) pairs of words such as “allak bullak”
(topsy-turvy) are also used fairly often to the same
effect. Furthermore, there is the ‘m’-duplication,
which is a common mechanism in colloquial Turk-
ish, where a word is repeated and an ‘m’ is prefixed
to the duplicate (replacing the initial consonant) in
order to add the ‘and so on’ meaning, like in “form
morm” (forms and so). We evaluate all such dupli-
cations as MWEs.

4 Models for MWE Extraction

For our MWE extraction experiments, we test
with a Turkish dependency parser from Eryiğit
et al. (2008), an existing collocation extraction
tool (Oflazer et al., 2004) (which we call Morpho-
Coll from this point on), and seven lexical models.
The lexical models are based on the previous work
by Eryiğit et al. (2011), three of which are iden-
tical to the models described in the study and the
rest integrate different lexical approaches and a NER

module into these models. The rest of this section
gives the details about our extraction models and
their methodologies.

4.1 Dependency Parser
This model comprises a generic dependency parser
which includes MWE as one of the dependency re-
lations. We extract MWEs by traversing these rela-
tions represented in the output dependency graphs.

4.2 MorphoColl
This model attempts to automatically extract collo-
cations making use of lexical information and mor-
phosyntactic rules. It is composed of three sequen-
tial layers, where each layer has its own set of rules
and produces the input to the next layer as its output.

4.3 Lexical Models
We first filtered MWEs from a Turkish dictio-
nary (TDK, 2011) into a list and used this list as
a look-up table. We used the list in three elemen-
tary models with different validation criteria, as in-
troduced previously in Eryiğit et al. (2011).

Model #0: The first MWE extraction model se-
lects the sequences of words whose surface forms
match those of the constituents of a MWE in the
referenced list. Thus, this model extracts lex-
icalized collocations which are considered fixed
MWEs (Oflazer et al., 2004). An example for this
case is given below:

• “Arka arkaya iki operasyon geçirdi.”
lit. (Back to back) (two) (operations) (he/she had).
(He/she had two operations consecutively.)

Model #1: The second model selects the sequences
of words whose surface forms except the last word
(which may go under inflection) are the same as the
constituents of a MWE in the referenced list. For the
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last constituent, the stem of the word is required to
match. This model extracts collocations belonging
to the semi-lexicalized category as stated in (Oflazer
et al., 2004). Below is an example for this case:

• “Geleceğini haber vermedi.”
lit. (that he/she was coming) (he/she didn’t give)
(news).
(He/she didn’t inform)

Model #2: The third model checks only the stems
of the words and select the sequences of words
matching the stems of a MWE in the referenced list.
Non-lexicalized collocations (Oflazer et al., 2004)
each of whose constituents can undergo inflection
are extracted by this model. The following example
demonstrates this case:

• “Asla umudunu kesmeyeceksin.”
lit. (Never) (your hope) (you will cut)
(You will never despair)

As a summary, Model 0 doesn’t allow any inflec-
tions or derivations in the MWE candidate whereas
Model 1 allows for only the last word, and Model
2 allows for all of its words. Since the used dic-
tionary does not include proper names, the models
introduced above are incapable of detecting named
entities. Thus, our following two models which we
name “Model #1 + NER” and “Model #2 + NER”
use a Turkish named entity recognizer (Şeker and
Eryiğit, 2012) on top of the mentioned models.
Since the NER module may also return single word
entities, only the extracted entities with multiple
words are accepted as MWEs in these models. Be-
low are some examples of the MWEs which are ex-
tracted by the NER in both models:

• “Milli Savunma Bakanlığı’nın toplantısı
bugün yapılacak.”
lit. (National) (Defense) (of the Ministry) (the
meeting) (today) (is to be held)
(The Ministry of National Defense meeting is to be
held today.)

• “Bayındır Sokak’taki evimden çıktım.”
lit. (Bayındır) (located in Street) (from my house)
(I left)
(I left my house located in Bayındır Street.)

The used NER tool which is trained on a data
set following the MUC guidelines (Chinchor and

Robinson, 1997) for named entity annotation does
not extract the titles of the proper names as part of
the entity such as in “Başkan Barack Obama” (Pres-
ident Barack Obama) where the word ‘president’
is not extracted as part of the MWE. On the other
hand, in our annotations on Turkish Treebanks, these
words are also annotated as part of the MWEs. The
Model #1 + Enlarged NER implicates the previous
and/or the next word of the proper name to the ex-
tracted MWE if their first characters are in uppercase
letter with the aim to detect the missing title words.
The following example shows a MWE consisting of
titles and proper names as would be extracted by this
model:

• “Kaymakam Arif Beyi davet ettik.”
lit. (Mister) (Arif) (Governor) (invite) (we have
made)
(We have invited Mister Governor Arif.)

It is impractical to expect from a dictionary list to
contain duplications (especially for m-duplications)
because there is a theoretically infinite number
of duplications (Section 3). Our last model
Model #1 + Enlarged NER + Dup contains an ad-
ditional module which detects these repetitions on
top of the previous model. Below is an example
showing a MWE formed by word repetition handled
by this model:

• “Onu yavaş yavaş sakinleştirdi.”
lit. (him/her) (slow slow) (he/she calmed down).
(He/she slowly calmed him/her down)

5 Experimental Results and Discussions

Table 2 gives the precision, recall and F-scores
(based on the number of MWEs) for the evaluation
of the presented models on the introduced datasets.
As stated previously, IMST, which contains higher
number of annotated MWEs (Section2) yields lower
recall scores compared to MST for all of the mod-
els. This is because of the newly annotated MWEs
with non-adjacent constituents (Section3). On the
other hand, all of the models give higher precision
scores on IMST where the missing MWE annota-
tions of MST are eliminated due to careful manually
annotations on IMST.

Although, Model #1 is a very straightforward
lexical matching approach, it outperforms Morpho-
Coll and the dependency parser on newly annotated
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MST IMST IVS IWT
P R F P R F P R F P R F

Dependency Parser 38.77 44.7 41.52 42.04 32.16 36.44 37.41 19.33 25.49 43.05 39.74 41.33
MorphoColl 80.77 22.67 35.40 77.5 15.71 26.12 82.93 12.64 21.94 86.24 15.44 26.19
Model #0 20.89 9.47 13.32 39.92 12.38 18.1 52.06 14.13 22.22 43.72 13.94 21.14
Model #1 32.65 42.89 37.07 46.73 40.27 43.26 63.13 42.01 50.45 51.5 39.7 44.84
Model #2 27.62 45.93 34.49 39.23 43.99 41.48 45.59 44.24 44.91 43.95 44.17 44.06
Model #1+NER 42.85 56.28 48.65 57.69 49.72 53.41 70.95 47.21 56.7 59.49 45.86 51.79
Model #2+NER 35.67 59.32 44.56 47.66 53.44 50.38 50.96 49.44 50.19 50.08 50.33 50.2
Model #1+Enlarged NER 51.92 68.2 58.96 66.59 57.38 61.64 71.51 47.58 57.14 67.38 51.95 58.67
Model #1+Enlarged NER+Dup 52.74 70.46 60.32 67.25 59.14 62.93 72.43 47.58 57.44 68.13 53.75 60.1

Table 2: Baseline System Results

datasets. The reason is because, the literal interpre-
tation of MWEs with adjacent constituents is less
probable compared to idiomatic usage. Such as the
MWE “ayvayı yemek” which is close in meaning to
to be in hot water (slang to be in trouble) may also
be used literally in the case of eating a quince which
is a much less probable usage.

The impact of adding a NER layer improves
the results almost 10 percentage points. Our En-
larged NER adds almost 10 percentage points on
top of this, and the impact (∼2 percentage points)
of duplication detection is also promising although
not as high as the previous two. Our best performed
model Model #1 + Enlarged NER + Dup achieves
60.32%, 62.93%, 57.44% and 60.1% F-scores in
MST, IMST, IVS and IWT respectively.

The extractors that we presented in this paper are
limited to an individual dependency parser, a rule-
based model and dictionary-based models with rule-
based additions. Since these models do not go be-
yond considering the lexical forms and syntactic
structures of constituents, they have an equally lim-
ited performance in determining MWEs, which are
essentially semantic entities. As such, our models
should only be considered baseline models. We ex-
pect the models to be a benchmark for future work
on more sophisticated MWE extraction systems for
Turkish and facilitate comparison with studies on
other languages analogous to Turkish in their mor-
phosyntactic structure, such as other agglutinative
languages like Finnish and Hungarian, as well as
various morphologically rich languages like French
and Arabic.

Our premise is that, in order to properly pick out
MWEs from within texts, a model needs to inte-
grate morpho-lexical, syntactic and semantic mod-

ules all in one, in order to respectively extract crit-
ical constituents, appoint the grammatical relations
between them, and determine the nature of the ex-
tracted phrases. One of our future plans is to design
and implement such a model following this study,
making use of machine learning and incorporating
sequential modules, each working out a separate as-
pect of the candidate expressions. Additionally, we
aim to expand our survey and test our new model on
other languages besides Turkish for a more thorough
performance evaluation.

6 Conclusion

In this study, we described the various challenges
in annotating and extracting MWEs in Turkish, due
to the typology and certain idiosyncratic features of
the language. We outlined the framework we estab-
lished on what constitutes a MWE, along with the
exceptional cases that have been considered. Af-
terwards, we discussed our elementary approach to
extracting MWEs in Turkish, then presented the ba-
sic extraction models we developed and tested on
four Turkish treebanks. Our best model which uses
a lexical look-up approach allowing the inflection of
the final MWE constituent, an enhanced named en-
tity recognition module and a duplication extraction
module obtains about 60% F-measure in these tree-
banks.
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location extraction in Turkish texts using statistical
methods. In Advances in Natural Language Process-
ing, pages 238–249. Springer.

Joakim Nivre and Jens Nilsson. 2004. Multiword units in
syntactic parsing. Proceedings of Methodologies and
Evaluation of Multiword Units in Real-World Applica-
tions (MEMURA).

Kemal Oflazer, Bilge Say, Dilek Zeynep Hakkani-Tür,
and Gökhan Tür. 2003. Building a Turkish treebank.
In Treebanks, pages 261–277. Springer.
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Abstract 

Verb senses are often assumed to distinguish among 

different conceptual event categories. However, senses 

misrepresent the number of event categories expressed 

both within and across languages and event categories 

may be “named” by more than a word, i.e. a multi-word 

expression. Determining the nature and number of event 

categories in an event description requires an under-

standing of the parameters relevant for categorization. 

We propose a set of parameters for use in creating a 

Gold Standard of event categories and apply them to a 

corpus sample of 2000 sentences across 10 verbs. In 

doing so, we find an asymmetry between subjects and 

direct objects in their contributions to distinguishing 

event categories. We then explore methods of automat-

ing event categorization to approximate our Gold 

Standard through the use of hierarchical clustering and 

Latent Semantic Analysis (Deerwester et al., 1990). 

1 Introduction 

A word form is associated with one or more sens-

es, each of which may denote a distinct conceptual 

category. This association is many-to-many; one 

word may have many senses, while different words 

may also share the same sense. Additionally, just 

as two different words may denote the same con-

cept, so may a sequence of words. Consider the 

sentences in (1). 

 

(1) a. The officer entered the building. 

 b. The officer went into the building. 

 

How many concepts do these sentences contain? 

