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Abstract

Twitter users demonstrate many characteristics via their online presence. Connections, commu-
nity memberships, and communication patterns reveal both idiosyncratic and general properties
of users. In addition, the content of tweets can be critical for distinguishing the role and impor-
tance of a user. In this work, we explore Twitter user classification using context and content
cues. We construct a rich graph structure induced by hashtags and social communications in
Twitter. We derive features from this graph structure—centrality, communities, and local flow of
information. In addition, we perform detailed content analysis on tweets looking at offensiveness
and topics. We then examine user classification and the role of feature types (context, content)
and learning methods (propositional, relational) through a series of experiments on annotated
data. Our work contrasts with prior approaches in that we use relational learning and alterna-
tive, non-specialized feature sets. Our goal is to understand how both content and context are
predictive of user characteristics. Experiments demonstrate that the best performance for user
classification uses relational learning with varying content and context features.

1 Introduction

In recent years, Twitter has become an extremely prolific social media engine, attracting an extremely
diverse user base, ranging from teenagers discussing the latest in pop culture, to businesses looking
for free advertising space, to the president of the United States trying to reach a broader audience than
traditional media will allow. Twitter is the place to say whatever you want to whoever you want..., as
long as it is less than 140 characters. This conciseness constraint forced the Twitter user base to develop
innovative ways of maximizing the information content of each letter. As such, the resulting tweets
constitute a vast data set of rich textual content. Additionally, these tweets traverse through and define a
social network comprised of all kinds of people tweeting to people about people.

In this work, we try to identify who some of these people are by performing user classification. Several
prior methods have been proposed. Teng and Chen (2006) performed a similar study on bloggers in
order to classify them by interest type. Twitter, however, provides a much richer feature set due to the
denser network structure and nearly ubiquitous adoption of user profiles. Romero et al. (2011) defined a
social graph structure for Twitter data. While this was the first paper of its kind to explore the benefits
of extracting a network structure from textual data, they only considered a limited graph comprising
the retweet structure. Rao et al. (2010) and Pennacchiotti and Popescu (2011) expanded the notion of
a Twitter graph to more broadly encompass social communication and used this jointly with content
features to predict some attributes of Twitter users. Only limited graph analysis was performed and
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learning was based on the user and not relational methods. In (Wu et al., 2011), a special feature, Twitter
lists, was used as a simple approach to user classification.

Our goal is to explore the role of different features and learning methods in user classification. The
motivation for this study is multifold. First, prior work has only performed limited analysis on Twitter
graph structures and their role in user characterization. Second, the interplay between content, context,
and learning method (relational versus propositional) has not been fully explored. Third, user classifica-
tion using profile information or specific Twitter features may not always be available or accurate. In our
study, we find 20% of the users do not have an accessible profile. Additionally, since profile information
contains self-reported fields, its accuracy is questionable.

In this paper, our contribution consists of multiple parts. First, we develop a rich network repre-
sentation of Twitter data that combines the traditionally exploited social network features (retweeting,
at-mentions), user tweeting behaviors (hashtag usage), and hashtag co-occurrence without requiring stor-
age of all tweets. We perform network analysis on this graph and show that community structure and
centrality in the network are qualitatively interesting and relevant for user classification. Second, we per-
form tweet level topic clustering and offensiveness detection. We propose a new method for propagating
posterior class probabilities to both hashtag and at-mention graph nodes. This provides topic and offen-
siveness associations for both users and hashtags in the Twitter graph. Finally, in constrast to prior work,
we perform relational learning on the Twitter graph and show significant improvements in performance
by using information from hashtag-neighbors and user-neighbors of a user node.

2 Corpus Collection

Over the 8 month period from September 2012 to March 2013, we used Twitter’s streaming API to collect
a < 1% sample of the entire twitter feed, totaling approximately 686 million tweets, which (Morstatter
et al., 2013) showed to be a representative sample of the entire Twitter space. These tweets contain basic
information—tweet id, date and time, user id, user location, and tweet text. The tweets are representative
of the Twitter population and display a wide variety of user accounts, topics, languages, and locations.

In addition to collecting a corpus of tweets, we used Twitter’s REST API to collect the user profiles
for all users who were either an author of or at-mentioned in at least one of the previously collected
tweets. User profiles contain both user generated and automatically generated content. The user gen-
erated content includes information such as webpage link, location, time zone, screen name, language,
and a textual description of the account. Since these are self-reported attributes, their veracity is often
noisy or over-generalized—e.g., location reported as “all around the world.” The automatically generated
user account content consists of account information and statistics such as number of followers, date of
account creation, number of tweets (statuses count), verified status, and favorite count.

