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Introduction

Welcome to the COLING 2014 Second Workshop on Natural Language Processing for Social Media
(SocialNLP). SocialNLP is a new inter-disciplinary area of natural language processing (NLP) and
social computing. We consider three plausible directions of SocialNLP: (1) addressing issues in social
computing using NLP techniques; (2) solving NLP problems using information from social networks
or social media; and (3) handling new problems related to both social computing and natural language
processing.

Through this workshop, we anticipate to provide a platform for research outcome presentation and
head-to-head discussion in the area of SocialNLP, with the hope to combine the insight and experience
of prominent researchers from both NLP and social computing domains to contribute to the area of
SocialNLP jointly. Also, selected and expanded versions of papers presented at SocialNLP will be
published in two follow-on Special Issues of Springer Cognitive Computation (CogComp) and the
International Journal of Computational Linguistics and Chinese Language Processing (IJCLCLP).

The submissions to this year’s workshop were again of high quality and we had a competitive selection
process. We received 18 submissions, and due to a rigorous review process, we only accepted 6 of them.
Thus the acceptance rate was 33%. We also have 2 invited papers. The workshop papers cover a broad
range of SocialNLP-related topics, such as aspect extraction, multi-lingual sentiment analysis, sentiment
feature selection, online rating prediction, sentiment sequence recognition, automatic identification,
verbal behavior and persuasiveness analysis, and user classification. We had a total of 18 reviewers.
We warmly thank our PC members for the timely reviews and constructive comments.

We are delighted to have Prof. Paolo Rosso, from Universitat Politecnica de Valencia, as our keynote
speaker.

We especially thank the Workshop Committee Chairs Dr. Jennifer Foster, Prof. Dan Gildea, and Prof.
Tim Baldwin, and Local Co-Chair Dr. John Judge.

We hope you enjoy the workshop!

SocialNLP organizers
Shou-de Lin, Lun-Wei Ku, Erik Cambria, and Tsung-Ting Kuo
August 24, 2014
Dublin, Ireland
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Abstract 

In ironic texts what is literally said is usually negated, and in absence of an explicit negation 

marker. This makes social computing quite challenging. Detecting irony is very much important 

for NLP tasks such as polarity classification, sentiment analysis, opinion mining, or reputation 

analysis. There is a growing interest from the research community in investigating the impact of 

irony on polarity classification and sentiment analysis. A tasks will be organised at SemEval in 

2015 on Sentiment Analysis of Figurative Language in Twitter 

(http://alt.qcri.org/semeval2015/task11). What are the linguistic patterns that users employ in so-

cial media in order to try to be ironic in just maybe 140 characters? Linguistic devices that go 

beyond positive or negative polarity such as ambiguity, incongruity, unexpectedness and emo-

tional contexts have an important role as triggers of irony. In the talk I will describe how irony is 

employed in social media texts (Twitter, Amazon, Facebook etc.) and what are the recent state-

of-the-art attempts for its automatic detection. At the end of the talk, I will address also the even 

more challenging and fine-grained problem of distinguishing among irony, sarcasm and satire: 

e.g. If you find it hard to laugh at yourself, I would be happy to do it for you. 

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer 

are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/ 
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Abstract

Sentiment analysis generally uses large feature sets based on a bag-of-words approach, which
results in a situation where individual features are not very informative. In addition, many data
sets tend to be heavily skewed. We approach this combination of challenges by investigating
feature selection in order to reduce the large number of features to those that are discriminative.
We examine the performance of five feature selection methods on two sentiment analysis data
sets from different domains, each with different ratios of class imbalance.

Our finding shows that feature selection is capable of improving the classification accuracy only
in balanced or slightly skewed situations. However, it is difficult to mitigate high skewing ratios.
We also conclude that there does not exist a single method that performs best across data sets and
skewing ratios. However we found that TF ∗ IDF2 can help in identifying the minority class
even in highly imbalanced cases.

1 Introduction

In recent years, sentiment analysis has become an important area of research (Pang and Lee, 2008;
Bollen et al., 2011; Liu, 2012). Sentiment analysis is concerned with extracting opinions or emotions
from text, especially user generated web content. Specific tasks include monitoring mood and emotion;
differentiating opinions from facts; detecting positive or negative opinion polarity; determining opinion
strength; and identifying other opinion properties. At this point, two major approaches exists: lexicon
and machine learning based. The lexicon-based approach uses high quality, often manually generated
features. The machine learning-based approach uses automatically generated feature sets, which are from
various sources of evidence (e.g., part-of-speech, n-grams, emoticons) in order to capture the nuances of
sentiment. This means that a large set of features is extracted, out of which only a small subset may be
good indicators for the sentiment.

One major problem associated with sentiment analysis of web content is that for many topics, these
data sets tend to be highly imbalanced. There is a general trend that users are willing to submit positive
reviews, but they are much more hesitant to submit reviews in the medium to low ranges. For example,
for the YouTube data set that we will use, we collected comments for YouTube videos from the comedy
category, along with their ratings. In this data set, more than 3/4 of all ratings consist of the highest rating
of 5. For other types of user generated content, they opposite may be true.

Heavy skewing in data sets is challenging for standard classification algorithms. Therefore, the data
sets generally used for research on sentiment analysis are balanced. Researchers either generate balanced
data sets during data collection, by sampling a certain number of positive and negative reviews, or by se-
lecting a balanced subset for certain experiments. Examples for a balanced data set are the movie review
data set (Pang and Lee, 2004) or the IMDB review data set (Maas et al., 2011). Using a balanced data set
allows researchers to focus on finding robust methods and feature sets for the problem. Particularly, the
movie review data set has been used as a benchmark data set that allows for comparisons of various sen-
timent analysis models. For example, Agarwal and Mittal (2012), Agarwal and Mittal (2013), Kummer

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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and Savoy (2012), O’Keefe and Koprinska (2009), and Paltoglou and Thelwall (2010) all proposed com-
petitive feature selection methods evaluated on the movie review data set. However, the generalizability
of such feature selection methods to imbalanced data sets, which better represent real world situations,
has not been investigated in much detail. Forman (2003) provides an extensive study of feature selection
methods for highly imbalanced data sets, but he uses document classification as task.

This current paper investigates the robustness of three feature selection methods that Forman (2003)
has shown to be successful, as well as two variants of TF ∗ IDF . The three methods are Odds-Ratio
(OR), Information Gain (IG), and Binormal Separation (BNS). BNS has been found to perform signif-
icantly better than other methods in more highly skewed tasks (Forman, 2003). The two variants of
TF ∗ IDF differ in the data set used for calculating document frequency. We investigate the behavior
of these methods on a subtask of sentiment analysis, namely the prediction of user ratings. For this, we
will use data sets from two different domains in order to gain insight into whether or not these feature
selection methods are robust across domains and across skewing ratios: One set consists of user reviews
from Epicurious1, an online community where recipes can be exchanged and reviewed, the other set
consists of user reviews of YouTube comedy videos.

The remainder of this paper is organized as follows: In section 2, we explain the rationale for applying
feature selection and introduce the feature selection methods that are examined in this paper. Section
3 introduces the experimental settings, including a description of the two data sets, data preprocessing,
feature representation, and definition of the binary classification tasks. In section 4, we present and
discuss the results for the feature selection methods, and in section 5, we conclude.

2 Feature Selection and Class Skewing

In a larger picture, feature selection is a method (applicable both in regression and classification prob-
lems) to identify a subset of features to achieve various goals: 1) to reduce computational cost, 2) to
avoid overfitting, 3) to avoid model failure, and 4) to handle skewed data sets for classification tasks.
We concentrate on the last motivation, even though an improvement of efficiency and the reduction of
overfitting are welcome side effects. The feature selection methods studied in this paper have been used
in text classification as well, which is a more general but similar task using n-gram features. However,
since all measures are intended for binary classification problems, we reformulate the rating prediction
into a binary classification problem (see section 3.5).

Feature selection methods can be divided into wrapper and filter methods. Wrapper methods use
the classification outcome on a held-out data set to score feature subsets. Standard wrapper methods
include forward selection, backward selection, and genetic algorithms. Filter methods, in contrast, use
an independent measure rather than the error rate on the held-out data. This means that they can be
applied to larger feature sets, which may be unfeasible with wrapper methods. Since sentiment analysis
often deals with high dimensional feature representation, we will concentrate on filter methods for our
feature selection experiments.

Previous research (e.g. (Brank et al., 2002b; Forman, 2003)) has shown that Information Gain and
Odds Ratio have been used successfully across different tasks and that Binormal Separation has good
recall for the minority class under skewed class distributions. So we will investigate them in this paper.
Other filter methods are not investigated in this paper due to two main concerns: We exclude Chi-
squared and Z-score, statistical tests because they require a certain sample size. Our concern is that
their estimation for rare words may not be accurate. We also exclude Categorical Proportion Difference
and Probability Proportion Difference since they do not normalize over the sample of size of positive
and negative classes. Thus, our concern is that they may not provide a fair estimate for features from a
skewed data sets.

2.1 Notation

Following Zheng et al. (2004), feature selection methods can be divided into two groups: one-sided and
two-sided measures. One-sided measures assign a high score to positively-correlated features and a low

1www.epicurious.com
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score to negative features while two-sided measures prefer highly distinguishing features, independent
of whether they are positively or negatively correlated. Zheng et al. (2004) note that the ratio of positive
and negative features affects precision and recall of the classification, especially for the minority class.
For one-sided methods, we have control over this ratio by selecting a specified number of features one
each side; for two-sided methods, however, we do not have this control. In this paper, we will keep a 1:1
ratio for one-sided methods. For example, if we select 1 000 features, we select the 500 highest ranked
features for the positive class, and the 500 highest ranked features for the negative class. When using
two-sided methods, the 1 000 highest ranked features are selected.

For the discussion of the feature selection methods, we use the following notations:

• S: target or positive class.

• S: negative class.

• DS : The number of documents in class S.

• DS : The number of documents in class S.

• DSf : The number of documents in class S where feature f occurs.

• DSf : The number of documents in class S where feature f occurs.

• TSf : The number of times feature f occurs in class S.