Probably officer and building each count as one 

and so does enter. But it is difficult to justify label-

ing enter as a single concept while treating go and 

into as separate. Enter and go into seem to denote 

the same concept, the first by means of a single 

word and the second through a multi-word expres-

sion (MWE). The mapping between concept and 

lexicalization becomes a real problem for AI rea-

soning systems. These systems often translate nat-

ural language input into a lingua franca, such as the 

HPSG representation used by SNePS (Shapiro & 

Rappaport, 1992), and there is no clear way for 

them to know when they have encountered a MWE 

that represents a single concept. 

While the sentences in (1) indicate that a single 

conceptual category may span syntactic boundaries 

and involve different verbs, it is also possible for 

distinct conceptual categories to be denoted using a 

single verb sense as in (2). 

 

(2) a. The senator raised a glass in celebration. 

 b. The crane raised the car out of the water. 

 

Both (2a) and (2b) employ the same sense of 

raised1 but denote very different categories of 

events. In prototypical contexts, (2a) describes a 

toast, while (2b) describes the extraction of a large 

object. The events described in (2) differ in a num-

ber of ways, among them duration, complexity, 

                                                           
1 To determine whether two uses of a word instantiate the 

same sense, we use the American Heritage Dictionary (AHD), 

which features several notable linguists among its contributors 

and consultants. 
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available inferences, and the types of agents in-

volved. Further, several inferences one can draw 

from (2a) arise non-compositionally, i.e. cannot be 

inferred from just the meaning of the parts and the 

sentence’s syntactic structure.   

What is crucial for our purposes in (2) is that the 

two distinct event categories described by the sen-

tences are differentiated by information outside of 

the verb sense. Recognition of this fact prompts the 

question of what kinds of information beyond verb 

sense are relevant for differentiating event catego-

ries, as well as how to distinguish between MWEs 

that denote distinct event categories and those that 

do not. In this paper, we explore these problems 

and develop a new method of automatically cate-

gorizing event descriptions. 

The paper is structured as follows. Section 2 

briefly discusses the limitations of lexical ap-

proaches to event categorization and outlines an 

alternative approach that takes into account clausal 

constituents beyond the verb. In Section 3, we pro-

pose a set of six general parameters by which cate-

gories of events may be distinguished beyond the 

verb sense. Those parameters are applied to a cate-

gorization task in Section 4 using a sample of cor-

pus sentences for 10 different verbs. In Section 5, 

we describe an attempt to automate the sorting task 

using relatedness measures from Latent Semantic 

Analysis in combination with hierarchical cluster-

ing. 

2 Event categories as MWEs 

Lexical approaches to event categorization, i.e. 

those that only rely upon the verb, encounter sig-

nificant problems stemming from the arbitrariness 

of lexicalization both within and across languages. 

Within a language, the same conceptual event cat-

egory may be expressed by a verb or a verb plus 

non-verbal expressions as in (1). Confining event 

categorization to the verb may additionally miss 

important differences between event categories as 

in (2). Additionally, languages differ both in the 

sizes of their verbal lexicons and in the number of 

senses assigned to each verb. The average adult 

English speaker knows approximately 4,000 verbs 

(Koenig et al. 2003), each of which has on average 

three (COBUILD, pc, 2006) or four (WordNet Sta-

tistics, 2015) senses. Under the assumption that 

verb senses approximate event categories, this re-

sults in a total of 12,000 - 16,000 distinct event 

categories. Speakers of a language such as 

Wagiman, a northern Australian language, have an 

inventory of only about 500 verbal expressions, 

90% of which have only a single recorded sense 

(Wilson, 1999). The upshot of only using verb 

senses to distinguish event categories would be the 

claim that speakers of Wagiman are capable of 

(linguistically) distinguishing only 4% of the event 

categories distinguished by speakers of English – 

an implausible statistic. 

Wagiman speakers achieve parity with speakers 

of other languages by combining verbal expres-

sions to create what Wilson calls 'complex predi-

cates': the English word watch translates to a 

combination of two words in Wagiman: the word 

nanda, meaning 'to see', from a closed class of 

basic verbs, and the word letta, meaning 'to look', 

from an open class of verbal expressions called 

coverbs. Wagiman verb-coverb combinations pro-

vide an example of a multi-word expression in one 

language serving the purpose of a single-word ex-

pression in another. This phenomenon has received 

due attention within the MWE literature (see, e.g., 

Sag et al., 2001; Villavicencio, 2007), though most 

often as it relates to idiom translation. It has also 

received attention in the typological literature, e.g. 

in discussion of 'verb-framed' vs. 'satellite-framed' 

languages, the former of which express motion 

path as part of verb meaning and the latter of 

which express it verb-externally through 'satellite' 

phrases (Talmy, 1985a).  

In addition to the above motivations, the prob-

lems we investigate are related to a large body of 

research devoted to selectional preferences, includ-

ing efforts from both psycholinguistics (e.g. 

McRae et al. 1998, 2005) and computational mod-

eling (e.g. Erk & Padó 2008, Lenci 2011). These 

efforts are primarily concerned with measuring the 

sensitivity of people and NLP systems to distribu-

tional properties of verbs, though some, such as 

FrameNet (Baker et al. 1998) and Corpus Pattern 

Analysis (Hanks 2004), do flesh out the boundaries 

within these distributions more fully. Our aim here 

is to explore the parameters that underpin divisions 

within these distributions. Many of the parameters 

involve non-compositional meaning components 

and thus benefit from an understanding of event 

descriptions as MWEs. We propose here that all 

events, not just idiomatic and institutionalized 

phrases, may be categorized at the level of multi-

word expressions. 
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Consider again the two uses of raised in (2). In 

comparing the two different categories of raising 

events, we may look beyond the verb and investi-

gate the contribution of other parts of the clause: 

How is the kind of raising involved in raising a 

glass distinct from the kind involved in raising a 

car? How is the kind of raising a senator does pre-

dictably different from the kind of raising a crane 

does? We propose partial answers to these ques-

tions and motivate them with examples in the next 

section. 

3 Parameters for event categorization 

What follows is an attempt to extract from both 

previous research and common sense a set of gen-

eral parameters by which event categories may be 

distinguished beyond the level of the verb sense. 

We should be clear at the outset that the following 

parameters are not to be taken as complete, but 

rather as a subset of dimensions of experience that 

are available for event categorization. Examples 

are drawn from our corpus sample and, important-

ly, share the same verb sense as per the AHD. 

3.1 Complexity 

Event complexity often refers to the number of 

sub-events represented in the semantics of a verb 

(see e.g. Dowty 1979). However, such accounts 

ignore the contribution of event participants in in-

fluencing event categorization. Consider the two 

uses of sell in (3). 

 

(3) a. He refused to sell any of his antiques. 

 b. The support staff sells their expertise to 

 the community beyond the school. 

 

Though the sense of sell remains constant between 

(3a) and (3b), selling done by a support staff to a 

community is likely to include a larger total num-

ber of sub-events than selling done by or to an in-

dividual. This sub-event information, though, is 

only available to language users when they com-

bine verb information with information they glean 

from disparate parts of the clause.  

In addition to the number of sub-events, com-

plexity includes the relations among sub-events 

and the participants within them. Sensitivity to this 

kind of complexity has been found as a general 

trait in infants and adults. Infants have a harder 

time processing complex relations like contain-

ment than they do processing simpler relations 

such as interposition (Baillargeon & Wang, 2002). 

Additionally, recent research suggests that adult 

speakers are sensitive to event complexity in their 

willingness to violate iconicity expectations during 

narrative discourse (Dery & Koenig, in press). We 

therefore consider both the quantitative and quali-

tative aspects of complexity to be relevant for 

event categorization. 

3.2 Time scale 

The parameter of time scale includes binary dis-

tinctions such as events that are permanent rather 

than temporary or bounded rather than unbounded, 

but also includes differences in duration along a 

continuum, e.g. events that occur in the space of 

one second in comparison to events that happen 

over the course of several months, years or millen-

nia. An example of a difference along a continuum 

is found in (4). 

 

(4) a. Royal Bank of Scotland bought Bank 

 Worcester at the end of 1990. 

 b. I stopped at a bar just long enough to 

 buy two cheese rolls. 

 

While buying a couple of cheese rolls as in (4b) 

takes only a moment, the consolidation of two 

banks as in (4a) generally does not.  

The linguistics literature on event structure is 

rife with binary time scale distinctions. Events are 

often discussed in terms of whether or not they are 

telic, bounded (Verkuyl, 1972), culminating 

(Moens & Steedman, 1988), or delimited (Tenny, 

1987). In addition to the latter theoretical support, 

experimental evidence for sensitivity to binary 

time scale distinctions may be found within both 

the acquisition literature ― e.g. children's marking 

those distinctions even when their languages do 

not (Clark, 2001 & 2003) ― and studies of adult 

narrative discourse, where situations with inherent 

endpoints bias narrators towards different types of 

continuations (Dery & Koenig, in press). In estab-

lishing Gold Standard categories for our data, we 

consider both the binary and continuous dimen-

sions of temporal distinctions described above. 
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3.3 Agent type  

We use the term ‘agent’ here in a broad sense; 

while characteristics such as animacy and volition 

are prototypical, they are not required. Agents are 

distinguishable from one another according to such 

properties as whether they are individuals or 

groups, animate or inanimate, physical or abstract, 

etc., and the type of agent exerts an influence on 

event interpretation and categorization. Example 

(5) presents two sentences that involve distinct 

types of agents. 

 

(5) a. A Genoese fleet rescued the city. 

 b. Archaeologists rescue information 

 about the past before it is destroyed. 
 
From differences in agent type it is possible to pre-

dict that the rescuing events described are different 

categories of rescuing. (5a) describes a large con-

certed operation involving many individuals, ma-

chinery, national resources, extensive planning and 

so on, while (5b) involves none of these things. 

Evidence for the parameter of agent type also 

comes from reading time experiments and experi-

ments using event-related potentials (ERPs) in 

which participants show sensitivity to the combina-

tion of agent and verb when processing event pa-

tients (Bicknell et al. 2010). 

3.4 Sociocultural salience  

A factor that, to our knowledge, has been entirely 

missed or ignored in the literature on event catego-

rization – perhaps because it is so difficult to quan-

tify – is social or cultural salience. Yet it is 

uncontestable that some objects, characteristics, or 

events are set apart from others because of their 

importance within the practices of a community. 

(6a) differs from (6b) because the event category 

described, book-borrowing, has become institu-

tionalized to the extent that we have public build-

ings devoted solely to facilitating that practice. 

 

(6) a. The room is for pupils to borrow books. 

 b. Can you borrow an iron for me? 

 

To our knowledge, the borrowing of irons has yet 

to achieve such lofty status on the public agenda. 

The salience of any particular category of event 

will vary across populations of language users, as 

well as across languages, to the extent that lan-

guage and cultural practices co-vary. 

3.5 Inferences  

As additional information combines with that of 

the verb, more inferences become available, and 

many of these inferences may be relevant to event 

categorization. Consider the examples in (7). 

 

(7) a. She adjusted the scarf to cover the 

 bruises forming on her neck. 

 b. The children covered their eyes and 

 turned away as the needle went in. 

 

In (7a), the agent presumably desires to hide a 

bruise from the sight of others, while in (7b), the 

inference is not that the children are trying to pre-

vent others from seeing their eyes; rather, they are 

trying to keep themselves from witnessing some-

thing unpleasant. Such inferences are often una-

vailable compositionally. World knowledge 

associated with the description conveyed by the 

verb and its arguments must be added to the com-

positional meaning before such inferences can be 

drawn. 

