
Proceedings of the 11th International Conference on Computational Semantics, pages 173–183,
London, UK, April 15-17 2015. c©2015 Association for Computational Linguistics

Automatic Noun Compound Interpretation using
Deep Neural Networks and Word Embeddings

Corina Dima and Erhard Hinrichs
Collaborative Research Center 833 and Department of Linguistics

University of Tübingen, Germany
{corina.dima,erhard.hinrichs}@uni-tuebingen.de

Abstract

The present paper reports on the results of automatic noun compound interpretation for English
using a deep neural network classifier and a selection of publicly available word embeddings to
represent the individual compound constituents. The task at hand consists of identifying the semantic
relation that holds between the constituents of a compound (e.g. WHOLE+PART_OR_MEMBER_OF
in the case of ‘robot arm’, LOCATION in the case of ‘hillside home’). The experiments reported
in the present paper use the noun compound dataset described in Tratz (2011), a revised version
of the dataset used by Tratz and Hovy (2010) for training their Maximum Entropy classifier. Our
experiments yield results that are comparable to those reported in Tratz and Hovy (2010) in a cross-
validation setting, but outperform their system on unseen compounds by a large margin.

1 Introduction

Recent research in computational semantics has increasingly made use of vector space representations
of words in combination with deep neural network classifiers. This recent trend builds on the earlier
successes of such representations and classifiers for morphological and syntactic NLP tasks (Collobert
et al., 2011), and now also includes semantic tasks such as word similarity, word analogy as well as
sentiment analysis (Mikolov et al., 2013; Pennington et al., 2014). The fact that the same type of vector
representations can be initially trained for one or more NLP tasks and then be re-used and fine-tuned for
a new, seemingly unrelated task suggests that such models can provide a unified architecture for NLP
(Collobert and Weston, 2008). The fact that the performance of word embeddings, when combined with
deep neural networks, improves in a multi-task learning scenario and can provide state of the art results
for NLP further adds to the attractiveness of such methods.

One of the ways to further test the viability of such models and methods is to subject them to a wider
range of well-studied NLP tasks and compare the results with previous studies on state-of-the-art NLP
datasets.

One such task concerns the automatic interpretation of nominal compounds, a semantic phenomenon
that has been widely studied in both theoretical and computational linguistics. This task consists of
identifying the semantic relation that holds between the constituents of a compound (e.g. WHOLE+PART_
OR_MEMBER_OF in the case of robot arm, LOCATION in the case of hillside home). Given that noun
compounding is a highly productive word formation process in many natural languages, the semantic
interpretation of compounds constitutes an important task for a variety of NLP tasks including machine
translation, information retrieval, question answering, etc. Due to the productiveness of compounding,
an adequate NLP system for the automatic interpretation of compounds will need to be able to generalize
well to unseen data, i.e. to compounds that it has not been trained on. Vector space models that are based
on very large training corpora and thus have a good coverage of the lexicon of a language provide a good
foundation for achieving such generalization behavior. Novel compounds are typically formed of existing
words in the language that are recombined to form a new complex word, whose meaning is usually more
than the sum of the meaning of its constituents, but which are constrained by the combinatory potential

173

of a word. This combinatory potential, i.e. the tendencies to combine with other words, is exactly what is
captured in a vector space model, since such models capture the sum of the contexts that a word typically
appears in. Hence, vector space models and deep neural network classifiers appear to be well suited for
experimenting with this task. Such experiments are facilitated by the availability of a large, annotated
dataset of English compounds that is described in Tratz and Hovy (2010); Tratz (2011) and that was used
in machine learning experiments.

The present paper reports on the results of experimenting with the Tratz (2011) dataset using four
publicly available word embeddings for English and a deep neural network classifier implemented using
the Torch7 scientific computing framework (Collobert et al., 2011). These experiments yield results that
are comparable to those reported by Tratz and Hovy (2010) and by Tratz (2011), but outperform their
system on unseen compounds by a large margin. The remainder of this paper is structured as follows:
Section 2 presents previous work related to the automatic classification of compound relations. Sections
3 and 4 present the annotated noun compounds dataset and the four word embeddings that were used in
the experiments. These experiments are summarized in Section 5. The paper concludes with a summary
of the main results and an outlook towards future work.