2.2 Feature Selection Methods

In addition to Information Gain, Odds Ratio and Bi-Normal Separation, TF ∗ IDF is included for
comparison purposes. We define these measures for binary classification as shown below.

Information Gain (IG): IG is a two-sided measure that estimates how much is known about an unob-
served random variable given an observed variable. It is defined as the entropy of one random variable
minus the conditional entropy of the observed variable. Thus, IG is the reduced uncertainty of class S
given a feature f :

IG = H(S)−H(S|f) =
∑

f∈{0,1}

∑
S∈{0,1}

P (f, S)log
P (f, S)

P (f)P (S)

Brank et al. (2002b) analyzed feature vector sparsity and concluded that IG prefers common features
over extremely rare ones. IG can be regarded as the weighted average of Mutual Information, and rare
features are penalized in the weighting. Thus they are unlikely to be chosen (Li et al., 2009). Forman
(2003) observed that IG performs better when only few features (100-500) are used. Both authors agreed
that IG has a high precision with respect to the minority class.

Odds Ratio (OR): OR (Mosteller, 1968) is a one-sided measure that is defined as the ratio of the odds
of feature f occurring in class S to the odds of it occurring in class S. A value larger than 1 indicates that
a feature is positively correlated with class S, a value smaller than 1 indicates it is negatively correlated:

OR = log
P (f, S)(1− P (f, S))
P (f, S)(1− P (f, S))

Brank et al. (2002b) showed that OR requires a high number of features to achieve a given feature
vector sparsity because it prefers rare terms. Features that occur in very few documents of class S and
do not occur in S have a small denominator, and thus a rather large OR value.
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Bi-Normal Separation (BNS): BNS (Forman, 2003) is a two-sided measure that regards the proba-
bility of feature f occurring in class S as the area under the normal distribution bell curve. The whole
area under the bell curve corresponds to 1, and the area for a particular feature has a corresponding
threshold along the x-axis (ranging from negative infinite to positive infinite). For a feature f , one can
find the threshold that corresponds to the probability of occurring in the positive class, and the threshold
corresponding to the probability of occurring in S. BNS measures the separation in these two thresholds:

BNS = |F−1(
DSf

DS
)− F−1(

DSf

DS

)|

where F−1 is the inverse function of the standard normal cumulative probability distribution. As we can
see, the F−1 function exaggerates an input more dramatically when the input is close to 0 or 1 which
means that BNS perfers rare words.

Term Frequency * Inverse Document Frequency (TF*IDF): TF ∗ IDF was originally proposed
for information retrieval tasks, where it measures how representative a term is for the document in which
it occurs. When TF ∗ IDF is adopted for binary classification, we calculate the TF ∗ IDF of a feature
w.r.t. the positive class (normalized) and the TF ∗ IDF w.r.t. the negative class (normalized). We obtain
the absolute value of the difference of these two measures. If a feature is equally important in both
classes and thus would not contribute to classification, it receives a small value. The larger the value,
the more discriminative the feature. We apply two variants of TF ∗ IDF , depending on how IDF is
calculated:

TF ∗ IDF1 = (0.5 +
0.5× TSf

maxi(TSfi
)
)× log(

DS + DS

DSf
)

TF ∗ IDF2 = (0.5 +
0.5× TSf

maxi(TSfi
)
)× log(

DS

DSf
)

In the first variant, TF ∗ IDF1, document frequency is based on the whole set of examples while in
the second variant, TF ∗ IDF2, document frequency is based only on the class under consideration, S.

3 Experimental Setup

3.1 Data Sets

Epicurious Data Set: We developed a web crawler to scrape user reviews for 10 146 recipes, published
on the Epicurious website before and on April 02, 2013. On the website, each recipe is assigned a rating
of 1 to 4 forks, including the intermediate values of 1.5, 2.5, and 3.5. This is an accumulated rating over
all user reviews. (Reviews with ratings of 0 were excluded, they usually indicate that recipes have not
received any ratings.) We rounded down all the half ratings, e.g., 1.5 forks counts as 1 fork, based on
the observation that users are generous when rating recipes. Our experiments classify each recipe by
aggregating over all its reviews. While a little more than half of the recipes received 1 to 10 reviews,
there are recipes with more than 100 reviews. To avoid an advantage for highly reviewed recipes, we
randomly selected 10 reviews if a recipe has more than 10 reviews. Recipes with less than 3 reviews
were eliminated since they do not provide enough information. After these clean-up steps, the data set
has the distribution of ratings shown in table 1.

YouTube Data Set: Using the Google YouTube Data API, we collected average user ratings and user
comments for a set of YouTube videos in the category Comedy. Each video is rated from 1 to 5. The
distribution of ratings among all YouTube videos is very skewed, as illustrated in figure 1. Most videos
are rated highly; very few are rated poorly. The 1% quantile is 1.0; the 6.5% quantile is 3.0; the 40%
quantile is 4.75; the 50% quantile is 4.85; and the 77% quantile is 5.0. We selected a set of 3 000 videos.
Videos with less than 5 comments or with non-English comments are discarded.
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rating no.
1 fork 44 recipes
2 forks 304 recipes
3 forks 1416 recipes
4 forks 1368 recipes

Table 1: The distribution of ratings in the Epicurious data set.
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Figure 1: Skewing in the YouTube data set.

3.2 Data Preprocessing
Before feature extraction, basic preprocessing is conducted for both data sets individually. For the Epi-
curious data set, we perform stemming using the Porter Stemmer (Porter, 1980) to normalize words, and
rare words (≤ 4 occurrences) are removed. On the YouTube data set, we perform spelling correction
and normalization because the writing style is rather informal. Our normalizer collapses repetitions into
their original forms plus a suffix “RPT”, thus retaining this potentially helpful clue for reviewer’s strong
emotion without increasing the features due to creative spelling. For example, “loooooove” is changed
to “loveRPT” and“lolololol” to “lolRPT”. The normalizer also replaces all emoticons by either“EMOP”
for positive emoticons or “EMON” for negative emoticons. Besides a standard English dictionary, we
also use the Urban Dictionary2 since it has a better coverage of online abbreviations.

We do not filter stop words for two reasons: 1) Stop words are domain dependent, and some En-
glish stop words may be informative for sentiment analysis, and 2) uninformative words that are equally
common in both classes will be excluded by feature selection if the method is successful.

3.3 Feature representation
Since our focus is on settings with high numbers of features, we use a bag-of-words approach, in which
every word represents one feature, and its term frequency serves as its value. Different feature weighting
methods, including binary weighting, term frequency, and TF∗IDF have been adopted in past sentiment
analysis studies (e.g., (Pang et al., 2002; Paltoglou and Thelwall, 2010)). (Pang et al., 2002) found that
simply using binary feature weighting performed better than using more complicated weightings in a
task of classifying positive and negative movie reviews. However, movie reviews are relatively short, so
there may not be a large difference between binary features and others. Topic classification usually uses
term frequency as feature weighting. TF ∗ IDF and variants were shown to perform better than binary
weighting and term frequency for sentiment analysis (Paltoglou and Thelwall, 2010).

Since our user rating prediction tasks aggregate all user comments into large documents and predict
ratings per recipe/YouTube video, term frequency tends to capture richer information than binary fea-

2http://www.urbandictionary.com/
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Epicurious YouTube
ratio no. NEG no. POS ratio no. NEG no. POS
1:8 348 2 784 1:10 56 559
1:1.57 348 547 1:1.57 356 559
1:1 348 348 1:1 559 559

Table 2: Skewing ratios and sizes of positive and negative classes for both data sets.

tures. Thus, we use term frequency weighting for simplicity, not to deviate from the focus of feature
selection methods. Since there is a considerable variance in term frequency in the features, we normalize
the feature values to [0,1] to avoid large feature values from dominating the vector operations in classifier
optimization.

For the Epicurious data, the whole feature set consists of 10 677 unigram features. For YouTube, the
full feature set of features consists of 23 232 unigram features. We evaluate the performance of feature
selection methods starting at 500 features, at a step-size of 500. For the Epicurious data, we include up to
10 500 features. For the YouTube data, we stop at 15 000 features due to prohibitively long classification
times.

3.4 Classifier

The classifier we use in this paper is Support Vector Machines (SVMs) in the implementation of
SVMlight (Joachims, 1999). Because algorithm optimization is not the focus of this study, we use the
default linear kernel and other default parameter values. Classification results are evaluated by accuracy
as well as precision and recall for individual classes.

3.5 Binary Classification

Since all feature selection methods we use in our experiments are defined under a binary classification
scenario, we need to redefine the rating prediction task. For both data sets, this means, we group the
recipes and videos into a positive and a negative class. A baseline classifier predicts every instance as the
majority class. For both data sets, the majority class is positive.

For the Epicurious data set, 1-fork and 2-fork recipes are grouped into the negative class (NEG), and
3-fork and 4-fork recipes are grouped into the positive class (POS), yielding a data set of 348 NEG and
2 784 POS recipes (skewing ratio: 1:8). The different skewing ratios we use are shown in table 2. 2/3 of
the data is used for training, and 1/3 for testing, with the split maintaining the class ratio. Note that for
the less skewed settings, all NEG instances were kept while POS instances were sampled randomly.

For the YouTube data set, we sample from all videos with rating 5 for the positive class and from
all videos with ratings between and including 1 and 3 for the negative class. This yields 559 POS and
559 NEG videos. The different skewing ratios we use are shown in table 2. 7/8 of the data is used for
training, and 1/8 for testing, with the split maintaining the class ratio.

4 Results

4.1 Results for the Epicurious Data Set

The results for the Epicurious data set with different skewing ratios are shown in figure 2. The accuracy
of the baseline is 50% for the 1:1 ratio, 61% for 1:1.57, and 88.9% for 1:8.

The results show that once we use a high number of features, all the feature selection methods perform
the same. This point where they conflate is reached at around 4 000 features for the ratios of 1:1 and
1:1.57. There, accuracy reaches around 71%. For the experiment with the highest skewing, this point is
reached much later, at around 8 000 features. For this setting, we also reach a higher accuracy of around
89%, which is to be expected since we have a stronger majority class. Note that once the conflation point
is reached, the accuracy also corresponds to the accuracy when using the full feature set. This accuracy
is always higher than that of the baseline.
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Figure 2: The results for the Epicurious data set.
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Figure 3: Precision and recall for the negative cases in the Epicurious set, given a 1:8 skewing.