3.6 Specific motion sequence  

Certain events are characterized by a sequence of 

motions that set them apart from events that can be 

performed in any number of ways. These events 

may often be described as actions performed ac-

cording to a recognizable motor program put into 

action by the event participant(s). Though distinc-

tions along this dimension are admittedly rarer 

than those made via many of the other parameters, 

they do exist, as the examples in (8) show. 

 

(8) a. Charlery pulled the ball behind Halsall. 

 b. The General shouted at his men to pull 

 the barricade down. 

 

The category of event described in (8a) requires a 

specific motion in which the leg is moved forward 

over the ball, the toe is brought down into contact 

with the top of the ball, and the leg and ball are 

pulled back together; pulling down a barricade as 

in (8b), however, may be accomplished through a 

variety of unspecified means. 
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4 Experiment 1: Manual categorization  

While the above parameters for distinguishing 

event categories may sound plausible, there is no 

guarantee that their application will result in a divi-

sion of event descriptions that is equally plausible. 

In order to make such a determination, each of the 

authors categorized the same large set of event de-

scriptions by hand. The results of this process were 

then used as a Gold Standard for subsequent auto-

mation of the categorization task. For the purposes 

of this exploratory study, we elected to limit our 

investigation to variation within the head noun in-

cluded in subjects and direct objects for a given 

verb, while recognizing that information from oth-

er portions of the clause may play a role in event 

categorization. The methods we employ are easily 

extendible to include other constituents such as 

prepositional phrases. 

4.1 Materials and procedure 

Through the use of the software package Tgrep2 

(Rohde, 2005), a full list of sentences containing 

the following 10 verbs was obtained from the Brit-

ish National Corpus (BNC): bake, borrow, buy, 

cover, deliver, frighten, immerse, pull, rescue, and 

sell. The total sample comprised approximately 

43,000 sentences. The sentences in the sample 

were then randomized and a list of the first 100 

sentences with unique subjects was compiled for 

each verb. Items with pronominal subjects were 

excluded because without access to an anaphoric 

or deictic referent, pronouns contribute relatively 

little information beyond that contributed by the 

verb. Items with subjects that were proper names, 

which similarly contribute little or no information 

useful for categorization, were also excluded. Last-

ly, sentences with ambiguous or incorrect parses 

were removed from the sample by hand. Sentences 

in the sample were then randomized once more and 

another list for each verb was compiled containing 

the first 100 sentences with unique direct objects. 

The product of this process was 20 lists ― two for 

each of ten verbs ― totaling 1602 sentences.2 

Because pronouns constitute a much larger pro-

portion of subjects than direct objects, our decision 

                                                           
2 Not all lists were 100 items in length, simply because some 

verbs had fewer than 100 valid BNC results after filtering; 

while we do not explicitly address these cases here, the proper 

n value for each list was used in all analyses. 

to exclude pronouns may artificially inflate the 

contribution of subjects (vs. direct objects) to the 

diversity of event categories, though this is primar-

ily an issue only with small sample sizes. In total, 

pronouns constituted 49.64% of subjects and 

19.51% of direct objects for the verbs included in 

our sample and proper names constituted 12.23% 

of subjects and 3.18% of direct objects. 

Each of the authors independently categorized 

each list of sample sentences. The event categories 

discovered were discussed until consensus was 

reached.3 The resulting event categories were then 

compared against verb senses obtained from the 

American Heritage Dictionary (AHD) in order to 

determine the efficacy of verb senses in capturing 

the event category distinctions we found. Diction-

ary senses that were not found in any of our sample 

sentences were ignored. 

4.2 Results 

The AHD provides an average of 3.8 senses per 

verb in our list.4 Categorization by application of 

our parameters provided an average of 16.5 event 

categories per verb. Of these categories, 62% came 

from the direct object sentence lists, suggesting 

that there is an asymmetry between subjects and 

direct objects in distinguishing among event cate-

gories (p = .009, n = 165 categories). A compari-

son of AHD senses to event categories is shown in 

Table 1.5 

4.3 Discussion  

Several regularities arose during the categorization 

process. The direct object lists almost always con-

tributed larger numbers of categories than the sub-

ject lists. In some respects, this finding is not 

unexpected. Agents generally play a minor role in 

characterizing events. Intuitively, "A man raised a 

finger" could be paraphrased as a finger-raising 

event, but not as a man-raising event (as opposed 

to a woman-raising event). We also found that  

                                                           
3 Because stable categories were not yet available (the task 

being to create them), inter-rater agreement was not measured.  

It is worth noting, however, that our categorizations over-

lapped to a surprisingly high degree. 
4 The total average number of senses per verb, including those 

senses not found in our sample sentences, was 5.7 for our 10 

verbs. 
5 Event category counts are summed for each verb from sub-

ject and direct object lists. 
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Verb AHD senses Categories 

bake 2 10 

borrow 2 18 

buy 3 18 

cover 8 30 

deliver 7 17 

frighten 2 14 

immerse 3 8 

pull 6 24 

rescue 1 13 

sell 4 13 

Average 3.8 16.5 

 

some of our proposed parameters were more fre-

quently applicable than others. Unsurprisingly, 

agent type played a major role in distinguishing 

event categories within the subject sentence list. It 

most often followed from differences in plurality 

(an uncle borrowed vs. the crew borrowed), ani-

macy (an uncle borrowed vs. an atom borrowed) 

and abstractness (the crew borrowed vs. the agen-

da borrowed). Complexity, sociocultural salience 

and inferences also played a large part, while time 

scale and specific motion sequence tended to take a 

back seat in both subject and direct object lists. 

One further finding not directly evident from the 

reported results concerns the verb frighten. This 

verb belongs to a relatively small class of psych 

verbs known as 'object-experiencer' verbs, where 

one sees a reversal of what otherwise occurs in 

subject and direct object positions – e.g., a verb 

like watch may occur in Anne watched the storm, 

but frighten may only occur in the reverse pattern 

the storm frightened Anne. This reversal was found 

in our corpus data. The general asymmetry in the 

number of pronominal subjects and direct objects 

we observed did not apply to frighten, and proper 

names were found in direct object position more 

than twice as often for frighten as they were for 

other verbs. If it is world knowledge about what 

the verb and its arguments describe that is inform-

ing event categorization, one would expect that, 

when the kinds of items typically found in direct 

object position are instead found in subject posi-

tion and vice versa, the asymmetry in the relative 

importance of subjects and objects in distinguish-

ing event categories is also reversed. This is exact-

ly what we found: 64% of the frighten categories 

were distinguished by the combination of verb and 

subject. The results for frighten suggest that the 

asymmetry between subjects and objects is not due 

to grammatical function, lending support to our 

claim that the parameters outlined in Section 3 are 

independent of a language's morphosyntax. 

One final finding of our first experiment is 

worth noting and bears directly on the design of 

Experiment 2. In general, the more semantically 

similar to one another any pair of a verb's subjects 

or direct objects were, the more likely the events 

described by the combination of those items with 

the verb were to be put in the same event category. 

For example, the events described by covered their 

hands and covered their feet are more likely to be 

in the same category than either is to be in a cate-

gory with covered their city, simply because hands 

and feet are more semantically similar to one an-

other than either is to city. We adopt this finding as 

an assumption for automating event categorization 

in Experiment 2. 

5 Experiment 2: LSA categorization 

Categorizing even a relatively short list for only 

ten verbs turned out to be quite difficult and time-

consuming. It is therefore desirable to find a dy-

namic and automatic way to categorize any event 

description as it is encountered. Below we describe 

a first try at such automation, using Latent Seman-

tic Analysis (LSA) and hierarchical clustering to 

approximate our Gold Standard categories. 

LSA is a method for evaluating semantic simi-

larity from corpora containing collections of inde-

pendent documents. It requires the creation of 

large, sparse matrices which track each word's fre-

quency of co-occurrence with each other word 

within each document. The matrix is reduced to a 

target number of only the most salient dimensions, 

usually between 50 and 400, and within the result-

ing semantic space it is possible to locate each 

word as a vector (see Deerwester et al., 1990 for a 

detailed description). The upshot of this process is 

that those words which occur together in the same 

documents most often (and whose frequent com-

panions also occur together most often) are consid-

ered highly related and will usually occur near 

each other in the semantic space. LSA predictions 

matched scores of non-native college applicants in 

Table 1. Comparison of AHD senses to event 

categories discovered by application of the 

parameters discussed in Section 3. 
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TOEFL tests of word similarity (Landauer et al., 

1998). 

5.1 Materials and Procedure 

Through the application of latent semantic analysis 

to a 400-dimensional semantic space created from 

the British National Corpus, pair-wise relatedness 

value were calculated for each subject list and each 

direct object list. The result was approximately 

 = 5050 relatedness values for each list. The 

hclust command in R (R Core Team, 2015) was 

then used to construct an average-linkage dendro-

gram from the half matrix containing each list of 

relatedness values. Though the full 100-item den-

drograms cannot fit a page in a readable form, a 

slice from the borrow direct object list is included 

here as Figure 1 for illustrative purposes. 

 

 

 

At a glance, three distinct categories are visible in 

Figure 1: a category of language-related items, a 

category of currency-related items, and a category 

containing videography-related items. Dendro-

grams are built from the bottom up (from left to 

right in Figure 1) by combining the most closely 

related branches at each step, eventually fusing the 

final two clusters into one unified tree. Using R's 

cutree command, this process can be reversed by 

counting splits from the top down until the number 

of categories identified in the Gold Standard cate-

gorization is reached – for the borrow direct ob-

jects list, that number was 13. Each list's full den-

drogram was deconstructed in this way. 

Precision and recall were obtained as they are 

for V-measures (Rosenberg and Hirschberg, 2007). 

For each subject or direct object in its respective 

list, we found the set H of all other words that had 

been assigned to the same category by LSA. The 

cardinality of this set represents the total number of 

hypothesized items in that word's category. We 

then found the set A of all words that had been as-

signed to the same category in the Gold Standard. 

The cardinality of this set represents the total num-

ber of actual items in that word's category. Third-

ly, we found the intersection of the latter two sets 

H∩A. The cardinality of this set represents the to-

tal number of items correctly categorized by the 

automated categorization. 

Precision (p = |H∩A|/|H|) and recall (r = 

|H∩A|/|A|) values were then calculated for each 

item and combined for an F-score that is their 

harmonic mean (F = 2pr/(p + r)). Finally, 100 ran-

dom categorizations were performed for each list 

as a measure of comparison.  

5.2 Results 

The average LSA and randomized F-scores for 

each list type are reported in Table 2.6 

 

List 
p 

LSA 

r 

LSA 

F 

LSA 

F 

rand 
Ratio 

Subj 40% 80% .53 .39 1.38 

DO 35% 66% .46 .32 1.46 

Overall 38% 73% .50 .35 1.42 

 

The LSA automated categorization resulted in an 

average of 42% more accurate categorization than 

that obtained by random categorization. 

                                                           
6 Average F-scores are weighted by list length, i.e. those lists 

significantly shorter than 100 items – specifically lists for bake 

and immerse in our sample – were given proportionally less 

weight in calculating overall averages. 

Figure 1.  A section of the dendrogram created 

by using LSA semantic distance values to 

group direct objects of the verb borrow. 

 

Table 2.  F-scores for LSA categories, com-

pared to F-scores for randomized categories.  

Ratios represent how much better than chance 

LSA categorization performed. 
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5.3 Discussion 

The combination of high recall and low precision 

suggests that the automated categorization tends to 

lump a large portion of each list into only a few 

categories, populating the remaining categories 

with only a small number of outliers. Our categori-

zation when creating the Gold Standard, in con-

trast, tended to distribute items more evenly over 

event categories. The imbalance turns out to be a 

consequence of the particular clustering method 

used in creating the LSA categories – in this case, 

the average linkage method. Some methods (e.g. 

the Ward method) instead favor increased preci-

sion over recall. In our tests, recall-biased methods 

invariably resulted in better F-measures.7 

Looking at the differences in category members 

within Gold Standard and LSA results may provide 

insight into both where LSA fails and where alter-

native parameters may have escaped our notice. 