We augmented our tweet + profile corpus by labeling a subset of user profiles with their user type.
Annotation was performed by multiple annotators. We considered the following partitioning of user
profiles into user classes. individual:famous : Famous person: writer, actor, former politician, etc.
individual:generic : Generic (everyday) user tweeting. individual:other : An individual that doesn’t
fall into the categories above. organization : Business, non-profit, government organization. fake :
Fictional characters, celebrity impersonations, deceased individuals, etc. info : Information source–
news, trivia, jokes, quotes. bots : Produces automated posts via Twitter. missing : User doesn’t exist
(deleted page or misspelled user id). dontcare : Spam, offensive services. other : Not in one of the
above categories. We selected this schema as an initial exploration of interesting categories and many
alternate schema are possible.

3 Twitter Graph Construction

In order to construct an analytics platform, we applied a mapping that converts a corpus of tweets and
corresponding user profiles into a Twitter graph. There are several methods of representing Twitter data
as a graph which capture diferent levels of data richness at inversely proportional computational expense
(both in processing and storage requirements). In this work, we consider a graph with multityped nodes
in one-to-one correspondence with the union of the set of user profiles (e.g., @blueman) and the set of
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Table 1: Example communities obtained from Infomap community detection with the Twitter Graph
Communities and High-Pagerank Members Highest Pagerank Node

#me, #cute, #instagood, #beautiful, #fashion #love

#500aday, #tfb, #instantfollowback, #teamfollowback

#teamautofollow, #followback

#breakoutartist, #musicfans, #peopleschoice

#onedirection, #popartist, #celebrityjudge

#android, #androidgames, #ipad, #ipadgames, #iphone #gamesinsight

@harry styles, @real liam payne, @louis tomlinson, @niallofficial

@zaynmalik, @onedirection

#football, #49ers, #packers, #ravens, #redskins #nfl

#p2, #teaparty, #tlot, #gop, #obama #tcot

#believecoustic, #believe, #believetour, #kiss, @alfredoflores @justinbieber

hashtags (e.g., #yankees) that occur in one or more of the collected tweets. We chose not to include
individual tweets as nodes in the graph in order to maintain tractability.

In addition to the two classes of nodes, we considered five classes of edges. There are three classes
of edges that connect two user profile nodes. The first is a directed, weighted edge corresponding to
the number of times one user at-mentions another user (e.g., @blueman writes a tweet containing
@greenman). The second type of user to user edge is a directed, weighted edge corresponding to
the number of times one user retweets another user (e.g., @blueman writes a tweet containing RT
@greenman). Unlike the at-mentions and retweets edges, the third type of user to user edge doesn’t
map to communication between users; rather this edge classification refers to an undirected, weighted
count of the number of times at-mentions of two users co-occur in the same tweet (e.g., @redman writes
a tweet containing @greenman and @blueman). Similarly to the user to user co-occurence edge clas-
sification, there is an undirected, weighted edge classification corresponding to the co-occurrence of two
hashtags. The final class of edges are weighted, directed edges corresponding to the number of times a
given user tweets a particular hashtag.

4 Graph Features

We extracted network features from the Twitter graph based on community detection and centrality
(Pagerank). We partitioned the node set into commuties by leveraging the infomap approach (Rosvall
and Bergstrom, 2008). We use Pagerank to calculate the centrality of each node and we define community
centrality as the sum of the Pageranks for all nodes in the community. The community “Pagerank” allows
us to rank communities by centrality. After computing both Pagerank and communities, we added these
node features to the original (directed) graph.

Optimizing the communities in the Twitter graph yields communities with both user and hashtag
nodes. Nodes with high-pagerank in a community serve as a community summarizations. We show
a summary of some of the largest Pagerank sum communities in Table 1. Cursory analysis reveals that
qualitatively the communities are very interpretable—user Justin Bieber is associated with the Believe
tour, the hashtag #gameinsight is associated with different platforms and game types, followbacks
are grouped together, and the #love community has the highest community Pagerank.

5 Content Analysis

Content analysis uses natural language processing to extract additional structured features from unstruc-
tured tweets. We discussed simple content analysis based on parsing tweets in order to identify com-
munication (at-mentions and retweets) and content (hashtags) in a previous section. In this section, we
cover more advanced techniques—topic modeling and offensiveness detection.