2 Related Work

One of the earliest computational approaches to the classification of compound nouns is due to Lauer
(1995), who reports an accuracy of 47% at predicting one of 8 possible prepositions using a set of 385
compounds. Rosario and Hearst (2001) obtain 60% accuracy at the task of predicting one of 18 relations
using neural networks and a dataset of 1660 compounds. The domain-specific inventory they use was
obtained through iterative refinement by considering a set of 2245 extracted compounds and looking
for commonalities among them. Girju et al. (2005) use WordNet-based models and SVMs to classify
nouns according to an inventory containing 35 semantic relations, and obtain accuracies ranging from
37% to 64%. Kim and Baldwin (2005) report 53% accuracy on the task of identifying one of 20 se-
mantic relations using a WordNet-based similarity approach, given a dataset containing 2169 noun com-
pounds. Ó Séaghdha and Copestake (2013) experiment with the dataset of 1443 compounds introduced
in Ó Séaghdha (2008) and obtain 65.4% accuracy when predicting one of 6 possible classes using SVMs
and a combination of various types of kernels. Tratz and Hovy (2010) classify English compounds us-
ing a new taxonomy with 43 semantic relations, and obtain 79.3% accuracy using a Maximum Entropy
classifier and 79.4% accuracy using SVMmulticlass on their dataset comprising 17509 compounds and
63.6%(MaxEnt)/63.1%(SVMmulticlass) accuracy on the (Ó Séaghdha, 2008) data.

All these efforts have concentrated on English compounds, despite the fact that compounding is a
pervasive linguistic phenomenon in many other languages. Recent work by Verhoeven et al. (2012)
applied the guidelines proposed by Ó Séaghdha (2008) to annotate compounds in Dutch and Afrikaans
with 6 category tags: BE, HAVE, IN, INST, ACTOR and ABOUT. The reported F-Scores are 47.8% on the
1447 compounds Dutch dataset and 51.1% on the 1439 compounds Afrikaans dataset.

3 The Tratz (2011) and Tratz and Hovy (2010) datasets

The experiments reported in this paper use the noun compound dataset described in Tratz (2011)1. This
dataset, subsequently referred to as the Tratz dataset, is a revised version of the data used by Tratz and
Hovy (2010) in their machine learning experiments, subsequently referred to as the Tratz and Hovy
dataset. The Tratz dataset is the largest publicly-available annotated noun compound dataset, containing
19158 compounds annotated with 37 semantic relations. Table 1, which is an abbreviated version of
Table 4.5 in Tratz (2011), illustrates these relations by characteristic examples and indicates the relative
frequency of each relation within the dataset as a whole. The inventory of relations consists of seman-

1The dataset is available for download at http://www.isi.edu/publications/licensed-sw/
fanseparser/

174

tic categories that resemble but are not identical to the inventories previously proposed by Barker and
Szpakowicz (1998) and Girju et al. (2005). Tratz and Hovy (2010) motivate their new inventory by the
necessity to achieve more reliable inter-annotator agreement than was obtained for these earlier inven-
tories. The original Tratz and Hovy dataset consisted of 17509 compounds annotated with 43 semantic
relations. Tratz (2011)’s motivation for creating a revised noun compound relation inventory with only
37 semantic relations was to create a better mapping between prepositional paraphrases and noun com-
pound relations. The compound classification experiments described in Tratz and Hovy (2010) were,
however, not re-run on the revised dataset. Since only the Tratz dataset is publicly available as part of the
semantically-enriched parser described in Tratz (2011), this dataset was used in the experiments reported
on in the present paper.

4 The embeddings

The automatic classification experiments presented in section 5 use a selection of publicly available
word embeddings: the CW embeddings2, decribed in Collobert et al. (2011), the GloVe embeddings3,
presented in Pennington et al. (2014), the HPCA embeddings4, described in Lebret and Collobert (2014)
and the word2vec embeddings5 introduced by Mikolov et al. (2013). The vector size, the dictionary
size, the amount of training data as well as the specific corpora used for creating each of these word
embeddings are summarized in Table 2.

A word embedding W : D → Rn is a function that assigns each word from the embedding dic-
tionary D an n-dimensional, real-valued vector. The words in the dictionary D are embedded in a
high-dimensional vector space, such that the representations of syntactically and/or semantically similar
words are close together in the vector space. Word embeddings are the result of training language models
on large amounts of unlabeled, textual data using various learning algorithms.

The CW embeddings (Collobert et al., 2011) were obtained by training a language model using
a unified neural network architecture. The initial training step used unlabeled data (plain text from the
support corpora) for training individual word embeddings. The training procedure uses a context window
of size 11. Each context window is considered a positive training example for the word in the middle of
the context window, which is called the target word. For each positive context window, a corresponding
negative context window is generated where the target word is replaced with a random word from the
dictionary. The training objective of the neural network can be described as learning to rank the correct
context windows higher than the corrupted ones. This initial training step is followed by a supervised
training step where the word embeddings are further refined in the context of 4 NLP tasks: part-of-sppech
tagging, chunking, named entity recognition and semantic role labeling.