The results also show that the most pronounced differences between feature selection methods occur in
the balanced data set. In the set with the highest skewing, the differences are minor, and only TF ∗IDF2

improves over the baseline when using 1 000 features.
Another surprising result is that TF ∗IDF2, OR, and BNS have a tendency to fluctuate between higher

and lower results than the setting using all features. This means that it is difficult to find a good cut-off
point for these methods. TF ∗ IDF1 and IG show clear performance gains for the balanced setting, but
they also show more fluctuation in settings with higher skewing.

From these results, we can conclude that for sentiment analysis tasks, feature selection is useful only
in a balanced or slightly skewed cases if we are interested in accuracy. However, a look at the precision
and recall given the highest skewing (see figure 3) shows that TF ∗ IDF2 in combination with a small
number of features is the only method that finds at least a few cases of the minority class. Thus if a
good performance on the minority class examples is more important than overall accuracy, TF ∗ IDF2

is a good choice. One explanation is that TF ∗ IDF2 concentrates on one class and can thus ignore the
otherwise overwhelming positive class completely. TF ∗ IDF1 and OR have the lowest precision, and
BNS fluctuates. Where recall is concerned, TF ∗ IDF1 and IG reach the highest recall given a small
feature set.

4.2 Results for the YouTube Data Set

The results for the YouTube data set with different skewing ratios are shown in figure 4. The accuracy of
the baseline is 50% for the 1:1 ratio, 61.08% for 1:1.57, and 90.9% for 1:10.

The results show that even though the YouTube data set is considerably smaller than the Epicurious
one, is does profit from larger numbers of selected features: For the balanced and the low skewing, there
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Figure 4: The results for the YouTube set.
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Figure 5: Precision and recall for the negative cases in the YouTube set, given a 1:1.57 skewing.

is no point at which the methods conflate. The results for the highly skewed case show that no feature
selection method is capable of finding cases of the minority class: all methods consistently identify only
one instance of the negative class. However, this may be a consequence of the small data set. In terms of
accuracy, we see that a combination of a small number of features with either IG or TF ∗ IDF1 provides
the best results. For the YouTube data set, BNS also performs well but requires a larger set of features for
reaching its highest accuracy. We assume that this is the case because BNS has a tendency to prefer rare
words. Note that we did not test for number of features greater than 15 000 because of the computation
cost, but we can see that the performance curve for different feature selection methods tends to conflate
to the point that represents the full feature set.

If we look at the performance of different feature selection methods on identification of minority class
instances, we find that TF ∗ IDF2 again manages to increase recall in the highly skewed case, but this
time at the expense of precision. For the 1:1.57 ratio, all methods reach a perfect precision when a high
number of features is selected, see figure 5. TF ∗ IDF2 is the only method that reaches this precision
with small numbers of features, too. However, this is not completely consistent.

4.3 Discussion

If we compare the performance curves across data sets and skewing ratios and aim for high accuracy,
we see that there is no single feature selection method that is optimal in all situations. Thus, we have to
conclude that the choice of feature selection method is dependent on the task. In fact, the performance
of a feature selection method could depend on many factors, such as the difficulty of the classification
task, the preprocessing step, the feature generation decision, the data representation scheme (Brank et
al., 2002a), or the classification model (e.g., SVM, Maximum Entropy, Naive Bayes).
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We have also shown on two different data sets, each with three skewing ratios, that it is difficult for
feature selection methods to mitigate the effect of highly skewed class distributions while we can still
improve performance by using a reduced feature set for slightly skewed cases. Thus, the higher the skew-
ing of the data set is, the more difficult it is to find a feature selection method that has a positive effect,
and parameters, such as feature set size, have to be optimized very carefully. Thus, feature selection is
much less effective in highly skewed user rating tasks than in document classification.

However, if the task requires recall of the minority class, our experiments have shown that TF ∗IDF2

is able to increase this measure with a small feature set, even for highly imbalanced cases.

5 Conclusion and Future Work

In this paper, we investigated whether feature selection methods reported to be successful for document
classification perform robustly in sentiment classification problems with a highly skewed class distribu-
tion. Our findings show that feature selection methods are most effective when the data sets are balanced
or moderately skewed, while for highly imbalanced cases, we only saw an improvement in recall for the
minority class.

In the future, we will extend feature selection methods – originally defined for binary classification
scenarios – to handle multi-class classification problems. A simple way of implementing this is be to
break multi-class classification into several 1-vs.-all or 1-vs.-1 tasks, perform feature selection on these
binary tasks and then aggregate them. Another direction that we want to take is integrating more complex
features, such as parsing or semantic features, into the classification task to investigate how they influence
feature selection. In addition, we will compare other approaches against feature selection for handling
highly skewed data sets, including classification by rank, ensemble learning methods, and memory-
based learning with a instance-specific weighting. Finally, a more challenging task is to select features
for sentiment analysis problems where no annotation (feature selection under unsupervised learning) or
few annotations (feature selection under semi-supervised learning) are available.
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Abstract

In this paper, we develop an approach to automatically predict user ratings for recipes at Epicuri-
ous.com, based on the recipes’ reviews. We investigate two distributional methods for feature se-
lection, Information Gain and Bi-Normal Separation; we also compare distributionally selected
features to linguistically motivated features and two types of frameworks: a one-layer system
where we aggregate all reviews and predict the rating vs. a two-layer system where ratings of
individual reviews are predicted and then aggregated. We obtain our best results by using the
two-layer architecture, in combination with 5 000 features selected by Information Gain. This
setup reaches an overall accuracy of 65.60%, given an upper bound of 82.57%.

1 Introduction

Exchanging recipes over the internet has become popular over the last decade. There are numerous sites
that allow us to upload our own recipes, to search for and to download others, as well as to rate and
review recipes. Such sites aggregate invaluable information. This raises the question how such sites can
select good recipes to present to users. Thus, we need to automatically predict their ratings.

Previous work (Yu et al., 2013) has shown that the reviews are the best rating predictors, in comparison
to ingredients, preparation steps, and metadata. In this paper, we follow their approach and investigate
how to use the information contained in the reviews to its fullest potential. Given that the rating classes
are discrete and that the distances between adjacent classes are not necessarily equivalent, we frame this
task as a classification problem, in which the class distribution is highly skewed, posing the question of
how to improve precision and recall especially for the minority classes to achieve higher overall accuracy.
One approach is to identify n-gram features of the highest discriminating power among ratings, from a
large number of features, many of which are equally distributed over ratings. An alternative strategy is
to select less surface-oriented, but rather linguistically motivated features. Our second question concerns
the rating predictor architecture. One possibility is to aggregate all reviews for a recipe, utilizing rich
textual information at one step (one-layer architecture). The other possibility is to rate individual reviews
first, using shorter but more precise language clues, and then aggregate them (two-layer). The latter
approach avoids the problem of contradictory reviews for a given review, but it raises the question on
how to aggregate over individual ratings. We will investigate all these approaches.

The remainder of the paper is structured as follows: First, we review related work in section 2. Then, in
section 3, we motivate our research questions in more detail. Section 4 describes the experimental setup,
including the data preparation, feature extraction, classifier, and evaluation. In section 5, we present
the results for the one-layer experiments, and in section 6 for the two-layer experiments. Section 7
investigates a more realistic gold standard. We then conclude in section 8.

2 Related Work

This section provides a brief survey for sentiment analysis on online reviews.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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During the last decade or more, there has been significant body of sentiment analysis studies on online
reviews. Two major approaches exist: lexicon-based and machine learning. A lexicon-based approach
requires prior knowledge of important sentiment features to build a list of sentiment-bearing words (or
phrases), which are often domain independent. Examples of such lexicons include the Multi-Perspective
Question Answering (MPQA) subjectivity lexicon (Wilson et al., 2005) and the Linguistic Inquiry and
Word Count (LIWC) dictionary (Pennebaker et al., 2014). The sentiment of a review is determined
by various ways of aggregating information about the sentiment-bearing words (phrases), such as their
frequency and sentiment scores. The machine learning approach dominantly adopts supervised learning
algorithms, which treat sentiment analysis as a text classification task. In this case, sentiment features
are generated from a pre-labeled corpus. Given the lack of annotated data, semi-supervised learning is
adopted (Yu, 2014; Yu and Kübler, 2011). For this study, we focus on a specific language domain of
online recipe reviews, which has user ratings, thus we choose supervised learning. We also adopt one
existing linguistic lexicon to provide extra features for our classification models.

The earliest sentiment analysis on online reviews was done by Pang et al. (2002); they applied several
supervised learning algorithms to classify online movie reviews into a positive and a negative class.
This study found that machine learning methods outperformed human annotators. It also found that
bigrams did not improve the classification performance, whether used alone or with unigrams, which has
been confirmed by many following studies. However, Cui et al. (2006) later conjectured that when the
training corpus is large enough, adding bigrams to unigrams improved the accuracy of binary product
review classification. A great number of diverse features were proven to be beneficial to capture subtle
sentiments across studies and a “kitchen sink” approach is often adopted for sentiment analysis (Yang
et al., 2008). However, when features are noisy and redundant, researcher have found it beneficial to
identify the most telling ones (Gamon, 2004; Ng et al., 2006).

While it is useful to differentiate positive and negative reviews, a finer level of distinction can help
users better compare online reviews. As a matter of fact, even extra half star ratings can have dramatic
economic impact (Anderson and Magruder, 2012). To predict multi-level ratings, either multiclass clas-
sification or regression methods can be applied (Koppel and Schler, 2006; Yu et al., 2013). Pang and Lee
(2005) have also proposed an alternative meta-algorithm based on metric labeling for predicting three or
four sentiment classes for movie reviews. In their experiments, the meta-algorithm outperformed SVMs
in either one-versus-all or regression mode. In order to adopt this meta-algorithm, however, one needs to
determine an effective review similarity measure, which is not always straightforward.