Before covering the details of content analysis, we describe the general framework for incorporating
content features into our classification framework. We assume that content analysis produces a vector of
posterior probabilities,

cj =
[
p(ωi|tweetj)

]
(1)
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where ωi is the indicator for the class label i. In general, including all tweets as nodes in a graph for
classification leads to a graph of prohibitive size. Instead, we propagate the information contained in
tweets to corresponding user and hashtag nodes and compute the expected posterior probability; i.e., we
average all of the vectors propagated to a certain node.

The rules for propagating cj for at-mentions are as follows. If user @blueman tweets with no recip-
ient or multiple recipients, then cj is propagated to the @blueman node. If user @blueman retweets
from user @greenman, then cj is propagated to both @blueman and @greenman. Similarly for
hashtags nodes, we propagate the cj vector to all hashtags used in tweetj .

Averaging the content vectors that were propagated to user and hashtag nodes defines representative
content vectors for those nodes. A drawback of this aggregation strategy is that the average estimator can
have a variable variance proportional to the number of vectors propagated to a node, which can introduce
noise into the classification process.

5.1 Topic Modeling

Our topic modeling is based upon probabilistic latent semantic analysis (PLSA). PLSA models the joint
probability between documents and words by introducing a latent variable z representing possible topics
in a document. We trained the PLSA model with an EM algorithm.

An analysis of the topics produced by PLSA provides meaningful interpretation of many of the high
scoring topics. For instance, topics such as money, sleep habits, the ubiquitous Justin Bieber, birth-
days and Valentine’s day, and love are easily seen. Expressions of happiness via emoticons are also a
topic. The topics in general represent broad categories (love, football) and specific events (video awards,
Valentine’s day). In addition, topics that represent common linguistic phenomena—African American
vernacular English (AAVE), various expletives, and teen lifestyle (class, teacher, parents, ...). We remark
that the topics are related to but not the same as the community detection applied to the Twitter graph.
Qualitatively, the Twitter graph communities appear to be better defined and more easily interpreted than
their PLSA counterparts.

5.2 Offensiveness

Another significant attribute of a tweet is linguistic register—the variation due to the social setting. In
an attempt to capture some of the phenomena that occurs due to formality, familiarity, etc., we trained
an offensiveness detector. The goal of building this detector is that variations in offensiveness might
distinguish user type (e.g., politician versus generic user).

Offensiveness is a broad term and could be defined in many different ways. We define offensiveness
using a pragmatic two-stage approach. First, we obtained a set of offensive tweets by issuing queries
via Lucene of offensive terms. To obtain a set of putative non-offensive tweets, we took a random
sample of the remaining tweets from a large pool, assuming that in this case offensiveness has a lower
prior. We then trained a classifier with the offensive and non-offensive data sets. The resulting output of
the detector yields a consistent definition of offensiveness. Additionally, training a detector rather than
using just a dictionary approach captures some of the additional co-occurring terms and allows learning
appropriate weightings of terms.

We split the annotated data into distinct train and test sets for performance measurement and cali-
bration of the detector. Approximately 14000 tweets were in both sets. We trained an SVM by using
normalized word-count vectors and a linear kernel. The SVM regularization parameter was tuned for
optimal performance to c = 0.1. The equal error rate is 12.4% for the detector. The detector appears to
produce consistent results. Given that tweets are short messages, this performance level appears reason-
able.

We needed two additional steps in order to apply the detector to all English tweets. First, we converted
the output of the SVM to a posterior probability using the standard approach in Platt (Platt, 2000) and
optimized by using a conjugate gradient method. Second, there were numerous cases in the data where
unseen vocabulary in the training set resulted in a zero-vector for vi. In these cases, we used an imputed
posterior of offensiveness by taking the average value across all nodes.
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6 User Classification

Our goal in this work is to identify the saliency of network and content features as well as relational versus
propositional learning methods for classifying Twitter users. We cast the user classication problem as a
detection problem; i.e., for each label (verified, generic, etc.), we build a 1-versus-rest detector to predict
that attribute of the user.

Since our representation of the Twitter data involves user-user, user-hashtag, and hashtag-hashtag re-
lationships, we apply a relational learning approach to user classification. Relational learning techniques
leverage the structure of the neighborhood around a user of interest as well as the attributes of that user
and its neighbors. In this work, we construct queries consisting of the user of interest, and the nodes ad-
jacent to and edges incident to that user. We use relational probability trees (RPTs) (Neville et al., 2003)
to leverage these subgraphs for classification. An RPT is a decision tree which automatically calculates
and considers aggregate features within the subgraphs.