The bake object list yields several such exemplars. 

In creating our Gold Standard, we categorized bak-

ing events according to such criteria as whether or 

not the baked item requires preparation (e.g. mak-

ing and rolling dough, etc.), which adds to the 

complexity of the baking event, and whether the 

item undergoes a transformation in the baking pro-

cess (e.g., dough becomes bread, but a potato re-

mains a potato). The LSA categorization, in 

contrast, appeared to reflect ethnic/cultural cuisine 

categories rather than processes undergone by the 

materials involved: the cluster containing soufflé, 

aubergine, fillet and flan was separated from that 

containing potato, pie and cake. This makes sense 

when one considers that the relatedness measures 

used by the LSA are obtained from co-occurrence 

of words within documents – and recipes, from 

which many of the baking event clauses were ex-

tracted, are often found in documents that focus on 

a specific kind of cuisine. It is worth stressing that 

this difference in categorization is not simply an 

indication of the limitations of LSA. Rather, it 

brings to light an important dimension of categori-

zation that was not considered in our Gold Stand-

ard; baking events may quite plausibly be divided 

into French baking, American baking, etc. It is 

                                                           
7 Methods tested in order of improvement over random cate-

gorization were average linkage (42%), single linkage (41%), 

McQuitty (33%), complete linkage (18%) and Ward (7%).  

Note that single linkage prefers ‘lumping’ to a greater degree 

than average linkage, but results in slightly less improvement. 

possible that in this instance we simply missed dif-

ferences in sociocultural salience (the fourth pa-

rameter in Section 3) that stem from the role that 

baking plays in cultural nutrition. 

We also found reflexes of the asymmetry be-

tween subjects and objects within LSA relatedness 

measures. Average relatedness among direct ob-

jects for a given verb was significantly higher than 

relatedness among subjects for seven of the eight 

verbs listed in the results. The one verb for which 

this did not hold was frighten, where we expected 

and saw a reversal in number of categories discov-

ered when sorting by hand. When frighten is ex-

cluded, inter-object relatedness is on average 35% 

higher than inter-subject relatedness. In other 

words, the direct objects for a verb tend to be more 

closely related to one another than the subjects of 

that verb are. The exact nature of the relationship 

between this asymmetry in relatedness scores and 

the asymmetry in contribution to category for-

mation remains to be determined.  

6 Conclusion 

Preliminary categorizations suggest that language 

users are capable of much finer-grained event cat-

egorization than that provided at the level of verb 

senses (at a ratio of over 4:1) and that these event 

categories are associated with multi-word expres-

sions which include the verb plus direct ob-

ject/subject head. Using the methods described in 

this paper, it is possible to automate this finer-

grained level of event categorization to some de-

gree. With respect to both of these findings, there 

is an asymmetry between English subjects and di-

rect objects in their contribution to categorization – 

the combination of direct objects and verbs ac-

counts for a greater share of category distinctions 

than the combination of subjects with verbs. This 

asymmetry is purely conceptual, independent of 

any theoretical assumptions regarding order of syn-

tactic composition, and is reflected in LSA related-

ness measures. 

We are at the time of writing conducting exper-

iments with naïve speakers to norm our Gold 

Standard categorization and assess the independent 

contribution of different parameters in event cate-

gorization. The contribution of information other 

than the subject and direct object also deserves to 

be explored in more detail and the analysis should 

be expanded both to languages beyond English. 
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Additionally, LSA is only one source of related-

ness measures among many; it competes with vari-

ous WordNet algorithms, mutual information 

measures, and newer predictive measures (see e.g. 

Baroni et al. 2014). Though one might expect a 

high correlation among these measures, it turns out 

that very often the correlation is surprisingly low, 

and thus one could conceivably obtain very differ-

ent categories depending on the method used to 

measure semantic similarity (Maki et al., 2004). It 

may be that some methods result in relatedness 

scores that better approximate human categoriza-

tion than others, and these alternatives deserve ex-

ploration. 
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Abstract

Multiword expressions (MWEs) are vexing
for linguists, psycholinguists and computa-
tional linguists, as they are hard to define,
detect and parse. However, previous stud-
ies have not taken into account the cogni-
tive constraints under which MWEs are pro-
duced or comprehended. We present a new
modality for studying MWEs, keystroke dy-
namics. We ask subjects to respond to a vari-
ety of questions, varying in the level of cog-
nitive demand required to generate an answer.
In each response, a subject’s pause time pre-
ceding each word – within and outside an
MWE – can illuminate distinct differences in
required effort across tasks. By taking advan-
tage of high-precision keystroke loggers, we
show that MWEs produced under greater cog-
nitive demands are produced more slowly, at a
rate more similar to free expressions. We hy-
pothesize that increasingly burdensome cogni-
tive demands diminish the capacity of lexical
retrieval, and cause MWE production to slow.

1 Introduction

Multi-word expressions (MWEs) are vexing for both
theoretical linguists and those working in Natu-
ral Language Processing. For theoretical linguists,
MWEs occupy a liminal space between the lexicon
and syntax (Langacker, 2008). For NLP practition-
ers, MWEs are notoriously difficult to detect and
parse (Sag et al., 2002).

This paper presents a new modality for studying
MWE production, keystroke dynamics, which al-
lows for large-scale, low-cost, high-precision met-
rics (cf. (Cohen Priva et al., 2010)). Keystroke dy-
namics looks at the speed at which a user’s hands
move across a keyboard (Bergadano et al., 2002). It
has the distinct advantage of using written text, with
clear word and sentence boundaries, while combin-

ing it with dynamic production features, allowing for
greater insight into the language creation process.

This study explores the notion that many of the
principles that guide intonation and speech prosody
are also present during the typing production pro-
cess. Principles related to prosody need not be
limited to spoken language production. The Im-
plicit Prosody Hypothesis, for example, posits that a
“silent prosodic contour” is projected onto a stimu-
lus, and may help a reader resolve syntactic ambigu-
ity (Fodor, 2002). Previous studies applied this hy-
pothesis to silent reading (Fodor, 2002). The present
study, in turn, applies this same principle to (silent)
typing: Language users take advantage of prosodic
contours to help organize and make sense of lan-
guage stimulus, whether in the form of words they
are perceiving or words they are producing.

Moreover, in previous studies, the type of ques-
tion a subject is asked, in order to elicit a response,
has not been taken into consideration. We take
advantage of the low cost and high precision of
keystroke dynamics to uncover trends in MWE pro-
duction, by eliciting responses from subjects using
a variety of questions with very different cognitive
demands. Our findings show that the cognitive de-
mands of an elicitation task have a noticeable ef-
fect on how MWEs are produced during a response.
These findings have important ramifications for lin-
guists performing MWE-related experiments, and
cognitive scientists studying how lexical items are
stored and retrieved.

In order to run our analysis, we collected free re-
sponse typing data from a large set of subjects. The
subjects responded to a wide array of cognitively de-
manding prompts, from simple recall to more com-
plex, creative analysis. From this data, we then per-
form two experiments. In a preliminary experiment,
we analyze how linguistic attributes such as word
length and predictability shape keystroke produc-
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tion. In our main experiment, we then use these find-
ings to analyze how multiword expression produc-
tion is affected by the cognitive demands imposed
upon the subjects.

We hypothesize that the cognitive demands of a
task will impede MWE production, as the overall
demands will interfere with lexical retrieval, creat-
ing a cognitive bottleneck. Our study aims to shed
light on three sets of questions:

• Are MWEs produced differently depending
upon the type of task they are produced within?
If so, how?
• Can patterns in MWE production provide

insights regarding constraints on lexical re-
trieval?
• What are the benefits of keystroke dynamics for

psycholingistics studies?

The rest of the paper is organized as follows: Sec-
tion 2 situates our study in context, illustrating how
prosody is affected by MWEs, and keystroke dy-
namics relates to cognition. Section 3 outlines our
experiments, with results reported in Section 4. Our
results are discussed in Section 5, with a conclusion
and look towards future work in Section 6.

2 Related Work

Our study brings together MWEs, cognition and
keystroke dynamics in a novel manner. In order to
situate our investigation in context, we explore rel-
evant previous studies below, and explain how their
findings contribute to the present work.

2.1 MWEs in speech production
Many studies have concluded that multiword ex-
pressions are stored and retrieved as single lex-
ical units (Wray, 2005; Dahlmann and Adolphs,
2007, and references therein). As such, MWEs ex-
hibit unique phonological and prosodic character-
istics. For example, MWEs have been found to
exhibit greater phonological consistency than free
expressions (Hickey, 1993). Specifically, pauses
have been found to be less acceptable in lexicalized
phrases (Pawley, 1985). In addition, and most rele-
vant to our study, Dahlmann and Adolph study how
pausality differs in and around MWEs (Dahlmann
and Adolphs, 2007). They conclude that “...where

pauses occur they give valuable indications of possi-
ble [MWE] boundaries”. (Dahlmann and Adolphs,
2007, p. 55)

In many ways, the present study can, and
should, be viewed as an extension of Dahlmann and
Adolphs’ study. If we view keystroke dynamics as
a reflection of many speech production principles in
the typing process, then this is a reasonable exten-
sion. We augment the previous findings, though, by
investigating how varying cognitive demands affect
MWE production.

In studies of speech, Erman (2007) notes that
a pause can be caused by the cognitive demands
of lexical retrieval, and Pawley (1985) notes that
pauses are much less acceptable within a lexical-
ized phrase than within a free expression. This
led Dahlmann and Adolphs (2007) to study paus-
ing within spoken MWEs. A central finding of
Dahlmann & Adolphs is that MWEs are often sur-
rounded by pauses, and that pausality is unique
within and around MWEs.

In addition, Dahlmann & Adolphs note the dif-
ficulty of accurately measuring pauses in speech;
keystroke dynamics does not face that obstacle.

2.2 Typing Behavior and Cognition
Typing is an interesting blend of cognitive and phys-
ical activity. On the cognitive side, a typist must un-
dertake the cognitively demanding task of text pro-
duction. Although literate people produce text on a
nearly daily basis, researchers have gone so far as
to call the writing process “one of the most com-
plex and demanding activities that humans engage
in” (Alves et al., 2008, p. 2). The act of typing in-
volves juggling both the high-level text creation pro-
cess, and low-level motor execution.

Beginning in the 1980s (Rumelhart and Norman,
1982), investigators used typing data to construct
cognitive and motor models of language production.
As expounded by Salthouse (1986), a typist must si-
multaneously employ multiple cognitive and motor
schemata, often with a formidable amount of noise
between signals. Translating from lexical retrieval
into physical action is a non-trivial task, which in-
volves multiple pipelines that can be occluded, and
also result in mixed up signals.

The typing task is especially daunting for novice
typists. Gentner, et al. (1988) investigated the
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linguistic characteristics of skilled versus unskilled
typists, finding marked differences in the behavior
(and thus cognitive model) of each population. A
novice typist is so burdened by the physical execu-
tion cycle of typing that the quality of his or her writ-
ing is noticeably diminished.