The GloVe model (Pennington et al., 2014) uses statistics of word occurences in a corpus as its
primary source of information. It involves constructing a large co-occurence matrix X , where each entry
Xij corresponds to the number of times the word j occurs in the context of the word i. The sum of the
elements on the i-th row of the matrix represents the number of co-occurences of the word i with any
other word in the dictionary in a fixed-size context window (10 words to the left and 10 to the right of
the target word). The model uses probability ratios as a mechanism for filtering out “irrelevant words”
for a given word-word pair.

Lebret and Collobert (2014) generate the HPCA word embeddings by applying Hellinger PCA to
the word co-occurence matrix, a simpler and faster method than training a full neural language model.
Word frequencies are obtained by counting each time a word w ∈ D occurs after a context sequence of
words T . The co-occurence matrix of size N x |D| contains the computed frequencies for all the words
in the dictionary given all the N possible sequences of words. The 10,000 most frequent words in the

2The CW embeddings are part of the SENNA NLP suite which can be downloaded from http://ronan.collobert.
com/senna/

3Available at http://www-nlp.stanford.edu/projects/glove/
4Available at http://lebret.ch/words/
5Available at https://code.google.com/p/word2vec/

175

Category name Dataset percentage Example

Objective
OBJECTIVE 17.1% leaf blower

Doer-Cause-Means
SUBJECT 3.5% police abuse
CREATOR-PROVIDER-CAUSE_OF 1.5% ad revenue
JUSTIFICATION 0.3% murder arrest
MEANS 1.5% faith healer

Purpose/Activity Group
PERFORM&ENGAGE_IN 11.5% cooking pot
CREATE-PROVIDE-GENERATE-SELL 4.8% nicotine patch
OBTAIN&ACCESS&SEEK 0.9% shrimp boat
MITIGATE&OPPOSE 0.8% flak jacket
ORGANIZE&SUPERVISE&AUTHORITY 1.6% ethics authority
PURPOSE 1.9% chicken spit

Ownership, Experience, Employment, Use
OWNER-USER 2.1% family estate
EXPERIENCER-OF-EXPERIENCE 0.5% family greed
EMPLOYER 2.3% team doctor
USER_RECIPIENT 1.0% voter pamphlet

Temporal Group
TIME-OF1 2.2% night work
TIME-OF2 0.5% birth date

Location and Whole+Part/Member of
LOCATION 5.2% hillside home
WHOLE+PART_OR_MEMBER_OF 1.7% robot arm

Composition and Containment Group
CONTAIN 1.2% shoe box
SUBSTANCE-MATERIAL-INGREDIENT 2.6% plastic bag
PART&MEMBER_OF_COLLECTION&CONFIG&SERIES 1.8% truck convoy
VARIETY&GENUS_OF 0.1% plant species
AMOUNT-OF 0.9% traffic volume

Topic Group
TOPIC 7.0% travel story
TOPIC_OF_COGNITION&EMOTION 0.3% auto fanatic
TOPIC_OF_EXPERT 0.7% policy expert

Other Complements Group
RELATIONAL-NOUN-COMPLEMENT 5.6% eye shape
WHOLE+ATTRIBUTE&FEATURE 0.3% earth tone
&QUALITY_VALUE_IS_CHARACTERISTIC_OF

Attributive and Equative
EQUATIVE 5.4% fighter plane
ADJ-LIKE_NOUN 1.3% core activity
PARTIAL_ATTRIBUTE_TRANSFER 0.3% skeleton crew
MEASURE 4.2% hour meeting

Other
LEXICALIZED 0.8% pig iron
OTHER 5.4% contact lense

Personal*
PERSONAL_NAME 0.5% Ronald Reagan
PERSONAL_TITLE 0.5% Gen. Eisenhower

Table 1: Semantic relation inventory used by the Tratz dataset - abbreviated version of Table 4.5 from
Tratz (2011). Note that some relations have a slightly different name in the actual dataset than the
aforementioned table; this table lists the relation names as found in the dataset.

176

Name Embedding size Dictionary size Training data size Support corpora

CW 50 130,000 0.85 bn enWikipedia + Reuters RCV1
GloVe 300 400,000 42.00 bn Common Crawl (42 bn)
HPCA 200 178,080 1.65 bn enWikipedia + Reuters + WSJ
word2vec 300 3,000,000 100.00 bn Google News dataset

Table 2: Overview of embedding sizes, dictionary sizes, training data sizes and support corpora for the
four selected embeddings. The training data size is reported in billions of words.

dictionary were considered as context words, and size of the word sequence T was set to 1.
Mikolov et al. (2013) uses a continuous Skip-gram model to learn a distributed vector representation

that captures both syntactic and semantic word relationships. The authors define the training objective
of this model as the ability to find “word representations that are useful for predicting the surrounding
words in a sentence or a document”. The training context for a word is defined as c words to the left and
to the right of the word.