7 Experiments

7.1 Experimental Setup

From a 1% sample of raw tweets, we created a Twitter graph combining content and network features.
We included network structure in the graph by letting edges indicate retweets, communication and co-
occurance of users in tweets, or co-occurrence of hashtags within tweets. In addition, we annotated each
edge with counts for each interaction type. We added additional content features for topic and offensive-
ness as well as network features for cluster and cluster pagerank for each user and hashtag. Topic vectors
were assigned using a PLSA approach, and offensiveness was determined using an SVM. Clustering
and pagerank were achieved using the infomap approach. In addition, we hand-annotated approximately
1300 users (individual:famous, individual:generic, individual:other, organization, info source, bot, etc.)
by examining their profiles and tweets. The resulting graph had 252K nodes (189K users and 64K hash-
tags), and 1.16M edges.

We performed experiments using multiple feature subsets (content, network and content+network)
and different learning methods (propositional, relational). The content features we generated for users
and hashtags are topic and offensiveness. We include the top three most likely topics for each user and
hashtag in our feature set for these experiments. Our network features for users and hashtags are cluster
and cluster pagerank. We cast the user classification process as a detection problem. For each user label
(verified, generic, etc.), we create a detector using an RPT that uses a one-versus-rest labeling.

To predict whether or not a user has a verified account, we learn decision trees with Proximity∗ with
varying features included in the analysis. There were a total of 84k users with a verified label in our
graph from downloaded Twitter profiles. We subsampled 10% of this data set to give reasonable run
times for Proximity.

For the remaining hand-annotated classes, we used all available labeled data. We learned decision
trees using Proximity with a maximum tree depth of 3. For some user types, there were not enough
labeled users to make reliable models and predictions; we excluded user types with probability less than
or equal to 1% (fake, other, spam). We also found prediction of organization to be unreliable. Therefore,
we focused our experiments on high-prior hand-annotated classes—generic, info, and famous.

For both relational and propositional (user-only) learning, we divided the data into 5 random splits
with 80% of the data in training and 20% of the data in test. For each split, we measured the area under
the curve (AUC) from the trained detector on the heldout test set. Results are reported in terms of the
mean and standard deviation (SD) of the AUC across all splits.

Relational learning was somewhat complicated by the varying structure of user neighborhoods. Ide-
ally, we would like our graph queries to return subgraphs that consist of a central labeled user, and all
users and hashtags that are immediate neighbors of this labeled user. However, the RPTs need to be able
to calculate the same aggregate features for each subgraph. A problem arises because some labeled user
nodes only have neighbors that are users, while other user nodes have only hashtag neighbors, and still

∗Software and documentation is available at http://kdl.cs.umass.edu/proximity
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more nodes have both user and hashtag neighbors. There is also an unusual case where some users do
not have any neighbors. We find that user nodes from these four neighborhood structure cases (no neigh-
bors, only user neighbors, only hashtag neighbors, and both user and hashtag neighbors) cannot all be
mixed together in the same training and test sets. This diffculty occurs because aggregate attributes that
are well-defined on the users with only hashtag neighbors, such as average offensiveness of neighboring
hashtags, are undefined for nodes with only user neighbors. We handle this by running separate sets of
experiments for each of these four neighborhood structure cases.

7.2 User Classification Experiments
7.2.1 Verified User Results
Table 2 shows average AUC results for propositional and relational prediction of account verification.
Note that an AUC of 0.5 indicates chance performance. From the table, we see that we can perform
reasonable user classification of verified users using our extracted features.

From the table, we can reach multiple conclusions. First, propositional learning performs similarly
with either network-only or content-only features. Second, content and network features together pro-
vide a significant boost in performance. This observation has been noted in other domains such as Enron
e-mail (Coppersmith and Priebe, 2012). Third, the introduction of relational learning gives substantial
performance improvements over propositional learning. For instance, the performance of content fea-
tures is substantially increased in the relational case with “users only.” A fourth observation is that “not
all neighbors are created equal.” In all cases, the use of information about user neighbors is substan-
tially more important than hashtag neighbors. We found that most neighborhoods contained users; the
distribution was none (11%), user only (43%), hashtag only (9%), and both (37%).

7.2.2 Hand-Annotated Results
Additional experiments on the three labels famous, generic, and info were also performed and results
are shown in Table 2. Note that the small number of labels is most likely impacting two aspects of
performance. First, since we have a smaller training set size, best absolute AUC is typically lower than
the verified case. Also, in some cases performance is worse than chance showing that it is difficult to
generalize well from a small training set. In general, though, similar trends in AUC performance are
similar to the verified case.