If an item receives multiple reviews and/or comes from multiple sources, an overall rating needs to be
generated for this item. Yu et al. (2013) generated this overall rating by treating all the reviews from one
recipe as one long review. In this study, we are going to investigate how to integrate review-level rating
predictions to generate a recipe-level prediction. Rating aggregation has been studied intensively for
collaborative filtering, where the user/rater’s bias is adjusted (e.g., the trustworthy user’s rating has more
influence than others (McGlohon et al., 2010)). Since our current study does not take raters’ information
into consideration, we are going to stay with the sample aggregation method. A study by Garcin et al.
(2009) suggests that among mean, median, and mode, the median is often a better choice as it is not as
sensitive to outliers as the mean.

3 Research Questions

As described in the previous section, many studies use only word unigrams or bigrams. We use word
and part-of-speech (POS) n-grams, with n ranging from 1 to 3. This approach generates a large number
of features, creating a very noisy and high dimensional data set, which also makes classifier training
and testing slow. For this reason, we first investigate the effect of feature selection. The next question
concerns the usefulness of linguistically and socio-linguistically motivated features. This results in a
small, but ideally meaningful set of features. The last research question that we approach in this paper
concerns whether classifying recipes on the recipe level is too coarse. In general, we have a wide range
of reviews, each of which is accompanied by a user rating. Thus, it is possible to conduct review-level
classification and then aggregate the ratings.
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3.1 Feature Selection
Our primary feature set is based on word and POS n-grams. This results in an extremely large feature
set of 449 144 features, many of which do not serve any discriminatory function. A common first step to
trimming the feature set is to delete stop words. However, in the cooking domain, it is unclear whether
stop words would help. Feature selection is used to identify n-grams tightly associated with individual
ratings. Additionally, a extremely high dimensional feature representation makes model training and
testing more time consuming, and is likely to suffer from overfitting - given a large number of parameters
needed to describe the model. Due to the exponential computation time required by wrapper approaches
for feature selection, we use filtering approaches which are based on statistics about the distribution of
features. Previous research (Liu et al., 2014) indicates that Bi-Normal Separation (BNS) (Forman, 2003)
and Information Gain (IG) yield best results for this task. Information Gain is defined as follows:

IG = H(S) − H(S|f) =
∑

f∈{0,1}

∑
S∈{0,1}

P (f, S)log
P (f, S)

P (f)P (S)

where S is the positive class, f a feature, and P (f, S) the joint probability of the feature f occurring
with class S. Bi-Normal Separation finds the separation of the probability of a feature occurring in the
positive class vs. the negative class, normalized by F−1, which is the inverse function of the standard
normal cumulative probability distribution. Bi-Normal Separation is defined as follows:

BNS = |F−1(
DSf

DS
) − F−1(

DSf

DS

)|

where DS is the number of documents in class S, DS the number of documents in class S, DSf the
number of documents in class S where feature f occurs, and DS,f the number of documents in class
S where feature f occurs. The F−1 function exaggerates an input more dramatically when the input is
close to 0 or 1, which means that BNS prefers rare words.

Since both metrics are defined for binary classification, the features are chosen in terms of a separation
of the recipes into “bad” ratings (1-fork and 2-fork) versus “good” ratings (3-fork and 4-fork), on the
assumption that the selected features will be predictive for the more specific classes as well. For
review-based experiments, the features are chosen with regard to “good” and “bad” individual reviews.

3.2 Linguistically Motivated Features
Linguistic features In order to examine whether linguistic information can improve prediction accu-
racy, linguistically motivated features were extracted from the data. We selected seven features based
on the assumption that they reveal a sense of involvedness or distance of the reviewer, i.e., that authors
distance themselves from a recipe to indicate negative sentiment and show more involvedness to indicate
positive sentiment. These seven features are:

1. The percentage of personal pronouns per sentence.

2. The number of words per sentence.

3. The total number of words in the review.

4. The percentage of passive sentences per review.

5. The number of punctuation marks per sentence.

6. The number of capitalized characters per sentence.

7. The type/token ratio per review.

Features such as words per sentence, total words, and the type/token ratio are seen as indicating the
complexity of the review.
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Our hypothesis is that the longer the review, the more likely it indicates a negative sentiment as the
review may go at lengths to indicate why something was negative.

Similarly, using the passive voice can be viewed as distancing oneself from the review indicating a
sense of impartial judgement, most likely associated with negativity, as one tends to actively like some-
thing (i.e. “We liked it” versus “It wasn’t well seasoned.”). Since some reviews with strong emotions are
written in all capital letters as well as contain many punctuation marks (particularly “!”), these features
are also collected as possible indicators of sentiment.

Lexicon-based features In addition, we used an existing lexicon, the Linguistic Inquiry and Word
Count (LIWC) dictionary (Pennebaker et al., 2014), to analyze several emotional and cognitive dimen-
sions in the recipe reviews. This lexicon is chosen over other sentiment lexicons because it covers a broad
range of categories beyond simply positive and negative emotions. Briefly, it contains general descriptor
categories (e.g., percentage of words captured by the dictionary), standard linguistic dimensions (e.g.,
percentage of words in the text that are pronouns), word categories tapping psychological constructs
(e.g., biological processes), personal concern categories (e.g., work), spoken language dimensions (e.g.,
accent), and punctuation categories. Details of these dimensions can be found in the LIWC 2007 manual.

For our study, we first extracted all the features from a review set independent from our training/test
set. We then selected the LIWC features with highest power to differentiate four rating classes based
on Information Gain. Below are the 15 selected features. Note that the linguistic features here are
document-level features, not sentence-level features, as proposed above.

• Linguistic Processes

– Negations (e.g., never, no): 57 words
– 1st person plural (e.g., we, us): 12 words
– Exclamation mark

• Psychological Processes

– Affective process: this high level category contains 915 positive/negative emotions, anxiety,
anger and sadness related terms.

– Positive emotion (e.g., love, nice, sweet): 406 words
– Negative emotion (e.g., hurt, ugly, nasty): 499 words
– Sadness (e.g., crying, grief): 101 words
– Exclusive (e.g., but, exclude): 17 words
– Tentative (e.g., maybe, perhaps, guess): 155 words
– Causation (e.g., because, hence): 108 words
– Discrepancy (e.g., should, would, could) : 76 words
– Certainty (e.g., always, never): 83 words
– Sexual (e.g., love): 96 words
– Feel (e.g., feel, touch): 75 words

• Personal Concerns

– Leisure (e.g, cook, chat, movie): 229 words

It is not surprising that emotion related features are selected, but it is interesting to see that cognitive
processes features (i.e., causation, tentative, discrepancy, certainty and exclusive) are also highly related
to ratings. Taking a close look at the means of feature values across four ratings, we observe that people
tend to use words in the tentative, discrepancy, exclusive categories when they write negative recipe
reviews. For terms in causation, however, it is the opposite: People write about reasons when writing
positive reviews. Some further investigation is needed to explain why this is the case. We also see that the
higher the rating, the more likely it is that people use first person plural pronouns. This may be due to the
fact that only when people like a recipe, they will tend to share the food with others. Other observations
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1 fork 108
2 fork 787
3 fork 5 648
4 fork 3 546

Table 1: The distribution of ratings in the Epicurious data.

include: The sexual features are positively correlated with high ratings, which is mainly due to the word
“love” in its non-sexual meaning. People tend to use more words from the perception processes category
feel when they complain about a recipe.

3.3 One-Layer Prediction Versus Two-Layer Prediction

The one-layer or recipe-based approach consider all reviews per recipe as a single document. This
approach has rich textual information, especially when a large number of reviews exist for a recipe.
However, the concern with this approach is that the reviews in themselves may be varied. There are
recipes whose reviews range from the lowest to the highest rating. Given such a range of individual
ratings, we can assume that the recipe-based approach will be faced with a contradictory feature set for
certain recipes. For this reason, we also investigate a two-layer or review-based approach. Here, every
individual review is rated automatically. In a second step, we aggregate over all reviews per recipe.
Aggregation can either take the form of majority voting, average, or of a second classifier which takes
the aggregated ratings as features to make a final decision. However, this approach will suffer from often
very short reviews, which do not allow the extraction of sufficient features as well as from the inequality
in the number of reviews per recipe.

4 Experimental Setup

4.1 Data Set

We scraped user reviews for 10 089 recipes, published on the Epicurious website1 before and on April 02,
2013. Typically, a recipe contains three parts: ingredients, cooking instructions, and user reviews. In our
experiments, we focus exclusively on the reviews. Each user review has a rating for this recipe, ranging
from 1 fork to 4 forks. There is also an overall rating per recipe, which is the average of all reviews
ratings as well as ratings submitted without reviews. Half forks are possible for recipe rating but not for
review ratings. These recipes were pre-processed to remove reviews with zero ratings. Recipes that had
no reviews were then subsequently removed. In order to counter the effect of the wide variance in the
number of reviews per recipe, we randomly sampled 10 reviews from recipes with more than 10 reviews.
We had performed initial experiments with all reviews, which resulted in only minor differences. At the
review level, rare words (unigrams occurring less than four times) were removed for two reasons: 1)
Extremely rare words are likely to be noise rather than sentiment-bearing clues; 2) the feature selection
method BNS is biased towards rare words; 3) such words do not generalize well. The recipes were then
tagged using the Stanford POS Tagger (Toutanova et al., 2003).

The data set is severely skewed with regard to the number of recipes per fork: Users seem to be more
willing to review good recipes. To lessen the effect of imbalance in the rating classifier, all half fork
reviews were added to their corresponding full star reviews (i.e., 1.5 fork was added to the 1 fork data).
This resulted in the data split of 10 089 recipes shown in table 1. Even after collapsing the half stars,
there is still a very large skewing of the data towards the higher ratings. This means, feature selection is
important to mitigate the imbalance to a certain degree.

4.2 Features

In addition to the linguistic features described in section 3.2, we also extracted n-gram features: word
unigrams, bigrams, and trigrams as well as POS tag unigrams, bigrams, and trigrams. Since the data

1http://www.epicurious.com
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Method 750 900 1 000 1 500 3 000 6 000
BNS – – 31.33 – 42.00 50.67
IG 62.00 62.00 62.33 62.33 61.00 58.67

Table 2: Results for feature selection based on Bi-Normal Separation (BNS) and Information Gain (IG).

includes tokens particular to the web, modifications were made to the data to help with the processing of
these types of tokens. URLs were replaced with a single URL token and tagged with a unique “URL” tag.
Emoticons were defined as either positive or negative and subsequently replaced by EMOP or EMON
respectively. Since it is unclear for this task whether more frequent feature should receive a larger weight,
we normalized features values to a range of [0,1].