However, Alves et al. (2008), in studying nar-
rative construction in typing conclude that while
differences do exist between the populations, this
might not be as significant a differentiation as orig-
inally thought. They conclude, “Although motor
execution is more demanding for slow typists, this
higher demand neither prevented them from activat-
ing high-level processes concurrently with typing,
nor changed the distribution of occurrences of the
writing processes.” (Alves et al., 2008, p. 10)

The importance of pauses during the typing pro-
cess is borne out in a number of studies. Schilpero-
ord (2002) concludes that writers pause for a number
of reasons, such as cognitive overload, writing ap-
prehension or fatigue. Alves et al. (2008) similarly
concluded that pauses are usually a sign of cognitive
competition. Many of the reasons given for paus-
ing during typing are similar to the reasons given
for pausing during speech production, thus provid-
ing further motivation to use the typing process to
test phenomena observed during speech.

3 Methodology

3.1 Procedure
Our typing data was collected from 189 Louisiana
Tech students (hereinafter referred to as “subjects”).
The subjects reported themselves to be 41.3% fe-
male, 56.4% male and 88.3% right-handed and 9.1%
left-handed. (Note that these do not sum to 100%;
on each question some percentage of subjects chose
not to respond to one or more of the demographic
questions.)

We limited our study to only native English speak-
ers. This was to avoid the additional confound of
language familiarity, though this is certainly an im-
portant area for study. Specifically, Riggenbach
(1991) found that in speech, placement and length
of pausing around MWEs is seen as a sign of flu-
ency.

Further, we limited our study to only “touch typ-
ists”, or those subjects who only look at the screen

when typing. This is in comparison to “visual typ-
ists” who look at their fingers when typing. As pro-
posed by Johanssen et al. (2010), touch-typists and
visual typists employ distinct cognitive models, as
visual typists also need to dedicate cognitive effort
to figuring out where the next key is. For touch typ-
ists, this is a less conscious process.

Subjects were seated at a desktop computer with
a QWERTY keyboard, and freely responded to
prompts of varying complexity. A keylogger with
15.625 millisecond clock resolution was used to
record text and keystroke event timestamps. There
was no time limit, although subjects had to type at
least 300 characters before proceeding to the next
prompt. Each subject responded to 10−12 prompts,
with the average response comprising 448 characters
and 87 words.

Prompts were designed to test all aspects of
Bloom’s Taxonomy of learning (Krathwohl, 2002),
from simple to more complex tasks. Bloom’s Tax-
onomy includes six different types of tasks: remem-
ber, understand, apply, analyze, evaluate and create.
The Bloom Taxonomy is ordered by complexity, in
that mastery of one learning objective is necessary
in order to progress to the next. It is a useful way
for educators to structure a curriculum, in order to
ensure that learners possess the necessary cognitive
abilities before progressing to more complex tasks.
The taxonomy has been refined and expanded in re-
cent years; as such, we treat each type of task as a
discrete type of task, rather than having a continuous
relationship.

The order that the prompts were presented in was
randomized, with an equal distribution from each
type of task. Examples of prompts include (1) and
(2):

(1) List the recent movies you’ve seen or books
you’ve read. When did you see or read them?
What were they about? [Remember]

(2) How would you design a class if you were the
teacher? What subject would you teach? How
would you structure your course? [Create]

The full data set is part of a long-term longitudi-
nal study relating to subject biometrics. Although
the current data is not publicly available, we hope to
release future data sets.

89



3.2 Materials
All texts were tokenized using OpenNLP
(Baldridge, 2005). We then automatically ex-
tracted all multiword expressions using jMWE
(Finlayson and Kulkarni, 2011). For the present
studies we only looked at contiguous MWEs.
jMWE has reported an F1 measure of 83.4 in de-
tecting continuous, unbroken MWEs in the Semcor
(Mihalcea, 1998) Brown Concordance (Finlayson
and Kulkarni, 2011).

Contiguous MWEs should show more signs of be-
ing a cohesive lexical unit, although non-contiguous
MWEs should still exhibit some degree of the same.
As a result of this exclusion, MWEs such as ran up
in (3) would be included in our study, while the same
non-contiguous MWE in (4) would not.

(3) Jack ran up the bill.

(4) Jill ran the bill up.

While keystroke dynamics is concerned with a
number of timing metrics, such as key holds (h in
Figure 1) and pauses between every keystroke (p in
Figure 1), the current study looked only at the pause
preceding a word (the second p in Figure 1). This
interval consists of the time between the spacebar
being released and the first key of the word being
pressed.

Figure 1: Timing Intervals in Keystroke
Dynamics

p = pause h = hold

We also did not remove any outliers, although
this is common in keystroke dynamics (Epp et al.,
2011; Zhong et al., 2012). We feel it is difficult-to-
impossible to discriminate between a “true” pause
that is indicative of a subject’s increased cognitive
effort and any other type of pause, such as those
caused by distraction or physical fatigue. As such
we include any idiosyncrasies, such as long pauses,
in our analyses rather than dismiss them as noise.

4 Experiments

4.1 Experiment 1: Creating A Baseline
In the main experiment, we measure the pause pre-
ceding each word. However, we wanted to remove
as many confounds as possible that were not related
to whether the word was part of an MWE.

Our first line of investigation aimed to understand
the distribution of pauses overall. As seen in Fig-
ure 2, pauses are not distributed normally around a
mean (non-Gaussian). Rather, there is a strong log-
linear relationship between length of pause and fre-
quency. As such, results reported below use the log-
arithm of the pause time. We felt that reporting the
raw pause time would obfuscate important patterns
within pausality.

Figure 2: Distribution of All Pauses

As noted by Nottbusch & Weingarten (2007), the
length of a written word affects pre-word pausing.
We quantified this by mapping each pre-word pause
to the length of the word, and found a strong log-
arithmic relationship, where pause length increased
as a function of the log of the word length (see Fig-
ure 3). Since we expect cognitive demand to affect
typing, we measured this affect on each task, and
created different α and β parameters for our “Ex-
pected Pause” algorithm, as described in (5).

(5) Pauseexpected(w) = α · ln(length(w)) + β

The regression model illustrated in (5) provided a
very reliable fit for all tasks. Between tasks α ranged
from 0.107−0.112 while β ranged from 2.20−2.24.
In the various versions of the Expected Pause algo-
rithm, R2 ranged from 0.93 − 0.98 yet the differ-
ences were never significant, with 0.22 < p < 0.58.

In our main experiment, all pauses were quanti-
fied as a deviation from the expected pause, based
on word length and cognitive demand.
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Figure 3: Duration of Pre-Word Pause By
Word Length

A final confound to be investigated was sequence
likelihood. The effects of predictability are well
documented, in that more likely sequences are pro-
duced and comprehended at a faster rate (Goldman-
Eisler, 1958; Hale, 2006; Nottbusch et al., 2007;
Levy, 2008; Smith and Levy, 2013, and references
therein). Since MWEs are frequently made up of
collocations, i.e. words that are often seen together,
they are inherently highly predictable.

For the present study, we wanted to ensure that
we were not simply detecting faster rates of highly
predictable sequences, but rather that we were de-
tecting a signal idiosyncratic to MWEs. To test
this, we grouped all word tokens according to the
bigram predictability of the sequence they occurred
within. Bigram predictability was calculated using a
development set of users to create a language model.
Smoothing was done using the Laplace technique
with the inverse vocabulary size, as described in (6),
where V is the total number of possible bigrams, i.e.,
the vocabulary size for a bigram model, and C is the
total count of occurrences.

(6) P (wn|wn−1) = C(wn-1wn)+1
C(wn-1)+V

The grouping was done by rounding the log prob-
ability of the bigram sequence. We looked at the
most highly predictable groups, to see if MWEs
were still produced differently from free expres-
sions, when compared to sequences of similar like-
lihood.

Our results are illustrated in Figure 4. Using
a two-tailed t-test, and assuming equal variance,
the differences for the two most highly predictable

groups (where rounded log probability was −1 and
0) is significant at the 0.00001 level, while it is not
significant for left-most grouping (rounded log prob-
ability of −2). The overall difference for all levels
of predictability is significant at the 0.000001 level.

Figure 4: MWE Production in High
Predictability Sequences.

4.2 Experiment 2: MWEs in Varying Cognitive
Tasks

MWEs were produced at a fairly consistently rate
across all tasks, comprising approximately 12−13%
of all word tokens, as reported in Table 1. It should
be noted that this figure is markedly lower than often
cited figures such as Erman & Warren (2000), who
point out that half of spoken and written language
comes from multiword constructions. In the present
case, however, we are dealing with a small subset of
MWEs, namely those that were produced contigu-
ously (cf. examples (3) and (4) above). A total of
1, 982 different MWEs were produced, across the
entire spectrum of “MWE types,” from verb-particle
constructions to idioms.

Task Within-MWE Tokens Outside MWE Tokens Total Tokens MWE Rate (%)

Remember 3,285 23,631 26,916 12.2%
Understand 3,986 25,008 28,994 13.7%
Apply 1,807 12,674 14,481 12.5%
Analyze 3,375 21,300 24,675 13.7%
Evaluate 4,957 35,290 40,247 12.3%
Create 3,629 24,042 27,671 13.1%
Total 21,039 141,945 162,984 12.9%

Table 1: MWE Production Rates and Counts
By Task

Pauses that took place before the first word and
directly after the last word of an MWE were not
considered to be ‘within’ the MWE. An example
of the pauses we did measure is seen in Figure 5.
In this figure, the underscores represent measured
pauses, while a whitespace gap represents a pause
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that was not taken into consideration for the present
study. Pauses that occur on the edges of MWEs may
represent distinct “barrier” pauses (Dahlmann and
Adolphs, 2007), and therefore merit a further, but
distinct study.

Figure 5: An example sentence. Measured
pauses are represented with an underscore.

In each task, words within MWEs were consis-
tently produced with a shorter preceding pause than
were words in free expressions. As seen in Figure 6,
pauses are shorter within MWEs across all tasks.

Figure 6: Pause Duration By Task, Within
and Outside MWEs

However, the distributions of the means as re-
ported in Figure 7 is not uniform1.

Figure 7: Distribution of Mean Pauses
Within and Outside MWEs

Within-MWE pauses are not only shorter in du-
ration, but we see evidence that the distribution is
somewhat more concentrated around the mean. Al-
though the standard deviations of each distribution

1Figure 7 took the mean pause per subject, rather than mean
pause per word token, which is why it uses a linear scale, rather
than a logarithmic scale.

are similar (swithin−mwe = 197.5, soutside−mwe =
209.8), the interquartile ranges were more distinct
(IQRwithin−mwe = 160, IQRoutside−mwe = 240).

However, our investigation aimed to look at how
pausing within MWEs varies between cognitive
loads, rather than an overall distribution. These re-
sults are illustrated in Figure 8. A one-way be-
tween category ANOVA was conducted on the pause
times, to compare the effects of cognitive demands
on pausality. There was a significant effect of cogni-
tive demand at the p < 0.001 level, [F (5, 11796) =
4.19, p = 0.000815].

Figure 8: Within-MWE Pause Duration
Deviation By Cognitive Task

(Tasks are arranged from (generally) simplest
to most complex)

5 Discussion

As demonstrated above, the overall cognitive de-
mands of a task have a significant effect on pauses
within an MWE. While the trend is generally up-
ward, in that MWEs produced under greater cog-
nitive demand behave more similar to free expres-
sions, i.e. they exhibit longer pauses, we note
that this is not perfectly consistent. This is to be
expected, as there are many dimensions to each
of Bloom’s tasks, and each dimension could have
greater or lesser effects on pauses within typing.
This could also be an artifact of the difficulty of as-
signing labels using Bloom’s Taxonomy, as has been
demonstrated even among a group of subject-matter
experts (van Hoeij et al., 2004)

These results seem to demonstrate competing
cognitive demands, operating in parallel. The
canonical theory of MWE production holds that
MWEs are retrieved as a single unit. Our results,
however, imply that a more nuanced view may be
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justified. If an MWE is retrieved as a single unit,
then somewhere between retrieval and execution the
overall cognitive demands can interfere. Specifi-
cally, we theorize that the overall cognitive demands
serve to narrow the bandwidth of lexical retrieval,
occluding large units from being holistically moved
into the executive buffer, as illustrated in Figure 9.
To clarify this idea, though, subsequent investiga-
tions will investigate pauses at the boundaries of
MWEs.