For both the famous and generic labels with propositional learning, we found that network-only fea-
tures work substantially better than content-only features. For info labels, content-only features are
slightly better demonstrating that info is a unique case.

Further examination of relational results shows similar trends to the verified user case. Relational
methods are superior to propositional methods. In addition, using both network and content features is
helpful or at least not detrimental to performance. The case of the info user class is interesting from the
viewpoint of neighbors; we see that the gap in performance between hashtag-only neighbors and user-
only neighbors is less than other user classes. In terms of features appearing in the RPTs, we found that
all features were valuable in user classification. Aggregate features were common as decision points in
the relational case.

8 Conclusions

Twitter contains a rich set of social network, content, and individual user cues that give insight into user
characteristics. In this paper, we explored features that captured these characteristics via topic cluster-
ing, offensiveness detection, and network analytics. Additionally, we examined various classification
strategies which used both propositional and relational methods. Our different approaches demonstrated
that the different feature types are complementary and all indicative of user classification. For example,
finding “interesting” Twitter accounts (the opposite of generic users) can be accomplished with content
and network features. This process emphasizes the fact that user classification can be accomplished
with many strategies. Possible future work includes performing alternative classification studies, ana-
lyzing the effects of different sample sizes, extending to other languages, and predicting additional user
classes.
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Table 2: Average and standard deviation AUC for detection of verified and annotated accounts. Proposi-
tional results are indicated by a “-” in neighborhood structure.

Feature Neighborhood Verified Famous Generic Info
Sets Structure AUC Avg (SD) AUC Avg (SD) AUC Avg (SD) AUC Avg (SD)

Content - 0.6201 ( 0.0219 ) 0.5549 ( 0.0215 ) 0.5725 ( 0.0390 ) 0.7716 ( 0.0436 )
Network - 0.6916 ( 0.0339 ) 0.7685 ( 0.0529 ) 0.7110 ( 0.0468 ) 0.6438 ( 0.0791 )

Content+Network - 0.7443 ( 0.0349 ) 0.7901 ( 0.0136 ) 0.7301 ( 0.0290 ) 0.7002 ( 0.1682 )
Content No Neighbors 0.5935 ( 0.0306 ) 0.5970 ( 0.1583 ) 0.5842 ( 0.1535 ) 0.4006 ( 0.1777 )
Content Users Only 0.8945 ( 0.0248 ) 0.8172 ( 0.0375 ) 0.7558 ( 0.0560 ) 0.6813 ( 0.1321 )
Content Hashtags Only 0.6501 ( 0.0416 ) 0.4939 ( 0.1548 ) 0.5557 ( 0.1518 ) 0.6153 ( 0.1151 )
Content Users and Hashtags 0.9213 ( 0.0202 ) 0.8420 ( 0.0564 ) 0.7790 ( 0.0589 ) 0.5583 ( 0.0954 )
Network No Neighbors 0.5123 ( 0.1292 ) 0.6227 ( 0.1707 ) 0.4085 ( 0.0505 ) 0.4040 ( 0.1224 )
Network Users Only 0.8760 ( 0.0310 ) 0.8383 ( 0.0262 ) 0.7708 ( 0.0527 ) 0.6433 ( 0.1336 )
Network Hashtags Only 0.4821 ( 0.0657 ) 0.4502 ( 0.1418 ) 0.5995 ( 0.0576 ) 0.5778 ( 0.1241 )
Network Users and Hashtags 0.9091 ( 0.0257 ) 0.8437 ( 0.0157 ) 0.8014 ( 0.0559 ) 0.8038 ( 0.0760 )

Content+Network No Neighbors 0.5939 ( 0.0801 ) 0.5654 ( 0.1141 ) 0.6572 ( 0.1299 ) 0.3917 ( 0.1487 )
Content+Network Users Only 0.8823 ( 0.0317 ) 0.8019 ( 0.0520 ) 0.7566 ( 0.0474 ) 0.5815 ( 0.1708 )
Content+Network Hashtags Only 0.6699 ( 0.0525 ) 0.4510 ( 0.1312 ) 0.5543 ( 0.0954 ) 0.4260 ( 0.2057 )
Content+Network Users and Hashtags 0.9325 ( 0.0087 ) 0.8431 ( 0.0535 ) 0.7831 ( 0.0192 ) 0.8021 ( 0.0608 )
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