4.3 Classifiers

Preliminary experiments were run to determine the best classifier for the task. We decided on Support
Vector Machines in the implementation of SVM multi-class V1.01 (Crammer and Singer, 2002) for both
review-level and recipe-level rating prediction. Initial experiments showed that SVM multi-class V1.01
reaches higher results on our skewed data set than the current V2.20. For this reason, all experiments
reported in this paper are based on V1.01 with its default settings, i.e., using a linear kernel.

To aggregate review-level ratings into a recipe-level prediction, we experimented with both the max-
imum entropy classifier in the implementation of the Stanford Classifier (Manning and Klein, 2003)
and the SVM multi-class classifier. We included Maxent Classifier because given the small number of
features it is no longer clear whether SVM is advantageous.

4.4 Baseline

The baseline was established following Yu et al. (2013) as selecting the label of majority class (3-fork)
to tag all recipes, producing an accuracy of 56.00% for both one-layer and two-layer systems.

4.5 Evaluation

Evaluation was performed using 3-fold cross validation. Since the data is skewed, we report Precision
(P), Recall (R), and F-Scores (F) for all classes across each experiment, along with standard accuracy.

5 Results for One-Layer Prediction

5.1 Feature Selection

We first investigated the effect of feature selection, varying the number of included features from 750 to
6 000. Results for the two methods and different feature thresholds are shown in table 2. Since previous
work (Liu et al., 2014) showed that BNS has a tendency to select infrequent n-grams and would need
a larger number of features than IG to achieve good performance, we tested the higher ranges of 1 000,
3 000, 6 000 features. None of these experiments yields an accuracy higher than the baseline of 56.00%.
On the other hand, the performance of Information Gain peaks at 1 000 and 1 500 features, and we reach
an absolute increase in accuracy of 6.33%. Given these experiments, for all following experiments, we
use the combination of Information Gain and 1 000 n-gram features.

5.2 Linguistically Motivated Features

Here, we test the contribution of the linguistically motivated features introduced in section 3.2. To allow
a comparison to previous experiments, we report the baseline and the results for using Information Gain.

For the two sets of linguistically motivated features, we used the following combination of features:

1. Lexicon-based features (Lex) combined with linguistic features (Ling) (22 features).

2. Lexicon-based features (Lex) combined with the 1 000 features selected by Information Gain (IG)
(1015 features).
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1 fork 2 fork 3 fork 4 fork
P R F P R F P R F P R F Acc.

Base 0.00 0.00 0.00 0.00 0.00 0.00 56.00 100.00 72.00 0.00 0.00 0.00 56.00
IG 33.33 1.00 2.00 31.33 12.00 17.33 66.00 73.67 69.67 58.33 58.00 58.00 62.33
Lex+Ling 0.00 0.00 0.00 0.00 0.00 0.00 56.00 100.00 72.00 0.00 0.00 0.00 56.00
IG+Lex 39.00 2.00 3.67 31.67 10.00 15.00 65.33 75.33 69.67 59.67 55.67 57.33 62.67
IG+Ling 0.00 0.00 0.00 32.00 3.33 6.00 63.67 81.00 71.33 62.67 49.67 55.33 63.33
IG+Lex+Ling 0.00 0.00 0.00 32.00 3.33 6.00 63.67 81.00 71.33 62.67 49.67 55.33 63.33

Table 3: Results for manually selected features.

1 fork 2 fork 3 fork 4 fork
no. feat. P R F P R F P R F P R F Acc.
1000 61.57 58.11 59.79 53.70 37.42 44.11 63.04 42.14 50.51 71.30 89.08 79.20 67.80
2000 61.65 58.27 59.91 52.96 39.40 45.18 63.37 43.19 51.37 71.86 88.70 79.40 68.11
3000 62.50 58.51 60.44 52.98 40.88 46.15 62.90 44.49 52.12 72.45 88.10 79.51 68.34
4000 62.45 58.45 60.38 52.38 41.05 46.03 62.99 45.54 52.86 72.83 87.70 79.58 68.46
5000 62.32 57.00 59.54 51.66 41.17 45.82 62.21 46.15 52.99 73.05 87.24 79.52 68.31

Table 4: Results on individual reviews for the two-layer experiments.

3. Linguistic features (Ling) combined with the 1 000 features selected by Information Gain (IG)
(1007 features).

4. A combination of all three sets of features (IG+Lex+Ling) (1022 features).

The results for these experiments are reported in table 3. These results show that a combination of
the two sets of linguistically motivated features does not increase accuracy over the baseline. In fact, the
classification is identical to the baseline, i.e., all recipes are grouped into the majority class of 3-fork. We
assume that the linguistically motivated features are too rare to be useful. If we add the lexicon-based
features to the ones selected by Information Gain, we reach a minimal improvement over only the IG
features: accuracy increases from 62.33% to 62.67%. This increase is mostly due to a better performance
on the minority class of 1 fork. If we add the 7 linguistic features to the IG features, we reach the highest
accuracy of 63.33%. However, this is due to a more pronounced preference for selecting the majority
class. Adding the lexicon-based features to this feature set does not give any further improvements.

6 Results for Two-Layer Prediction

In this section, we investigate the two-layer or review-based prediction. For these experiments, we per-
formed feature selection on the individual reviews using IG. Adding the linguistically motivated features
considerably decreased performance. We assume that these features do not generalize well on the shorter
reviews.

Note that the task approached here is a difficult task since the recipe rating on Epicurious is not the
average over all the ratings associated to the individual reviews but also includes ratings by user who did
not write a review. If we average over all the sampled gold standard review ratings per recipe, we reach
an accuracy of 82.57%. This is the upper bound that we can reach in these experiments.

6.1 Classifying Individual Reviews

First, we look at the phase in which individual reviews are classified. The results of this set of experiments
is shown in table 4. Note that there are three important trends here: 1) The accuracy of the SVM classifier
is higher than for classifying recipes. The comparison needs to be taken with a grain of salt because
these are two different tasks. However, this is an indication that it is possible to reach higher results
based on aggregating over individual reviews. 2) For this task, we reach the highest results by using
4 000 features, i.e., a considerably higher number of features than the optimal set for the recipe-based
experiments, where 1 000 features sufficed. We suspect that we need more features in this setting because
the individual reviews are shorter so that individual features do not generalize as well as for complete
recipes. 3) The classification of individual reviews is less skewed than for complete recipes. The F-scores
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1 fork 2 fork 3 fork 4 fork
no. f. sys. P R F P R F P R F P R F Acc.
1000 avg 44.64 36.98 40.45 60.00 23.03 33.28 75.72 51.91 61.59 52.38 86.01 65.11 61.48

maxent 43.87 33.33 37.88 58.30 19.73 29.48 73.90 58.77 65.47 55.03 81.40 65.67 63.41
svm 62.21 62.21 62.21 56.18 16.03 24.94 72.24 58.14 64.43 53.92 80.82 68.68 62.21

2000 avg 44.61 38.83 41.52 61.45 24.29 34.82 76.12 53.96 63.15 53.45 85.53 65.79 62.58
maxent 43.17 34.27 38.21 61.47 21.23 31.56 74.43 60.93 67.01 56.27 80.93 66.38 64.58
svm 63.29 63.29 63.29 56.53 16.79 25.89 72.65 60.32 65.91 55.14 80.26 65.37 63.29

3000 avg 42.71 38.86 40.69 61.08 26.57 37.03 75.62 54.33 63.23 53.71 84.60 65.71 62.64
maxent 42.40 35.20 38.47 61.90 23.40 33.96 74.00 61.90 67.41 56.83 79.73 66.36 64.84
svm 63.53 63.53 63.53 54.09 17.41 26.34 72.14 61.45 66.37 55.80 79.02 65.41 63.53

4000 avg 38.64 34.22 36.30 61.09 24.89 35.37 75.23 55.91 64.15 54.34 83.81 65.93 63.07
maxent 38.37 31.47 34.58 60.67 22.47 32.79 73.80 63.03 67.99 57.47 79.00 66.54 65.16
svm 64.03 64.03 64.03 52.92 17.53 26.33 72.24 62.85 67.22 56.51 78.17 65.60 64.03

5000 avg 39.23 37.05 38.11 59.20 24.89 35.05 75.38 56.25 64.42 54.54 83.64 66.03 63.23
maxent 38.03 33.40 35.56 58.37 22.00 31.96 73.97 64.17 68.72 58.13 78.57 66.82 65.60
svm 64.68 64.68 64.68 50.19 17.40 25.84 72.52 64.18 68.10 57.45 77.95 66.15 64.68

Table 5: Results on aggregating reviews for the two-layer experiments.

for the non-majority classes are considerably higher than in the recipe-based setting. Thus, we expect to
obtain more balanced results across classes in the aggregation as well.

6.2 Predicting Recipe Ratings by Aggregating Reviews
When aggregating review predictions to recipe rating, we use three methods: 1) Taking the average of
the review ratings from the previous step; 2) using SVM; and 3) using a maximum entropy classifier
(Maxent), the Stanford Classifier. When calculating the average over review rating predictions, the final
average is rounded up. The results are reported in table 5. When using SVM and the maximum entropy
classifier, we use four features, corresponding to the four ratings. The feature values are calculated as
the percentage of reviews from the target recipe that were assigned to this fork rating by our review-level
classifier.

Overall, the maximum entropy classifier yields the best performance, independent of the number of
features used for the review-level classifier. The highest performance we reach by using 5 000 features
and the maximum entropy classifier. Calculating the average results in the worst performance. Although
Epicurious calculates the average user ratings based on review ratings and singular ratings, keep in mind
that we use at most 10 reviews per recipe, hence only capture part of the image. This may explain why
simply calculating the average does not work well. When looking at the F-scores for each fork in table 5,
however, the maximum entropy classifier produces lower performance than average and SVM classifier
for the 1 fork and 2 fork classes. For 1 fork, SVM has the highest F-scores for different numbers of
features, followed by the averaging approach while for 2 fork, the average approach produced the highest
F-scores. One possible explanation is that recipes with lower ratings have relatively small numbers of
reviews and thus may be less impacted by our sampling.