Figure 9: Model of Cognitive Bottleneck

The notion of various schemata interacting is
supported by Kellogg (1996), who proposes that
“resources from the central executive of Badde-
leys model of the working-memory, e.g., Baddeley
(1974), are needed to perform both lower-level writ-
ing processes such as spelling, grammar and motor
movements and higher-level writing processes such
as planning and revising.” (qtd. in Johansson, 2010).

By comparing the production rates of different
types of lexical unit retrieved from working mem-
ory – MWES versus free expressions – along with
varying the overarching cognitive task, we believe
our experiment lends quantifiable support to this no-
tion.

Our findings also bear relevance to investigators
performing psycholinguistic experiments. Although
most experiments are prepared with careful atten-
tion to the linguistic structure of stimulus, such as an
elicitation prompt, there exists little attention to the
overall cognitive demands a stimulus response re-
quires. Our results, however, demonstrate that over-
arching cognitive demands can have a significant ef-
fect on results.

Finally, we hope our results serve as an illus-
tration of the utility of keystroke dynamics within
the linguistic and cognitive science domains. Many
studies cite the difficulty of accurately transcribing
speech data, delineating word boundaries and quan-

tifying pause duration. Keystroke dynamics is not
impeded by any of these factors. Additionally, al-
though the data of this study was collected in a lab-
oratory study, similar studies could be conducted
using much less overhead, e.g. Amazon Mechani-
cal Turk (Cohen Priva et al., 2010), where subjects
can participate remotely without compromising ex-
periment quality (Snow et al., 2008). This allows
for low-cost, high-precision experimentation, with a
wider selection of experiment participants.

6 Conclusion and Further Work

In this paper, we found that pauses within an MWE
can vary significantly, depending upon the cogni-
tive demands of the task within which they were
produced. We first controlled for linguistic factors
that affect typing rate, such as word length and pre-
dictability, and formed an Expected Pause metric.
This metric measures the length of time we expected
a subject to pause before a word, based on linguis-
tic attributes. We then measured the divergence of
pauses within MWEs, and found they varied signifi-
cantly depending on the overarching cognitive task.

We believe our study represents a significant find-
ing within MWE and lexical retrieval research. We
have been able to directly quantify the effects of
overall cognitive demand as it interacts with lexical
retrieval. These results should be kept in mind when
performing MWE research, as they clearly demon-
strate that MWE production can be significantly af-
fected by the cognitive complexity of a task, even if
the method of elicitation is kept consistent.

A potentially important factor in MWE produc-
tion is “MWE type,” such as verb-particle construc-
tion or idiom. Vincze et al. (2011) found useful
differences between types, as they relate to MWE
identification. Similarly, Schneider et al. (2014)
classified MWEs using “strong” and “weak” dimen-
sions, depending on “the strength of association be-
tween words...ranging from fully transparent collo-
cations to completely opaque idioms (Hermann et
al., 2012)” (Schneider et al., 2014, p. 456). Future
studies will investigate the effects of these dimen-
sions on the dynamics of MWE production.

Subsequent studies will also look into other ele-
ments of MWE production, such as errors (typos)
produced within and outside of MWEs. In the cog-
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nitive science tradition, errors are a telltale window
into the mind’s inner workings.

Finally, we will expand our investigation to all
intervals surrounding and within an MWE. Similar
to Dahlmann & Adolphs (2007), we will investi-
gate pauses at the beginning and end of a multi-
word expression. In addition, we will investigate
non-contiguous MWEs, to determine how their pro-
duction differs from contiguous MWEs.
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Abstract

Though the multiword lexicon has long been
of interest in computational linguistics, most
relevant work is targeted at only a small por-
tion of it. Our work is motivated by the needs
of learners for more comprehensive resources
reflecting formulaic language that goes be-
yond what is likely to be codified in a dictio-
nary. Working from an initial sequential seg-
mentation approach, we present two enhance-
ments: the use of a new measure to promote
the identification of lexicalized sequences, and
an expansion to include sequences with gaps.
We evaluate using a novel method that allows
us to calculate an estimate of recall without
a reference lexicon, showing that good per-
formance in the second enhancement depends
crucially on the first, and that our lexicon con-
forms much more with human judgment of
formulaic language than alternatives.

1 Introduction

A significant portion of a speaker’s lexical knowl-
edge consists not of atomic lexical entries, i.e.
words, but rather sequences built from their com-
bination; in fact, the working multiword lexicon of
the average native speaker is almost certainly much
larger than the single-word lexicon (Church, 2011).
Language learners, due to lack of exposure to the
new language and interference from their native lan-
guage, often fail to use these larger sequences profi-
ciently, a fact which has been demonstrated via cor-
pus analysis using high frequency n-grams (Chen
and Baker, 2010; Granger and Bestgen, 2014). Al-
though high frequency n-grams, known in corpus
linguistics as lexical bundles, are useful for certain

kinds of analysis, they are inappropriate for a fully-
featured multiword learning system, which would
ideally involve an electronic lexicon corresponding
roughly to the internal lexicon of native speakers. In
this work, we adopt the creation of such a lexicon as
our goal.

Though much work has been done and many re-
sources created which focus on specific aspects of
the multiword vocabulary, most notably in fields
such as multiword expressions (MWEs) (Bald-
win and Kim, 2010) and keyphrase/term extraction
(Newman et al., 2012), our pedagogical perspec-
tive leads us towards a somewhat broader theoretical
foundation, the formulaic sequence theory of Wray
(2002; 2008). We are interested in any multiword se-
quence that could plausibly be lexicalized, not sim-
ply those that are noncompositional (idiomatic) or
that are otherwise useful for information retrieval
applications. With our goal of helping advanced
learners produce more fluent language, we are more
interested in sequences that underpin the structure of
sentences and not just terms that reflect its topic. As
much as possible, we do not want to limit the syn-
tactic composition, size, or frequency of our lexical
items, and we want methods that allow us to build
distinct, high-coverage lexicons for varying genres.

Working on top of an existing pipeline for unsu-
pervised multiword unit segmentation (Brooke et al.,
2014), the current work presents two key improve-
ments on that initial model that allow us to build
high-coverage lexicons of formulaic language. With
respect to improving the quality of the sequences,
we present a new measure for distinguishing true
(lexicalized) affinity from background syntactic ef-
fects, the lexical predictability ratio, and integrate
it into the model to improve the quality of the out-
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put lexicon. The second major advance expands the
coverage of the lexicon beyond directly contiguous
sequences, allowing for sequences with gaps. Note
that these are not independent, since the class imbal-
ance between possible and actual gap phrases means
that the second depends on the first.

Our main evaluation is novel for this space: rather
than comparing with (necessarily) incomplete ref-
erence lexicons, we view our task as a n-gram (or
gapped n-gram) filtering task, sampling n-grams
to annotate from our full (frequency-filtered) set,
which allows us to calculate a reliable precision, re-
call, and F-score. We also test the relevance of our
lexicon to contextual recognition of multiword ex-
pressions, using a recently released dataset. In both
cases, our method outperforms a variety of alterna-
tives, including the original segmentation approach
that was our starting point; like that original ap-
proach, our lexicon creation method is highly scal-
able and deterministic, and has only one key param-
eter (minimum frequency in the corpus).

2 Related Work

There is a long-standing area of research in com-
putational linguistics focusing on lexical associa-
tion measures, often, though not exclusively, for the
creation of multiword lexicons (Church and Hanks,
1990; Schone and Jurafsky, 2001; Evert, 2004;
Pecina, 2010): for two-word sequences there are,
in fact, far too many to list in this context, though
most of the research has centered upon popular op-
tions such as the t-test, log-likelihood, and point-
wise mutual information (PMI). When these meth-
ods are used to build a lexicon, particular syntac-
tic patterns and thresholds for the metrics are typi-
cally chosen. Critics note that many of the statistical
metrics do not generalize at all beyond two words,
but PMI (Church and Hanks, 1990), the log ratio of
the joint probability to the product of the marginal
probabilities, is a prominent exception. Other mea-
sures specifically designed to address sequences of
larger than two words include the c-value (Frantzi
et al., 2000), a metric designed for term extraction
which weights term frequency by the log length of
the n-gram while penalizing n-grams that appear in
frequent larger ones, and mutual expectation (Dias
et al., 1999), which produces a normalized statistic

that reflects how much a candidate phrase resists the
omission of any particular word.

Overlapping with this area is the research on
multiword expressions (Baldwin and Kim, 2010),
which is generally (though not exclusively) under-
stood to refer to idiomatic, non-compositional multi-
word units; even so restricted, there is a huge variety
of distinct types, and research in the area has tended
to be rather focused, looking at, for instance, just
verb/noun combinations (Fazly et al., 2009). The re-
cent work of Schneider et al. (2014a) is a rare exam-
ple of a comprehensive MWE identification model
which distinguishes a full range of MWE sequences,
including those involving gaps, using a supervised
sequence tagging model; like other models in this
space, Schneider et al. make use of existing man-
ual lexical resources and they note that an (unsuper-
vised) automatic lexical resource could be useful ad-
dition to the model. Otherwise, gaps in MWEs have
generally addressed by using full syntactic represen-
tations (Seretan, 2011).

Beyond association metrics, other unsupervised
approaches to the multiword problem include that of
Newman et al. (2012), who used a generative Dirich-
let Process model which jointly creates a linear seg-
mentation of the corpus and a multiword vocabu-
lary. Gimpel and Smith (2011) focus specifically on
deriving word sequences with gaps using a gener-
ative model, with the intent of improving machine
translation. The drawback to these generative meth-
ods, relative to association metrics, is scalability and
a certain degree of randomness, since these meth-
ods generally involve Gibbs sampling with many it-
erations through the corpus to reach an acceptable
model. The approach presented here is based on that
of Brooke et al. (2014), which was developed explic-
itly to work well for larger corpora, in the order of a
billion words or more; we will leave further discus-
sion of that work for Section 4.

3 Theory and Rationale

Though the approach to identification of phrases
presented in this paper should not be viewed as en-
tirely distinct from work on multiword expressions,
collocations, lexical bundles, or phraseology, we
nonetheless will make use of a somewhat less fa-
miliar term to refer to our objects of interest: for-
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mulaic sequences. A formulaic sequence is defined
by Wray (2002; 2008) as “a sequence, continuous or
discontinuous, of words or other elements, which is,
or appears to be, prefabricated: that is, stored and re-
trieved whole from memory at the time of use, rather
than being subject to generation or analysis by the
language grammar.” In other words, a formulaic se-
quence shows signs of being lexicalized. Other than
the psycholinguistic fact of being a lexical item for
native speakers of a language, there is no other sin-
gle necessary condition for some collection of words
to be a formulaic sequence, but there are many indi-
cators: Wray (2008) lists 11 diagnostic criteria, in-
cluding exact repetition, a lack of semantic trans-
parency, genre associations, pragmatic effects, non-
standard syntax, and phonological properties; she
reports that native speaker intuition is usually suffi-
cient to make a reliable judgment of whether or not
a sequence is formulaic.