For the GloVe and HPCA embeddings there are multiple sizes of word embeddings available: 50,
100, 200, 300 (6 billion words support corpus) and 300 dimensions (42 billion words support corpus) for
GloVe and 50, 100 and 200 dimensions for HPCA. We have experimented with all the different sizes for
each embedding and it was always the highest dimensional embedding that gave the best results in the
cross-validation setup. Therefore, due to space limitations we only report results for the maximum size
of each embedding.

5 The experiments

This section summarizes the experiments performed on the Tratz dataset using the four embeddings de-
scribed in the previous section. Section 5.1 describes the pre-processing steps that had to be performed
on the Tratz dataset in order to make it inter-operable with the embedding dictionaries. Section 5.2 de-
scribes the architecture of the classifier used in all the experiments. Section 5.3 presents the experiments
performed using each of the embeddings individually as well as the best performing system that resulted
from the concatenation of three out of the four selected word embeddings.

5.1 Dataset pre-processing

In order to make the best use of the word embeddings described in the previous section, several pre-
processing steps had to be performed. The Tratz dataset contains about 1% training examples that are
person names or titles starting with a capital letter, whereas such names appear in all lowercase in the
embedding dictionaries6. Therefore all compound constituents of the Tratz dataset were converted to
lowercase. This resulted in a constituent dictionary C, |C| = 5242 unique constituents for the entire
Tratz dataset of 19158 compound instances.

The constituent dictionary C obtained from the Tratz dataset includes complex words such as ’health-
care’ that are themselves compounds and which appear in the dataset as parts of larger compounds such
as ’health-care legislation’. Moreover, such complex words are not uniform in their spelling, appearing
sometimes as a single word (e.g. ’healthcare’), sometimes hyphenated (e.g. ’health-care’) and some-
times as two separate words (e.g. ’health care’). Therefore such spelling variation had to be adapted
to the spelling conventions used by each individual embedding. The same type of adaptation had to be
performed in the case of misspelled words in the Tratz dataset and singular/plural forms of the same
lemma. In cases where a constituent appears in the embedding dictionary as two separate words we use
the average of the individual word embeddings as a representation for the constituent.

6On linguistic grounds, it is highly questionable whether personal names should be included in a compound dataset. How-
ever, since they are part of the Tratz dataset, we chose not remove them.

177

The Tratz dataset also contains some infrequent English words such as ’chintz’ (in ’chintz skirt’),
’fastbreak’ (in ’fastbreak layup’) or ’secretin’ (in ’sham secretin’), which are not part of the embeddings
dictionaries. We used an unknown word embedding for representing such words. This embedding is
already part of the dictionary for some embeddings (e.g. the CW embedding), and was obtained by
averaging over the embeddings corresponding to the least frequent 1000 words for the other embeddings.

The pre-processed Tratz dataset was then partitioned into train, dev and test splits containing 13409,
1920 and 3829 noun compounds, respectively. The combined train and dev splits were also used to
construct a 10-fold cross-validation set.

5.2 Classifier architecture

We used a deep neural network classifier implemented in the Torch7 scientific computing framework
(Collobert et al., 2011) for the automatic classification of noun compounds. The classifier is trained in a
supervised manner on the examples in the Tratz dataset. A training example pairs the two constituents
of a compound (e.g. the individual words ‘robot’ and ‘arm’ in the case of ‘robot arm’) with a semantic
relation from the relation inventory (e.g. WHOLE+PART_OR_MEMBER_OF).

Figure 1 displays the architecture of the network which consists of four layers: an input layer, a
lookup table, a hidden layer and an output layer. The lookup table (Figure 1a) is a |C|xN matrix which
contains an N -dimensional embedding for every entry in the constituent dictionary C.

Lookup Table, size=|C| x N

1

2

irobot = 3

4

5 .
.
.