7 Towards a More Realistic Gold Standard

When we aggregate over the individual review rating using the average, the results are only slightly better
than the one-layer results. For example, the best performance using the average reaches an accuracy of
63.23%, as opposed to the one-layer accuracy of 62.33% in table 2 (note that these settings use only IG
features). One reason for this low performance is that Epicurious averages all review ratings to generate
a recipe rating, independent of whether there is review attached to the rating or not. Since our text-based
classifiers make their decisions only based on the reviews, the question is how well we actually predict
the average rating if only ratings attached to reviews were used in the calculation. In this way, we can
evaluate how well our approach works if we assume that all the information is available to the classifier.

Consequently, we calculated a new gold standard, averaging gold ratings of individual reviews in the
recipe sample. We investigate this effect based on the two-layer setting where reviews are aggregated
via averaging. The results of this set of experiments are shown in table 6 for the two-layer approach and
in table 7 for the one-liner approach. We report results using the gold label based on the ratings from
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1 fork 2 fork 3 fork 4 fork
sys. P R F P R F P R F P R F Acc.
EPI 39.23 37.05 38.11 59.20 24.89 35.05 75.38 56.25 64.42 54.54 83.64 66.03 63.23
EPI-AVG 56.41 51.16 53.66 62.73 62.73 62.73 76.89 65.66 70.83 67.10 85.39 75.15 71.10

Table 6: Evaluation on a more realistic gold standard for two-layer experiments.

1 fork 2 fork 3 fork 4 fork
P R F P R F P R F P R F Acc.

Base 0.00 0.00 0.00 0.00 0.00 0.00 52.00 100.00 68.00 0.00 0.00 0.00 52.00
IG 8.33 1.00 1.67 29.67 11.00 16.00 64.33 70.00 67.00 64.00 66.00 64.67 63.33
Lex+Ling 0.00 0.00 0.00 0.00 0.00 0.00 51.33 99.33 67.67 41.33 1.00 2.00 51.00
IG+Lex 11.00 1.00 2.00 29.00 9.67 14.67 64.00 70.33 67.00 64.00 65.33 64.67 63.33
IG+Ling 16.67 1.00 2.00 31.00 6.33 10.67 63.00 72.67 67.67 65.00 63.33 64.00 63.33
IG+Lex+Ling 16.67 1.00 2.00 31.33 6.67 11.00 63.00 72.67 67.33 65.00 63.33 64.00 63.33

Table 7: Evaluation on a more realistic gold standard for one-layer experiments.

Epicurious (EPI) and based on the new gold standard (EPI-AVG). These results show that based on this
more realistic gold standard, averaging over the individual reviews results in an accuracy of 71.10%,
however with an upper bound of 100% instead of 82.57%. The results for the on-layer experiments are
not as sensitive to this new gold standard. The baseline, which loses 4%, shows that now, the task is
more difficult. All combinations involving IG selected features reach an accuracy of 63.33%, the same
as for the Epicurious gold standard (see table 3).

8 Conclusion and Future Work

In this study, we have explored various strategies for predicting recipe ratings based on user reviews.
This is a difficult task due to systemic reasons, user bias, as well as exogenous factors: 1) There are
user ratings that do not come with reviews, which means that they constitute hidden information for our
classifiers (so that we have an upper bound of 82.57% in overall accuracy). 2) Ratings are not entirely
supported by text, i.e., some ratings seem to be independent from the review text, due to user behavior
(e.g., people tend to give higher ratings in good weather than in bad weather (Bakhshi et al., 2014)).

Our experiments suggest that a two-layer approach, which predicts review-level ratings and aggregates
them for the recipe-level rating, reaches a higher accuracy than the one-layer approach that aggregates
all reviews and predicts on the recipe level directly, with a 3.6% absolute improvement in accuracy. If
we evaluate the two-layer results on a more realistic gold standard, we achieve an even higher increase
of 12.3%.

Our experiments also suggest that with feature selection, automatically generated n-gram features can
produce reasonable results without manually generated linguistic cues and lexicons, although the latter
does show a slight improvement, especially for minority classes.

A few directions can be taken for our future study: 1) Handling short reviews with better methods for
dealing with sparse features. 2) The feature selection is conducted within a binary classification scenario
(1- and 2-forks vs. 3- and 4-forks). It is worth exploring the effect of feature selection within four 1 vs.
all scenarios (i.e., 1-fork against the rest, etc.). 3) We will explore aspect-level sentiment classification
to provide a finer-grained summary of the recipes.
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 Abstract 
 

Modern Standard Arabic (MSA) is the formal language in most Arabic countries. Arabic Dia-
lects (AD) or daily language differs from MSA especially in social media communication. 
However, most Arabic social media texts have mixed forms and many variations especially be-
tween MSA and AD. This paper aims to bridge the gap between MSA and AD by providing a 
framework for AD classification using probabilistic models across social media datasets. We 
present a set of experiments using the character n-gram Markov language model and Naive 
Bayes classifiers with detailed examination of what models perform best under different condi-
tions in social media context. Experimental results show that Naive Bayes classifier based on 
character bi-gram model can identify the 18 different Arabic dialects with a considerable over-
all accuracy of 98%.  

 

1 Introduction 

Arabic is a morphologically rich and complex language, which presents significant challenges for nat-
ural language processing and its applications. It is the official language in 22 countries spoken by 
more than 350 million people around the world1. Moreover, the Arabic language exists in a state of 
diglossia where the standard form of the language, Modern Standard Arabic (MSA) and the regional 
dialects (AD) live side-by-side and are closely related (Elfardy and Diab, 2013). Arabic has more than 
22 dialects; some countries share the same dialect, while many dialects may exist alongside MSA 
within the same Arab country.  

Modern Standard Arabic (MSA) is the written form of Arabic used mostly in education and scripted 
speech; it is also the formal communication language. Spoken Arabic is often referred to as colloquial 
Arabic, dialects, or vernaculars. Thus. Arabic dialects (AD) or colloquial languages are spoken varie-
ties of Arabic and the daily language of several people. Arabic dialects and MSA share a considerable 
number of semantic, syntactic, morphological and lexical features; however, these features have many 
differences (Al-Sabbagh and Girju, 2013). 

Recently, considerable interest was given to Arabic dialects and the written varieties of Arabic 
found on social networking sites such as chats, micro-blog, blog and forums, which is the target re-
search of sentiment analysis, opinion mining, machine translation, etc. 
Social media poses three major computational challenges, dubbed by Gartner the 3Vs of big data: vol-
ume, velocity, and variety2. NLP methods, in particular, face further difficulties arising from the short, 
noisy, and strongly contextualised nature of social media. In order to address the 3Vs of social media, 
new language technologies have emerged, such as the identification and definition of users' language 
varieties and the translation to a different language, than the source. 

                                                
1 http://en.wikipedia.org/wiki/Geographic_distribution_of_Arabic#Population 
2 http://en.wikipedia.org/wiki/Big_data 
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Dialect identification is essential and considered the first prepossessing component for any natural 
language application dealing with Arabic and its variation such as machine translation, information 
retrieval for social media, sentiments analysis, opinion extraction, etc. 

Herein, we present our effort on a part of the ASMAT project (Arabic Social Media Analysis 
Tools), which aims at creating tools for analyzing social media in Arabic. This project paves the way 
for end user targets (like machine translation and sentiment analysis) through pre-processing and 
normalization. There are, however, still many challenges to be faced.  

This paper presents a first-step towards the ultimate goal of identifying and defining languages and 
dialects within the social media text. This paper is organized as follows: Section 2 presents related 
work. Sections 3 and 4 describe the probabilistic approach based on the character n-gram Markov lan-
guage model and Naive Bayes classifier. Section 5 presents the data set, the several conducted exper-
iments and their results. Conclusions and future work are presented in Section 6. 

2 Related Work 

There have been several works on Arabic Natural Language Processing (NLP). However, most tradi-
tional techniques have focused on MSA, since it is understood across a wide spectrum of audience in 
the Arab world and is widely used in the spoken and written media. Few works relate the processing 
of dialectal Arabic that is different from processing MSA. First, dialects leverage different subsets of 
MSA vocabulary, introduce different new vocabulary that are more based on the geographical location 
and culture, exhibit distinct grammatical rules, and adds new morphologies to the words. The gap be-
tween MSA and Arabic dialects has affected morphology, word order, and vocabulary (Kirchhoff and 
Vergyri, 2004). Almeman and Lee (2013) have shown in their work that only 10% of words (uni-
gram) share between MSA and dialects.  

Second, one of the challenges for Arabic NLP applications is the mixture usage of both AD and 
MSA within the same text in social media context.  Recently, research groups have started focusing on 
dialects. For instance, Columbia University provides a morphological analyzer (MAGAED) for 
Levantine verbs and assumes the input is non-noisy and purely Levantine (Habash and Rambow, 
2006).  

Dialect Identification task has the same nature of language identification (LI) task. LI systems 
achieved high accuracy even with short texts (Baldwin and Lui, 2010), (Cavnar and Trenkle, 1994), 
(Joachims, 1998), (Kikui,1996); however, the challenge still exists when the document contains a mix-
ture of different languages, which is actually the case for the task of dialect identification, where text 
is a mixture of MSA and dialects, and the dialects share a considerable amount of vocabularies. Biadsy 
and al. (2009) present a system that identifies dialectal words in speech and their dialect of origin 
through the acoustic signals. Salloum and Habash (2011) tackle the problem of AD to English Ma-
chine Translation (MT) by pivoting through MSA. The authors present a system that applies transfer 
rules from AD to MSA then uses state of the art MSA to English MT system. Habash and al. (2012) 
present CODA, a Conventional Orthography for Dialectal Arabic that aims to standardize the orthog-
raphy of all the variants of AD while Dasigi and Diab (2011) present an unsupervised clustering ap-
proach to identify orthographic variants in AD.  