Wray’s conception of formulaic language is ex-
plicitly not that of mere exception to the combina-
torial creativity of syntax and semantics; she argues
that most language can be viewed to some degree as
formulaic, and that the use of formulaic sequences is
the default mode for most genres, both written and
oral. Moreover, her view is that the processing of
language in general should be viewed not so much
as a bottom-up construction of larger phrases from
individual lexical units, but rather as a top-down pro-
cess where larger chunks are split apart and analyzed
as discrete parts only when there is clear evidence
for flexibility, a strategy that has a direct analogy in
the decomposition approach used here. Another im-
portant aspect of the theory is a focus on the linear
sequence rather than some other kind of syntactic
abstraction (e.g. a dependency relationship) as be-
ing primary to the internal representation of mul-
tiword phenomena, a perspective which allows for
much cleaner analysis of longer and more varied ex-
pressions: when cases of sequence-internal flexibil-
ity occur, they are handled by the inclusion of a slot
or gap which is also part of the sequence. Note that,
since humans are fairly skilled at interpreting noisy
input of various kinds, the notion of sequence as the
default glue of the internal multiword lexicon does
not rule out the possibility of greater creativity (e.g.
reversing word order), but this should be understood
as the speaker abandoning one of the benefits of for-

mulaic sequences (easy processing) for other com-
municative purposes (e.g. humor).

Second language acquisition is one of the ma-
jor areas of application for work on formulaic se-
quences (Ellis et al., 2008). Wray (2008) posits that
the difficulty many adult second language learners
have reaching fluency reflects, at least in part, an
inattention to the role of formulaic sequences, cou-
pled with an expectation that a language should al-
low for free combination of words governed only
by the basic rules of syntax. Modern communica-
tive approaches to teaching tend to encourage learn-
ers to express themselves freely so long as they are
able to make themselves understood, i.e. to satisfy
the short-term communicative goal. However, if full
fluency and social integration into the culture of na-
tive speakers is a long-term goal, as it is for many
immigrant learners for instance, these learners also
need to correctly process and eventually produce a
wide range of formulaic sequences. Creating high-
coverage vocabularies based on real, modern lan-
guage usage is a first step in helping learners with
these challenging but ubiquitous units of language.

4 Method

4.1 Preliminaries

Although there are several key additions that bring
the resulting vocabulary much closer to being a com-
prehensive collection of formulaic sequences, the
overarching structure of our method is adapted from
Brooke et al. (2014): first, basic statistics are col-
lected from the corpus, and, based on these an ini-
tial segmentation of the corpus is carried out. Once
a preliminary lexicon is built from these segments,
the lexicon is refined based on both the initial statis-
tics as well as the initial segmentation. Brooke et al.
applied this refinement process in the corpus to cre-
ate a final segmentation, but, since the lexicon is our
main interest, we will not address that step here. We
will first present the use of lexical predictability in
the context of the basic (no-gap) model, and then in-
troduce the changes required to accommodate gaps.

First, a few details that would distract from the
main discussion of the method below. Following
Brooke et al., we set our frequency threshold to be
at least one instance in 10 million tokens; all of the
work here (including alternatives to our method) are
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based on that restriction. Our corpus is a filtered ver-
sion of the tier 1 blogs in the ICWSM 2009 Spinn3r
dataset (Burton et al., 2009), including about 2.4
million blogs or about 890 million tokens of text;
for this and other work, we have made a significant
effort to exclude texts with spurious repetition (e.g.
spam, multiple postings). The part of speech (PoS)
information is provided by the TreeTagger (Schmid,
1995), which relative to our needs is quite fast and
available for many languages. We collected our
statistics using the lemmatized, lower-case forms of
words, and accordingly dropped the inflectional in-
formation from the PoS tag. We will not discuss the
specifics of the algorithms and representations used
to collect the statistics except to say that a great deal
of attention was paid to keeping the process both fast
and memory efficient.

4.2 N-gram decomposition using the lexical
predictability ratio

The central mechanism in the n-gram decomposi-
tion approach is a measure for choosing among a set
of possible segmentations of a text span. Brooke et
al. (2014) select a segmentation based on maximiz-
ing the conditional probability of each word when
the conditioning context is limited to words within
the same segment. Our measure also uses condi-
tional probabilities, but we need to distinguish be-
tween two types: let p(wi|w j,k) refer to the condi-
tional probability of some particular word/tag pair
given a surrounding sequence of word/tag pairs w j,k,
and p(wi|t j,k) refer to the probability of a particular
word/tag pair given only the PoS tags ( j ≤ i < k).
For some wi within some segment whose endpoints
are m and n, the lexical predictability ratio (LPR) of
wi within span (m, n) is:

LPR(wi,wm,n) = max
m≤ j<k≤n

p(wi|w j,k)
p(wi|t j,k)

The LPR for the entire span is defined as:

LPR(wm,n) =
n−1

∏
i=m

LPR(wi,wm,n)

We use the word lexical to refer to this measure be-
cause it represents an increase in probability that
is apparently due to a lexical rather than syntactic
affinity. Other than eliminating syntactic noise, one

obvious advantage of using a ratio here is that it nat-
urally emphasizes open-class lexical items, which
will tend to have low probability independent of
any lexical context, and minimizes the influence of
closed-class words; the opposite is true for a mea-
sure based on difference, where the influence of a
relatively small change to a word with a relatively
high initial probability might dwarf a huge relative
increase in a low probability word. Given our lexi-
cal interests, it is important that our measure be es-
pecially sensitive to words in the general vocabulary.

Other than this key change and those relevant to
the inclusion of gaps to be discussed in the next sec-
tion, we preserve intact the initial segmentation al-
gorithm of Brooke et al. (2014). Briefly, the key
steps of this process are as follows: First, for each
sentence in the corpus, we identify maximal length
n-grams, i.e. n-grams above our frequency thresh-
old where any n+1-grams that contain them are be-
low the threshold. Where these maximal n-grams
overlap, one or more segment boundaries must be
inserted in order to create a proper segmentation,
with all segments corresponding to an n-gram in our
statistics; in this case, the best segmentation is cho-
sen based on maximizing the lexical prediction ra-
tio of the relevant segments, and the segments are
counted and taken as the initial vocabulary of the
vocabulary decomposition step.

Vocabulary decomposition proceeds by consider-
ing each sequence in the initial vocabulary, start-
ing with the longest, and deciding whether or not to
break it into two smaller pieces: the counts are added
to the smaller pieces which are considered later on
in the process. The original algorithm treated the
two substrings equally, but here we do not: in prac-
tice, in most decompositions there is one, rarer piece
that contains the core lexical information, which we
call the nucleus (u), while the other is the satellite
(s) and is most often a function word or other rela-
tively common word or phrase; the vocabulary de-
composition process should be viewed as a process
of shaving off satellites until we are left with a lexi-
cal nucleus (possibly a single word) that resists fur-
ther splitting. For each sequence length n, we pro-
ceed from the n-gram with the lowest count to the
highest. An entry w is broken when either its count
c(w) in the lexicon is below the frequency threshold,
or when inequality (1) is false for at least one break
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index b, 0 < b < n; here y(t) refers to the number
of word types for a given tag, and c(∗) refers to the
count of all tokens in the corpus:

LPR(w0,n)
LPR(w0,b)LPR(wb,n)

>

c(u)
c(tu)/y(tu)

c(w)
c(tw)/y(tw)

log
c(∗)
c(s)

(1)

The left-hand side of the inequality represents the
amount of lexical predictability that is lost (over all
words in w) when a break is inserted at b. The higher
this number, the more the sequence resists decom-
position. The first term on the right side represents
a ratio of the counts of the lexical nucleus to the
full entry: the higher the count of the lexical nu-
cleus relative to the count of the full entry, the more
likely we are to break. However, we do not compare
these counts directly: mirroring what we have done
with the conditional probability in the calculation of
LPR, we consider these marginal probabilities rela-
tive to the expected marginal probability (count) of a
term with that tag sequence, which is simply the to-
tal count for the tag divided by the number of types.
All these counts are derived from the statistics of the
initial vocabulary. In the second term on the right,
more common satellites decrease the chance of a
break, which counters the property, mentioned ear-
lier, that the LPR can be rather low even for entirely
predictable satellites if the marginal probability is
already high. Since c(∗) is necessarily larger than
c(s), this term also serves an initial threshold that
must be overcome by increased LPR and/or a higher
than expected count. Finally, when there are multi-
ple breakpoints which render the inequality false, or
when a break is forced due to low counts, the break
which is actually carried out is that which maxi-
mizes the difference between the right-hand side and
the left-hand side. When all entries have been ex-
amined in this fashion, the entries which have been
preserved are the final vocabulary.

4.3 Including gaps in the decomposition model
Although it is essentially impossible to describe all
formulaic sequences using a single syntactic repre-
sentation, the slots or gaps within English formulaic
sequences are relatively well behaved: in the MWE
corpus of Schneider et al. (2014b), for instance, a
manual analysis revealed that essentially every gap

consisted of a noun phrase (e.g. point * out) or a
noun modifier (have * complaints about). Although
it is possible for a gap to have complex content, this
is not typical, and anyway it is not necessary to cover
all possible cases to do successful lexical induction;
for English, we define our gaps as a sequence of 1 to
4 words whose tags satisfy this regular expression:

PP | [(PDT)(DT)JJ*[NN|NP]*(POS|PP$)JJ*NN*]

For us, a gap n-gram is just a regular n-gram with
an additional index indicating the location of the
gap: in essence, we can collect gap n-gram statistics
by first searching for a tag sequence that matches
our gap regex, and then counting n-grams around
the sequence as if it were not there. This is effi-
cient and defensible, since in many cases knowing
the syntactic content of the gap would be redun-
dant, since it entirely predictable from the surround-
ing context. We do not consider the possibility of
multiple gaps: though such patterns exist, they are
quite rare (Schneider et al., 2014a).

When we have collected the same statistics for our
gap n-grams as we had previously collected for our
regular n-grams, we can carry out an initial segmen-
tation. When we are able to match a gap n-gram with
a gap size of m, for the purposes of proposing ini-
tial segmentation alternatives we treat it as if it were
a regular n+m-gram spanning the full extent of the
gap n-gram. When a segment which corresponds to
one or more possible gap n-grams is considered, we
have to solve a new segmentation problem: insert-
ing two special gap breaks which define the outer
gap n-gram, plus (possibly) additional breaks within
the gap if needed. For the purposes of calculating
LPR, we treat the two outer pieces as a single span,
and the contents of the gap as an entirely indepen-
dent segment. Under those restrictions, we choose
breaks to optimize LPR across the entire segment,
and, eventually, the entire local context.

After segmentation, the resulting initial lexicon
has a mixture of contiguous and gap n-grams. Dur-
ing the lexicon decomposition process, the two kinds
are not differentiated with respect to the order in
which they are examined. The main difference is
that when decomposing regular contiguous n-grams
we now have a new option: we can split to create a
gap n-gram. For gap n-grams, we do not allow addi-
tional gaps; only a single break is possible, though a
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break at the gap creates two regular n-grams, while
one in any other location preserves a gap n-gram.
There are only minor changes to the inequality that
decides whether a break should occur; if we are
considering decomposing by adding a gap, then the
denominator of the left-hand term of (1) is now
LPR(wb1,b2)LPR(w0,b1+b2,n), where w0,b1+b2,n is un-
derstood to be the string consisting of the concatena-
tion of w0,b1 and wb2,n; when calculating LPR, any
conditional probabilities involving spans that cross
the gap must use the appropriate gap statistics.