216

iarm = 217

218 .
.
.

|C| − 1

|C|

(a)

...

irobot

iarm

r1

rk

Input
layer,

size = 2

Lookup table
selection,

size = 2 x N

Hidden
layer,

size = N

Output
layer,

size = k

(b)

Figure 1: Classifier architecture

When a training example is presented to the network, the input layer and the lookup table are used
to extract the word representations for the two constituents of the example compound. The input layer is
used to input two numerical indices that uniquely identify each constituent in the constituent dictionary.
These indices are then used to select the individual word representations of the compound constituents
from the lookup table. The selected representations are concatenated and the combined representation is
fed to the subsequent hidden layer. This hidden layer is intended to capture regularities in the data that
are relevant for selecting the correct semantic relation of the example compound. Since the hidden layer
is fully connected to the previous layer, such regularities can be drawn from the word representations
of both compound constituents, as well as from the relative order of the two constituents. The optimal
size of the hidden layer (N , which matches the size of the initial word representation) was determined
empirically based on the dev split.

The resulting compound representation is then passed through a non-linearity (the logistic function,
1

1+exp−x) that maps it to the final output layer. The size of the output layer equals the number of semantic
relations in the Tratz dataset. A softmax function is used to pick the semantic class which was assigned
the highest score by the neural network classifier.

The purpose of the lookup table is to allow the generic word embeddings, which were constructed
independently of the compound classification task, to be fine-tuned to the current task. This fine-tuning

178

is made possible by having the lookup table as an intermediate layer in the network – and thus modifiable
by backpropagation during the training process – as opposed to having the embeddings directly as the
input of the network. The fine-tuning of embeddings for a particular task, other than the one they have
been initially trained for, has been advocated and proven effective by Collobert et al. (2011); Lebret and
Collobert (2014) in the case of several NLP tasks like part-of-speech tagging, named entity recognition
and sentiment analysis. In order to gauge the impact of embedding fine-tuning for the present task we
compared the results of training a classifier with and without fine-tuning. The classifier without fine-
tuning consists of an input layer of size 2 x N , a hidden layer of size N , and the output layer.

The network was trained using the negative log likelihood criterion, using averaged stochastic gra-
dient descent optimization (Bottou, 2012) with a batch size of 5 and an initial learning rate of 0.9. The
learning rate is adapted during the training phase, by setting it to 0.3 once the error on the development
set is lower then a specified threshold. We used the dev split to choose the hyper-parameters of the model,
which were used in all the reported experiments.

An early stopping criterion was employed in order to avoid the inherent tendency of neural networks
to overfit the training data. We used a criterion proposed by Prechelt (1998), namely stop the training
when the generalization error (i.e. the error on the dev set) has increased in s successive epochs. We set
the number of successive epochs in which the generalization error is allowed to fluctuate to s = 5. The
final model returned by the training procedure is the model with the best generalization error that was
discovered during the training procedure.

5.3 Results

This section discusses the results of the experiments conducted with the neural network classifier pre-
sented in the previous section, using the four embeddings described in Section 4. The models are trained
using the splits described in Section 3 in three setups: the DEV setup, where the model is trained on the
train split and tested on the dev split; the CV setup, where the model is trained and tested using the 10-
fold cross-validation set; the TEST setup, where the model is trained on the combined train and dev splits
and tested on the test split. Each model is trained using two architectures: one using fine-tuning (DEV-F,
CV-F, TEST-F) and one without fine-tuning (DEV-NO-F, CV-NO-F, TEST-NO-F). The results obtained for
these three setups and these two architectures are summarized in Table 3. All the results in this table
represent micro-averaged F1 measures7.

Input embeddings DEV-NO-F DEV-F CV-NO-F CV-F TEST-NO-F TEST-F

CW-50 65.83 78.39 63.59 74.71 66.62 76.03
GloVe-300 74.17 77.81 72.89 76.57 76.05 75.87
HPCA-200 61.45 77.14 70.58 76.66 64.56 76.00
word2vec-300 71.46 73.54 69.07 71.93 71.38 71.59

random embeddings - 74.17 - 64.54 - 71.43

CW-50+GloVe-300+HPCA-200 79.01 79.48 76.20 77.70 78.14 77.12

Table 3: Results for the task of automatic classification of noun compounds, using the same embeddings
with two different architectures: (i) with fine-tuning (F) and (ii) without fine-tuning (NO-F)

The first four rows of Table 3 show the results obtained by the classifier when the individual com-
pound constituents are represented using the four embeddings introduced in Section 4. The cross-
validation setup provides the most representative results for the models trained on the Tratz dataset
since it is based on different splits of data and averages the results of the individual folds. In all four
cases, the models that perform embedding fine-tuning (CV-F) have consistently better results compared
to the models that don’t change the initial embeddings (CV-NO-F). The improvement brought about by
fine-tuning is largest for the CW embedding (11.12 increase in F1 score). A plausible explanation for this

7The classification task at hand is an instance of one-of or multinomial classification, therefore micro-averaged F1 is the
same as the accuracy.