Recently, Elfardy and Diab (Elfardy and al., 2013) introduced a supervised approach for perform-
ing sentence level dialect identification between Modern Standard Arabic and Egyptian Dialectal Ara-
bic. The system achieved an accuracy of 85.5% on an Arabic online-commentary dataset outperform-
ing a previously proposed approach achieving 80.9% and reflecting a significant gain over a majority 
baseline of 51.9% and two strong baseline systems of 78.5% and 80.4%, respectively (Elfardy and 
Diab, 2012). 

Our proposed approach for dialect identification focuses on character-based n-gram Markov lan-
guage models and Naive Bayes classifiers. 

Character n-gram model is well suited for language identification and dialect identification tasks 
that have many languages and/or dialects, little training data and short test samples. 

One of the main reasons to use a character-based model is that most of the variation between dia-
lects, is based on affixation, which can be extracted easily by the language model, though also there 
are word-based features which can be detected by lexicons.  
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3 N-Gram Markov Language Model 

There are two popular techniques for language identification. The first approach is based on popular 
words or stop-words for each language, which score the text based on these words (Gotti and al., 
2013). The second approach is more statistical oriented. This approach is based on n-gram model 
(Cavnar and Trenkle, 1994), Hidden Markov model (Dunning, 1994) and support vector machine 
(Joachims, 1998). 

A language model is one of the main components in many NLP tools and applications. Thus, lot of 
efforts have been spent for developing and improving features of the language models.  
Our proposed approach uses the Markov model to calculate the probability that an input text is derived 
from a given language model built from training data (Dunning, 1994). This model enables the com-
putation of the probability P(S) or likelihood, of a sentence S, by using the following chain formula in 
equation 1: 

P(w1,w2,..., wn ) = P(w1)  P(wi |w1... wi−1)
i=2

n

∏       (1) 

Where, the sequence (w1, …, wn) represents the sequence of characters in a sentence S. P(wi | w1, 
…, wi-1) represents the probability of the character wi given the sequence w1, …, wi-1. 

Generally, the related approach that determines the probability of a word sequence is not very help-
ful because of its computational cost that is considered as very expensive. 

Markov models assume that we can predict the probability of some future unit without looking too 
far into the past. So we could apply the Markov assumption to the above chain probability in Formula 
1, by looking to zero character (uni-gram), one character (bi-gram), two characters (tri-gram).  

The intuition behind using n-gram models in a dialect identification task is related to the variation 
in the affixations that are attached to words, which can be detected by bi-gram or tri-gram models. 

4 Naïve Bayed Classifier 

Naive Bayes classifier is a simple and effective probabilistic learning algorithm. A naive Bayes classi-
fier is a simple probabilistic classifier based on applying Bayes' theorem with strong (naive) independ-
ence assumptions. A more descriptive term for the underlying probability model would be 
"independent feature model"3. 

In text classification, this classifier assigns the most likely category or class to a given document d 
from a set of pre-define N classes as c1, c2, ..., cN. the classification function f maps a document to a 
category (f: D ! C) by maximizing the probability of the following equation (Peng and Schuurmans, 
2003): 

P(c|d) = P(c)×P(d | c)
P(d)

                             (7) 

Where, d and c denote each the document and the category, respectively. In text classification a 
document d can be represented by a vector of T attribute d=(t1,t2, ..., tT). 

Assuming that all attribute ti are independent given the category c, then we can calculate p(d|c) 
with the following equation: 

c∈C
argmaxP(c|d)=

c∈C
argmaxP(c)×   P(t i |c)

i=1

T

∏        (8) 

The attribute term ti can be a vocabulary term, local n-gram, word average length, or global syntac-
tic and semantic properties (Peng and Schuurmans, 2003). 

5 Experiments and Results 

We have carried out two sets of experiments. The first set of experiments uses the character n-gram 
language model, while the second one uses the Naive Bayes classifier. The developed system identi-
fies Arabic dialects using character n-gram models where the probability of each (Uni-gram, Bi-gram 
and Tri-gram) is calculated based on the training data within social media context.  

                                                
3http://en.wikipedia.org/wiki/Naive_Bayes_classifier 
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5.1 Data 

The System has been trained and tested using a data set collected from blogs and forums of dif-
ferent countries with Arabic as an official language. We have considered each regional language or 
dialect as belonging to one Arab country, although in reality a country most of the time may have 
several dialects. Moreover, there is a possible division of regional language within the six regional 
groups, as follows: Egyptian, Levantine, Gulf, Iraqi, Maghrebi and others (Zaidan and Callison-
Burch, 2012). The different group divisions with their involved countries are defined as follows: 

- Egyptian: Egypt;   
- Iraqi: Iraq;  
- Gulf: Bahrein, Emirates, Kuwait, Qatar, Oman and Saudi Arabia; 
- Maghrebi: Algeria, Tunisia, Morocco, Libya, Mauritania; 
- Levantine: Jordan, Lebanon, Palestine, Syria; 
- Others: Sudan. 

Moreover, there might be many other possible sub-divisions in one division, especially in the large 
region such as the Maghrebi. We used a data set that consists on the crowd source of social media 
texts such as forums and blogs. This set of data was manually collected and constructed using sev-
eral (around eighteen) forums sites in Arabic. The collected texts were manually segmented to co-
herent sentences or paragraphs. For each dialect, sentences were saved in XML format with addi-
tional information such as sequence number, country, date, and the link. Table 1 shows some sta-
tistics about the collected text such as the total number of sentences or paragraph and number of 
words for each dialect. For each dialect 100 sentences were selected randomly for test purposes 
and were excluded from the training data. Moreover, statistics on the data set for each group of 
countries can be constructed, following the data set of Table 1. 
 

Country #sentences #words 
Egypt 7 203 72 784 

Bahrain 3 536 36 006 
Emirates 4 405 43 868 
Kuwait 3 318 44 811 
Oman 4 814 77 018 
Qatar 2 524 22 112 

Saudi Arabia 9 882 82 206 
Jordon 1 944 18 046 

Lebanon 3 569 26 455 
Palestine 316 3 961 

Syria 3 459 43 226 
Algeria 731 10 378 
Libya 370 5 300 

Mauritania 2 793 62 694 
Morocco 2 335 30 107 
Tunisia 3 843 18 199 

Iraq 1 042 13 675 
Sudan 5 775 28 368 

Table 1: Statistics about the dataset for each country 

5.2 Results and Discussion 

We have carried out three different experiments using uni-gram, bi-gram and tri-gram character for 
each experiment base on either the Markov language model or the Naive Bayes classifier. These dif-
ferent experiments show how character distribution (uni-gram) or the affixes of size 2 or 3 (bi-gram or 
tri-gram) help distinguish between Arabic dialects. The set of experiments were conducted on 18 dia-
lects representing 18 countries. Furthermore, we conducted the experiments on six groups of Arabic 
dialects, which represent six areas as described in the earlier section.  
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For evaluation purposes, we considered the accuracy as a proportion of true identified test data and 
the F-Measure as a balanced mean between precision and recall. Our conducted experiments showed 
that the character-based uni-gram distribution helps the identification of two dialects, the Mauritanian 
and the Moroccan with an overall F-measure of 60% and an overall accuracy of 96%. Furthermore, the 
bi-gram distribution of two characters affix helps recognize four dialects, the Mauritanian, Moroccan, 
Tunisian and Qatari, with an overall F-measure of 70% and overall accuracy of 97%. 

Last, the tri-gram distribution of three characters affix helps recognize four dialects, the Mauritani-
an, Tunisian, Qatari and Kuwaiti, with an overall F-measure of 73% and an overall accuracy of 98%. 
Our comparative results show that the character-based tri-gram and bi-gram distributions have per-
formed better than the uni-gram distribution for most dialects. Overall, for eighteen dialects, the bi-
gram model performed better than other models (uni-gram and tri-gram). 

Since many dialects are related to a region, and these Arabic dialects are approximately similar, we 
also consider the accuracy of dialects group. Again, the bi-gram and tri-gram character Markov lan-
guage model performed almost same, although the F-Measure of bi-gram model for all dialect groups 
is higher than tri-gram model except for the Egyptian dialect. Therefore, in average for all dialects, the 
character-based bi-gram language model performs better than the character-based uni-gram and tri-
gram models. 

Our results show that the Naive Bayes classifiers based on character uni-gram, bi-gram and tri-
gram have better results than the previous character-based uni-gram, bi-gram and tri-gram Markov 
language models, respectively. An overall F-measure of 72% and an accuracy of 97% were noticed for 
the eighteen Arabic dialects. Furthermore, the Naive Bayes classifier that is based on a bi-gram model 
has an overall F-measure of 80% and an accuracy of 98%, except for the Palestinian dialect because of 
the small size of data. The Naive Bayes classifier based on the tri-gram model showed an overall F-
measure of 78% and an accuracy of 98% except for the Palestinian and Bahrain dialects. This classifi-
er could not distinguish between Bahrain and Emirati dialects because of the similarities on their three 
affixes. In addition, the naive Bayes classifier based on a character bi-gram performed better than the 
classifier based on a character tri-gram. Also, the accuracy of dialect groups for the Naive Bayes clas-
sifier based on character bi-gram model yielded better results than the two other models (uni-gram and 
tri-gram). 

6 Conclusion 

In this study, we presented a comparative study on dialect identification of Arabic language using so-
cial media texts; which is considered as a very hard and challenging task. We studied the impact of the 
character n-gram Markov models and the Naive Bayes classifiers using three n-gram models, uni-
gram, bi-gram and tri-gram. Our results showed that the Naive Bayes classifier performs better than 
the character n-gram Markov model for most Arabic dialects. Furthermore, the Naive Bayes classifier 
based on character bi-gram model was more accurate than other classifiers that are based on character 
uni-gram and tri-gram. Last, our study showed that the six Arabic dialect groups could be distin-
guished using the Naive Bayes classifier based on character n-gram model with a very good perfor-
mance.  