5 Evaluation

Evaluation of large-scale automatically-generated
lexicons is notoriously problematic: comparing to
a reference lexicon is usually not valid because the
reference lexicon, if one exists, is not complete (if
it were, why build an automatic lexicon at all?) and
therefore it is impossible to accurately estimate pre-
cision. The output of a particular approach (i.e. the
lexicon) can be judged directly, but this only mea-
sures precision, not recall, and it is a short-sighted
approach with regards to evaluating future improve-
ments. In this work, we take advantage of the fact
that we are assuming an initial n-gram frequency
threshold, which greatly reduces the space of all
possible n-grams (both contiguous and gap) that we
are actually considering as possible formulaic se-
quences. Although there are still many more bad
n-grams than good, the imbalance is not so great
as to make annotation impossible: we can sample
from the set of possible n-grams, judge them as be-
ing good or bad formulaic sequences, and then com-
pare with the output of lexicon creation processes to
calculate precision, recall, and F-score.

Our annotation project involved 3 judges, a num-
ber chosen so we could use consensus for the cre-
ation of a gold standard. The judges, all college-
educated native English speakers, were introduced
to the basic theory of formulaic sequences and their
diagnostics (Wray, 2008), and then instructed that
their main task was to identify canonical formu-
laic sequences, where canonical was understood to
mean a sequence that contains all the words that
would most commonly be used as part of the for-
mula, and no words whose presence seems inciden-
tal or the result of rule-driven processes: if an n-

gram was larger, smaller, or otherwise distinct from
a canonical sequence but the formulaic sequence
was nonetheless identifiable, we offered another op-
tion (the n-gram “recalls” a formulaic sequence),
which we don’t use directly in our evaluation, but
which we used to help the judges focus in on canon-
ical formulaic sequences. To help them make their
annotation, the judges were presented with 5 sample
sentences from our corpus.

We annotated 1000 contiguous n-grams and 1000
gap n-grams in this fashion, with the n-grams ran-
domly selected from sets of roughly 1.5 million n-
grams in both cases. For contiguous n-grams, 16.9%
of the n-grams were judged to be canonical formu-
laic sequences, but from gap n-grams this number
was much lower, only 2.9%. Kappa is problematic
with such a serious class imbalance (Di Eugenio and
Glass, 2004), so instead we calculated an average F-
score across the 3 annotations1, which was found to
be 0.62 for contiguous n-grams and 0.42 for gap n-
grams, numbers which reflect a certain amount of
subjectivity in the judgment task, but also consid-
erable agreement. These F-scores also provide an
estimate of a practical upper bound for our evalua-
tion. To create a gold standard annotation, we used
the majority judgment. We also had a single judge
produce separate sets for development purposes.

Our second evaluation uses an existing resource,
a section of the English Web TreeBank (Bies et al.,
2012) that has been annotated for a full range of
MWEs (Schneider et al., 2014b). As mentioned ear-
lier, formulaic sequences are a broader category than
MWEs (as traditionally understood), and indeed a
manual analysis of a portion of the corpus revealed
many formulaic sequences in this set which are not
annotated. Nevertheless, since all MWEs are for-
mulaic expressions, we can make use of the anno-
tation as a secondary evaluation: for positive exam-
ples, we extracted all MWEs in the corpus (except
for MWE-internal MWEs, which we ignored) above
the frequency threshold (which was the vast major-
ity of them, since the genres of the ICWSM and the
Web TreeBank are similar), and as negative exam-
ples we extracted all n-grams (both contiguous and

1That is, treating one set of judgments as a gold standard
and each of the others as an attempt to reproduce it. For all
calculations of F-score in this paper, a “positive” classification
is a judgment that the sequence is indeed formulaic.
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Table 1: Comparison of various automatically generated lexicons with two annotated test sets. P = Precision, R =
Recall, F = F-score, ME = mutual expectation, pred decomp = prediction decomposition method of Brooke et al.
(2014). Bold is best in column.

FS test set MWE test set
Regular Gap Regular Gap

Method P R F P R F P R F P R F
Count 0.21 0.24 0.23 0.00 0.00 0.00 0.18 0.77 0.29 0.05 0.47 0.09
c-value 0.22 0.23 0.23 0.05 0.07 0.06 0.11 0.08 0.10 0.01 0.01 0.01
PMI 0.23 0.22 0.22 0.12 0.14 0.13 0.13 0.11 0.12 0.03 0.01 0.02
ME 0.23 0.23 0.23 0.00 0.00 0.00 0.18 0.59 0.28 0.05 0.27 0.09
Pred decomp 0.35 0.50 0.42 0.09 0.14 0.11 0.26 0.83 0.40 0.09 0.59 0.16
Simple LPR 0.40 0.54 0.46 0.10 0.48 0.17 0.38 0.74 0.50 0.17 0.59 0.27
LPR decomp 0.51 0.45 0.48 0.22 0.31 0.26 0.47 0.72 0.57 0.33 0.50 0.40

gap) above the frequency threshold where at least
one word in the n-gram is contained within a MWE,
and at least one word is not. This tests to see whether
our lexicon would be potentially useful for this task
while at the same staying agnostic about the status
of other potential formulaic expressions beyond the
scope of the MWEs. For regular n-grams, this pro-
cess yields 1273 positive examples and 7272 nega-
tive examples: for gap n-grams, there are 263 posi-
tive examples, and 6764 negative examples, for both
types the class imbalance corresponds roughly to the
class imbalances in our formulaic sequence annota-
tion. Note that, relative to our main evaluation, this
test set is populated with common expressions; for
comparison, only 5.2% of postitively identified for-
mulaic sequences from our test set are in WordNet,
whereas 31.5% of the MWEs from the Web Tree-
Bank test set are. As with our main evaluation, we
use precision, recall, and F-score.

We compare our model first with lexicons built
using established measures which can be applied to
general sequences beyond 2 words: pointwise mu-
tual information (Church and Hanks, 1990), mutual
expectation (Dias et al., 1999), c-value (Frantzi et
al., 2000), and raw frequency: all can be calculated
for both regular and gap n-grams using the statis-
tics extracted for our LPR-based method, and then a
threshold selected which builds a lexicon of the size
we would expect to be ideal given the ratio of good
to bad sequences found in our annotation (i.e. the
best 16.9% of regular n-grams, the best 2.9% of gap

n-grams). We also build a vocabulary using the orig-
inal Brooke et al. (2014) prediction-based n-gram
decomposition method (pred comp), using the same
statistics; though it did not originally handle gaps,
we updated it to allow gaps, in the same way as our
approach. Finally, we consider a simplified version
of the LPR approach which does not carry out an ini-
tial segmentation: Starting with all n-grams, we use
inequality (1) to make a decision whether to keep the
n-gram in the lexicon. In this version of (1), c() is
now the original count from the full corpus statistics,
not the initial lexicon, except that we subtract from
their counts the occurrences of u and s that are also
occurrences of w.

6 Results and Analysis

The results for the various automatically generated
lexicons for both test sets are in Table 1. First,
we note that none of the simple measure-based lex-
icons offer competitive results, and the results for
gap n-grams are consistently poor. There is also no
clear standout, though ME seems to have the edge
on average, a result which is consistent with previ-
ous work. Relative to these simpler methods, the
original n-gram decomposition approach does fairly
well in the regular test sets; its results for gap n-
grams, however, are not impressive. The simpler
LPR method is almost indistinguishable from our
full method with respect to regular n-grams, but its
performance with regards to gap n-grams indicates
a benefit from using the full decomposition pro-

102



cess, though it is not as large an effect as the use
of LPR. Our LPR n-gram decomposition is consis-
tently the best for both test sets and n-gram types
and the F-scores in our test set indicate that, relative
to the original n-gram decomposition technique, we
have made real progress towards the practical upper
bound suggested by the between-human F-score.

Our final formulaic sequence lexicon has 227,188
entries; 184,246 are contiguous, and 42,942 have
gaps. For comparison, our single-word vocabulary
with the same frequency cutoff is 72,117, supporting
the long-standing claim that the multiword lexicon
of a language is significantly larger than the single-
word lexicon. For contiguous n-grams, 2-word en-
tries compose 36.5%, 3-word entries 33.3%, 4-word
entries 20.2%, and 5-word entries 7.7%; for non-
contiguous entries, 3-word entries are the most com-
mon (44.0%), followed by 4-word entries (27.1%),
2-word entries (17.2%), and 5-word entries (9.9%).
With respect to variety, although three 2-word part-
of-speech combinations (NN NN, NP NP, and JJ
NN) make up close to 21% of the contiguous lexi-
con, beyond those three there is significant variety,
with no single PoS combination accounting for more
than 2%, and the top 20 part-of-speech combinations
covering only 37.6%. The situation for gaps is even
more extreme: only verb/noun combinations (4.9%)
stand out as being particularly common. Though a
certain amount of this variety might be due to er-
ror, in general we believe it reflects the huge vari-
ety of potential syntactic realizations of formulaic
sequences; essentially any words that regularly ap-
pear in sequence could be formulaic.

Looking at just the first 50 (randomly ordered)
entries in our lexicon for each type we indeed see
much variety, clearly formulaic contiguous phrases
like just the two of us, into the depths of, would
not have been possible without, interestingly enough
and gap sequences like watch * in action, about *
or so, millions of * worldwide, implementation of
* program, gave * a heart attack, scold * for not,
beyond * capabilities and back to where * started.
There are some systematic errors, however: proba-
bly the biggest single problem is pronouns, which
are often highly predictable in a particular context
despite being theoretically flexible, e.g. find myself
wanting to. Another clear problem is lexical pre-
dictability that is due to word classes (e.g. in Long

Beach); information about these classes should be
integrated into our background syntactic predictabil-
ity. When there is enough variability in usage that
smaller pieces of a larger phrase get segmented, LPR
will often hold these incomplete pieces together, e.g.
your way through. Looking at the gap lexicon, there
are some syntactic patterns (a * or a), some se-
mantic patterns (parents of * kids), and other cases
where it is not clear why a gap was necessary since
we would expect little or no variation (as * weapon
against): often these last cases were close to the fre-
quency threshold and there was just enough varia-
tion that the canonical sequence (in this case, use
* as a weapon against) fell below the threshold.
Future work should look at having a more flexible
threshold.

7 Conclusion

We have presented here a very general approach
to automatic acquisition of multiword lexicons, to
our knowledge the broadest to date. By focusing
on (apparently) lexical effects using the lexical pre-
dictability ratio, while at the same expanding the
scope of the output to include gap phrases, we can
make a genuine claim that our lexicon reflects a sig-
nificant portion of the formulaic vocabulary of the
language, especially given the size of our corpus
that this method can accommodate and the choice
to avoid filtering of particular syntactic types, which
was justified by the diversity we found in our output
lexicon. Our interest here is in educational applica-
tions, where having an explicit representation (rather
than the implicit lexical information contained in,
for instance, language models) can be used to help
a learner expand their multiword vocabulary; this
is particularly true for formulaic language which is
fairly compositional, and therefore may not be obvi-
ously formulaic to a learner nor likely to appear in a
standard dictionary. There is still work to be done in
addressing the errors we see in our lexicon, but our
results nonetheless represent significant progress to-
wards the human upper bound suggested by our an-
notation project, and the evaluation method and re-
sources introduced here should spur future work.2

2The test set, the automatically-generated lexicon, and
the lexicon-creation software are available at http://www.cs.
toronto.edu/~jbrooke
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