179

improvement might be related to the size of the embedding. The CW embedding is much shorter than the
other three embeddings, and hence the information in the embedding is therefore more coarse-grained.
Fine-tuning such relatively coarse-grained word representations to the task at hand is then likely to yield
a higher payoff. The importance of fine-tuning is further underscored by the fact that even with an initial
random embedding the trained classifier is able to obtain an F1 score of 64.54 in the CV setup.

The classification results can be further improved by using word representations that are obtained
by concatenating the word vectors from different embeddings. We experimented with using all the 11
possible combinations of the four embeddings (taken 2,3 and 4 at a time) as the initial representation of
a constituent, and both architectures (with/without fine-tuning). The combination of all but the word2vec
embedding as initial word representations, together with the fine-tuning architecture, empirically yielded
the highest results (77.70 F1 score) in the cross-validation setup. Notice also that the size of the network
grows considerably when the word representations of different embeddings are concatenated, not only
for the input layers but also for the hidden layer, leading to a much more difficult training task when
compared to more compact representations. This underscores the importance and effectiveness of good
representations for the task at hand, since the performance of the classifier improves despite the more
complex training task inherent in such larger networks. It also interesting to note that the training con-
verges faster for the models that fine-tune the initial embeddings than for the ones that don’t modify the
input embeddings8.

For completeness, we also report the results obtained for the DEV setup. These results are, as is to
be expected, consistently higher than the ones obtained for the cross-validation setup. The improved
performance on the DEV set can be explained by the fact that this setup was used to choose the hyper-
parameters of the system (learning rate, batch size, optimization method, stopping criterion threshold).
The improved performance could additionally be due to idiosyncrasies resulting from the particular split
of the data.

The generalization capability to novel compounds of all the models can best be gauged by the results
obtained on the unseen data provided by the TEST setup. The test split of the dataset contains 3829
compounds with a total of 2479 unique constituents. Almost a fifth of the the total number of constituents
in the test split (18.23%) appear only in the test split, and were thus not seen by the classifier during the
training process. As for the other DEV and CV setups, the fine-tuning process has the highest positive
effect on the CW and HPCA embeddings and the performance of the combined embeddings once again
outperforms the one of the individual embeddings. When comparing these results to those obtained for
the CV setup, the most striking result is that there is almost no degradation in performance for the model
with fine-tuning (77.12 TEST vs 77.70 CV F1 score) and actually an increase for the model without
fine-tuning (78.14 TEST vs 76.20 CV F1 score).

The results of our experiments also support one empirical observation, namely that the impact of
fine-tuning the embeddings decreases as the amount of data they have initially been trained on increases.
The embeddings that gain the least from fine-tuning, or even perform slightly better without fine-tuning,
are, in our experiments, the GloVe and the word2vec embeddings, as well as the combinations that
include at least one of them. The common denominator of these embeddings is the large amount of data
used for their initial training (between 40-100 times more training data than for the other embeddings,
see Table 2). The embeddings trained on large support corpora seem therefore to be better suited for
direct use in new tasks and have less to gain from fine-tuning, whereas the ones trained on small corpora
perform considerably better if they are fine-tuned for new tasks.

Another key aspect underlined by our results is that a neural architecture in combination with the
pre-trained, highly-informative word embeddings display a good generalization performance. Due to the
high productivity of compounding, which leads to a constant stream of unseen data instances in real-
world texts, such generalization ability is particularly important for the task at hand. This generalization
ability is in part due to the nature of the word embeddings, which contain implicit information about
the lexical semantics of all words in the embedding dictionary D trained by the initial language model.

8For example, in the Test setup, the models with fine-tuning stop, on average, after 15.2 training epochs, while the variants
without fine-tuning stop only after an average of 38 training epochs.

180

While the constituent dictionary C used in the supervised training of the compound classification model
is only a small subset of the original embedding dictionary D (e.g. 5242 vs 130000 words for the CW
embedding), the lexical information about the remaining (e.g. 124 758) words is still implicitly present
in the representation.

robot arm (H) plastic bag (H) birth date (H) hour meeting (H) cooking pot (H) hillside home (H)
WHOLE+PART_OR_MEMBER_OF SUBSTANCE-MATERIAL-INGREDIENT TIME-OF2 MEASURE PERFORM&ENGAGE_IN LOCATION

dinosaur wing leather bag departure date minute meeting cooking fork waterfront home
airplane wing canvas bag expiration date week meeting fishing pole patio furniture
mouse skull cardboard tray release date day meeting recycling bin fairway bunker
jet engine gelatin capsule expiry date hour course cooking liquid beach house
airplane instrument metal rack election period week course drinking water basement apartment
pant leg wire rack election date month course exercise room ocean water
fighter wing glass bottle completion date week conference storage bin cupboard door
bunny ear tin plate signing period year course fishing town beach resort
goose wing glass jar launch date hour journey fishing village bedroom door
shirt sleeve wicker basket redemption date minute speech feeding tube basement vault

Table 4: Nearest neighbors of compounds from the Tratz dataset using hidden layer representations.

robot arm (I) plastic bag (I) birth date (I) hour meeting (I) cooking pot (I) hillside home (I)
WHOLE+PART_OR_MEMBER_OF SUBSTANCE-MATERIAL-INGREDIENT TIME-OF2 MEASURE PERFORM&ENGAGE_IN LOCATION

robot spider leather bag delivery date minute meeting cooking spray waterfront home
foot arm plastic chain payment date day meeting cooking fork brick home
service arm plastic pencil birth weight night meeting cooking method trailer home
mouse skull garbage bag election date week meeting flower pot winter home
machine operator canvas bag publication date weekend meeting cooking liquid boyhood home
elephant leg plastic glove release date morning meeting cooking class retirement home
car body diaper bag departure date afternoon meeting cooking time summer home
airplane wing trash bag redemption date hour session clay pot family home
property arm plastic sphere completion date evening meeting cooking show troop home
rocket system glass bottle retirement date hour event cooking demonstration group home

Table 5: Nearest neighbors of compounds from the Tratz dataset using initial embeddings.

Additional evidence for the excellent generalization capability of the models reported on in this paper
can be gleaned from inspecting the compound representations as constructed by the neural network at
the hidden layer level. To this end we loaded the best performing model and removed the output layer,
thus being able to isolate the representations constructed by the network for the Tratz compound dataset
and to compute cosine similarity measures directly between the compound representations. Table 4
presents a selection of compounds from the Tratz dataset together with their closest 10 neighbors using
the hidden layer representations. It is quite instructive to compare these 10 nearest neighbors with the
10 nearest neighbors from Table 5, obtained by computing cosine similarities with the initial compound
representations (taken directly from the best performing combination of embeddings: CW-50+GloVe-
300+HPCA-200). For the initial representations, similarity is largely restricted to compounds that share
one of the constituents with the compound under consideration. The generalization potential of the initial
embedding is thus largely restricted to partial string similarity (e.g. the nearest neighbors to ‘cooking
pot’ are compounds that contain either ‘cooking’ or ‘pot’ as one of their constituents). The neighbors
obtained via the hidden layer representations display a much greater string variability, and at the same
time a much stronger semantic similarity to the target compound. This semantic similarity manifests
itself in a remarkable consistency in semantic relation (e.g. the PERFORM&ENGAGE_IN relation in
‘cooking pot’ is shared by all of its 10 nearest neighbors when using the hidden layer representation). It
is this combination of string variability and strong semantic similarity of the hidden layer representations
that allows the network to generalize well to unseen data.

We conclude this section with a comparison of the results obtained for the present experiments with
the results obtained by Tratz and Hovy (2010) using a Maximum Entropy (ME) classifier and a large
number of boolean features. The features used to represent compounds in the Tratz and Hovy (2010)
experiments are based on information from WordNet (synonym, hypernyms, gloss, etc.), from Roget’s

181

Thesaurus, surface-level information (suffixes, prefixes) as well as term usage information in the form of
n-grams. The ME classifier takes into account only the most useful 35000 features. Due to differences
between the Tratz and Hovy dataset used by Tratz and Hovy (2010) and the Tratz dataset used in the
present experiments, a direct comparison is not possible. These differences concern the number of data
instances as well as the number of semantic relations – see Section 3 for a more detailed discussion.
Such details notwithstanding, it is fair to say that our best result obtained in the cross-validation setting
(77.70 F1 score) is close in performance to the reported state of the art (79.3% accuracy obtained by
Tratz and Hovy (2010)) for this setting. However, our system outperforms that of Tratz and Hovy (2010)
on the classification of unseen compounds by a wide margin (77.12 F1 score vs 51.0% accuracy). While
the same disclaimer about the differences in the dataset used by Tratz and Hovy and in the present study
applies for the unseen compounds in the test set, the fact that we obtained comparable results for the
cross-validation (CV) and in the test (TEST) setups speaks well for the robustness of our model.

6 Conclusion

In this paper we have presented a deep neural network classifier approach for the task of automatic noun
compound interpretation for English. We have shown that this approach achieves comparable results to
the state of the art system trained on a closely-related dataset and significantly outperforms this earlier
system when confronted with unseen compounds. Another advantage of our approach derives from the
use of pre-trained word embeddings as word representations, rather than using large, manually selected
feature sets that are constructed and optimized for a specific task as the initial word representations.
Since word embeddings are more generic in nature and allow for re-training in a multi-task scenario,
this approach has the potential of being reused, including for related tasks of semantic interpretation of
compounds by prepositional paraphrasing, as has been proposed by Lauer (1995), or free paraphrasing,
which has been the subject of a shared SemEval task (Hendrickx et al., 2013). However, for the time
being, we have to leave such re-purposing to future research. Another direction for future research is to
test our approach on other available noun compound datasets for English such as the one provided by
Ó Séaghdha (2008). This would allow us to directly compare our approach to earlier systems trained
on these datasets. Since the Tratz dataset is considerably larger than all the other publicly datasets, also
testing our system on the latter and comparing the relative performance would allow us to better estimate
the impact of the training data size as well as the one of the annotation scheme when training deep neural
network classifiers for automatic noun compound interpretation.

Acknowledgements

The authors would like to thank the anonymous reviewers for their very useful suggestions. Financial
support for the research reported in this paper was provided by the German Research Foundation (DFG)
as part of the Collaborative Research Center “Emergence of Meaning” (SFB 833) and by the German
Ministry of Education and Technology (BMBF) as part of the research grant CLARIN-D.

References

Barker, K. and S. Szpakowicz (1998). Semi-automatic recognition of noun modifier relationships. In
Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics.

Bottou, L. (2012). Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade, pp.
421–436. Springer.

Collobert, R., K. Kavukcuoglu, and C. Farabet (2011). Torch7: A Matlab-like environment for machine
learning. In BigLearn, NIPS Workshop, Number EPFL-CONF-192376.

182

Collobert, R. and J. Weston (2008). A unified architecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of the 25th international conference on Machine
learning, pp. 160–167. ACM.

Collobert, R., J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa (2011). Natural language
processing (almost) from scratch. The Journal of Machine Learning Research 12, 2493–2537.

Girju, R., D. Moldovan, M. Tatu, and D. Antohe (2005). On the semantics of noun compounds. Computer
Speech and Language 19(4), 479–496.

Hendrickx, I., P. Nakov, S. Szpakowicz, Z. Kozareva, D. O. Séaghdha, and T. Veale (2013). SemEval-
2013 Task 4: Free paraphrases of noun compounds. Atlanta, Georgia, USA, 138.

Kim, S. N. and T. Baldwin (2005). Automatic interpretation of noun compounds using WordNet simi-
larity. In Proceedings of the 2nd International Joint Conference on Natural Language Processing.

Lauer, M. (1995). Designing Statistical Language Learners: Experiments on Compound Nouns. Ph. D.
thesis, Macquarie University.

Lebret, R. and R. Collobert (2014). Word embeddings through Hellinger PCA. In Proceedings of the
14th Conference of the European Chapter of the Association for Computational Linguistics (EACL
2014), Gothenburg, Sweden, pp. 482–490. Association for Computational Linguistics.

Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean (2013). Distributed representations of
words and phrases and their compositionality. In Advances in Neural Information Processing Systems,
pp. 3111–3119.

Ó Séaghdha, D. (2008). Learning compound noun semantics. Ph. D. thesis, Computer Laboratory,
University of Cambridge. Published as University of Cambridge Computer Laboratory Technical
Report 735.

Ó Séaghdha, D. and A. Copestake (2013). Interpreting compound nouns with kernel methods. Natural
Language Engineering 19(03), 331–356.

Pennington, J., R. Socher, and C. D. Manning (2014). GloVe: Global vectors for word representation. In
Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014), Volume 12.

Prechelt, L. (1998). Early stopping-but when? In Neural Networks: Tricks of the trade, pp. 55–69.
Springer.

Rosario, B. and M. Hearst (2001). Classifying the semantic relations in noun compounds. In Proceedings
of the 2001 Conference on Empirical Methods in Natural Language Processing.

Tratz, S. (2011). Semantically-enriched parsing for natural language understanding. Ph. D. thesis,
University of Southern California.

Tratz, S. and E. Hovy (2010). A taxonomy, dataset, and classifier for automatic noun compound interpre-
tation. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics
(ACL-10), Uppsala, Sweden.

Verhoeven, B., W. Daelemans, and G. B. van Huyssteen (2012). Classification of Noun-Noun Compound
Semantics in Dutch and Afrikaans. In Proceedings of the Twenty-Third Annual Symposium of the
Pattern Recognition Association of South Africa, Pretoria, South Africa, pp. 121–125.

183