As for future work, it would be interesting to explore the impact of the number of dialects or lan-
guages on a classifier. Also, it would be interesting to explore the influence of size of training and test 
set for both character n-gram Markov model and Naive Bayes classifier based on character n-gram 
model. We are planning to use more social media data from Twitter or Facebook in order to estimate 
the accuracy of these two models in the identification of the dialect and the language. Another exten-
sion to this work is to study a hybrid model for dialect identification involving character-based and 
word-based models. Finally, what we presented in this draft is a preliminary research on exploiting 
social media corpora for Arabic in order to analyze them and exploit them for NLP applications. Fur-
ther extensions to this research include the translation of social media data to other languages and dia-
lects, within the scope of the ASMAT project. 
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Abstract

Sentiment analysis is a rapidly growing research field that has attracted both academia and in-
dustry because of the challenging research problems it poses and the potential benefits it can
provide in many real life applications. Aspect-based opinion mining, in particular, is one of the
fundamental challenges within this research field. In this work, we aim to solve the problem of
aspect extraction from product reviews by proposing a novel rule-based approach that exploits
common-sense knowledge and sentence dependency trees to detect both explicit and implicit as-
pects. Two popular review datasets were used for evaluating the system against state-of-the-art
aspect extraction techniques, obtaining higher detection accuracy for both datasets.

1 Introduction

In opinion mining, different levels of granularity analysis have been proposed, each one having its own
advantages and disadvantages. Aspect-based opinion mining (Hu and Liu, 2004; Ding et al., 2008)
focuses on the extraction of aspects (or product features) from opinionated text and on the inference of
polarity values associated with these. For example, a sentence like “I love the touchscreen of my phone
but the battery life is so short” contains two aspects or opinion targets, namely touchscreen and battery
life. In this case, applying a sentence level polarity detection technique would mistakenly result in a
polarity value close to neutral, since the two opinions expressed by the users are opposite. Hence, aspect
extraction is necessary to first deconstruct sentences into product features and then assign a separate
polarity value to each of these features.

There are two types of aspects defined in aspect-based opinion mining: explicit and implicit. Explicit
aspects are concepts that explicitly denote targets in the opinionated sentence. For instance, in the above
example, touchscreen and battery life are explicit aspects as they are explicitly mentioned in the sentence.
On the other hand, an aspect can also be expressed indirectly through an implicit aspect clue (IAC), e.g.,
in the sentence “This camera is sleek and very affordable”, which implicitly provides a positive opinion
about the aspects appearance and price of the entity camera.

Explicit aspect extraction has been widely researched and there exists several approaches for this
task. Still, limited work has been done in extracting implicit aspects. This task is very difficult yet very
important because the phenomenon of implicit aspects is present in nearly every opinionated document.
For example, the following document extracted from the corpus (Hu and Liu, 2004) uses only implicit
aspects:

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0
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This is the best phone one could have. It has all the features one would need in a cellphone: It
is lightweight, sleek and attractive. I found it very user-friendly and easy to manipulate; very
convenient to scroll in menu etc.

Here, the word “lightweight” refers to the weight of the phone; the words “sleek” and “attractive” to
its appearance; the compound “user-friendly” to its interface; the phrase “easy to manipulate” to its
functionality; finally, the phrase “to scroll in menu” can be interpreted as a reference to the interface
of the phone or its menu. Even though the aspects appearance, weight and interface do not appear
in the sentence, the context contains clues that permit us to infer them. Namely, the words “sleek,”
“lightweight,” and “user-friendly” that do occur in the context suggest these aspects.

In contrast to the task of identification of explicit aspects, the general scheme for identification of
implicit aspects, a task called implicit aspect extraction, typically involves two steps:

1. Identify IACs (e.g., “sleek”) in the opinionated document.

2. Map them to the corresponding aspects (e.g., appearance).

In this paper, we propose a novel approach to detect explicit aspects and IACs from opinionated
documents. We also map IACs to their respective aspect categories. IACs are either single words,
such as “sleek,” or multi-word expressions, such as “easy to manipulate” as in the above example. Each
IAC can be represented by a different part-of-speech (POS): in the example “This MP3 player is really
expensive,” the IAC “expensive” suggesting the aspect price is an adjective; in “This camera looks
great,” the IAC “look” suggesting appearance is a verb; in “I hate this phone. It only lasted less than six
months!”, the IAC “lasted” suggesting durability of the phone is a verb. In the following examples, IACs
are nouns or noun phrases: “Even if I had paid full price I would have considered this phone a good deal,”
“Not to mention the sleekness of this phone”, “The player keeps giving random errors”, “This phone is a
piece of crap.”

In different contexts, the same implicit aspect can be implied by different IACs, as shown below for
the implicit aspect price:

• This mp3 player is very affordable.

• This mp3 player also costs a lot less than the ipod.

• This mp3 player is quite cheap.

• This mp3 is inexpensive.

• I bought this mp3 for almost nothing!

• This mp3 player has been fairly innovative and reasonably priced.

A common approach for IAC identification is to assume that sentiments or polarity words are good
candidates for IACs: for example, in “This MP3 player is really expensive,” the word “expensive”,
which bears negative polarity, is also the IAC for the aspect price. However, this is not always true.
For example, in “This camera looks great,” the word “looks” implies the appearance of the phone,
while polarity is conveyed through the word “great.” In “I hate this phone. It only lasted less than six
months!”, the word “lasted” is the IAC for durability of the phone, while polarity is indicated by “hate.”
Furthermore, the second sentence of this example could appear without the first one: “This phone only
lasted less than six months” and still constitute a negative opinion of the phone’s durability, but not
expressed by any specific word.

This phenomenon is known in opinion mining as desirable fact: communicating fact that by common-
sense are good or bad, which indirectly implies polarity. For example, the objective fact “The camera can
hold lots of pictures” does not contain any sentiment or polarity word yet gives a positive opinion about
the camera’s memory capacity (IAC “hold”), because it is desirable for a camera to hold many pictures.

29



In this paper, we present a rule-based approach that exploits common-sense knowledge and sentence
dependency trees to detect both implicit and explicit aspects. In particular, the approach draws lessons
from recent developments in common-sense reasoning (Cambria et al., 2011; Cambria et al., 2014a)
and concept-level sentiment analysis (Xia et al., 2013; Poria et al., 2014) to first obtain the dependency
structure of each sentence and, hence, exploit external knowledge to extract aspects and infer the polarity
associated with them. The paper is organized as follows: Section 2 presents the literature in aspect ex-
traction; Section 3 explains the features used for the labeler; Section 4 discusses novelty of the proposed
methodology; Section 5 describes in detail the aspect extraction approach and results of the experimental
evaluation; finally, Section 6 concludes the paper.

2 Related Work

Aspect extraction from opinionated text was first studied by Hu and Liu (Hu and Liu, 2004), who also
introduced the distinction between explicit and implicit aspects. However, the authors only dealt with
explicit aspects by adopting a set of rules based on statistical observations. Hu and Liu’s method was im-
proved by Popescu and Etzioni (Popescu and Etzioni, 2005) and by Blair-Goldensonh (Blair-Goldensohn
et al., 2008). Popescu and Etzioni assumed the product class to be known as priori. Their algorithm
detects whether a noun or noun phrase is a product feature or not by computing PMI between the noun
phrase and the product class. Scaffidi et al. (Scaffidi et al., 2007) presented a method that uses a language
model to identify product features. They assumed that product features are more frequent in product re-
views than in general natural language text. However, their method seems to be very inaccurate in terms
of precision as the retrieved aspects extracted by their method were very noisy.

Aspect extraction can be seen as a general information extraction problem, for which techniques based
on sequential labeling are generally used. The most popular methods in this context, in particular, are
Hidden Markov Models (HMM) and Conditional Random Fields (CRF) (Lafferty et al., 2001). Jin and
Ho (Jin and Ho, 2009) used a lexicalized HMM for joint extraction of opinions along with their explicit
aspects. Niklas and Gurevych (Niklas and Gurevych, 2010) used CRF to extract explicit aspects in a
custom corpus with data of different domains. Li et al. (Li et al., 2010), Choi and Cardie (Choi and
Cardie, 2010) and Huang et al. (Huang et al., 2012) also used CRF for extraction of explicit aspects.

As to the implicit aspects, the OPINE extraction system developed by Popescu and Etzioni (Popescu
and Etzioni, 2005) was the first that leveraged on the extraction of this type of aspects to improve polarity
classification. However, their system is not described in detail and is not publicly available. To the
best of our knowledge, all existing methods for implicit aspect extraction are based on the use, in one
or another way, of what we term IAC. Su (Su et al., 2008) proposed a clustering method to map IACs
(which were assumed to be sentiment words) to their corresponding explicit aspects. The method exploits
the mutual reinforcement relationship between an explicit aspect and a sentiment word forming a co-
occurring pair in a sentence. Hai (Zhen et al., 2011) proposed a two-phase co-occurrence association
rule mining approach to match implicit aspects (which were also assumed to be sentiment words) with
explicit aspects. Finally, Zeng and Li (Zeng and Li, 2013) proposed a rule-based method to extract
explicit aspects and mapped implicit features by using a set of sentiment words and by clustering explicit
feature-word pairs.

3 Method

3.1 Corpus for aspect extraction
In order to evaluate the explicit aspect extraction algorithm, we use the corpus provided by (Hu and
Liu, 2004) and the Semeval 2014 dataset1 (Table 1). As for the implicit aspect extraction algorithm and
lexicon, we use the corpus developed by Cruz-Garcia et al. (Cruz-Garcia et al., 2014), who manually
labeled each IAC and their corresponding aspects in a well-known corpus for opinion mining (Hu and
Liu, 2004). The corpus is publicly available for research purposes.2

1http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
2Available from www.gelbukh.com/resources/implicit-aspect-extraction-corpus, visited on

March 19, 2014.

30



Table 1: Description of Semeval 2014 dataset
Sentences Containing n aspect terms

Domain Name n = 0 n≥ 1 n≥ 2 total(n≥ 0)
Restaurants 1,732 2,212 881 3,944
Laptops 1,883 2,065 456 3,948

3.2 Pre-Processing
Pre-processing is a key step for aspect parsing. The pre-processing module of the proposed framework
consists of two major steps: firstly, the sentence dependency tree is obtained through Stanford Depen-
dency Parser3; secondly, dependency structure elements are processed by means of Stanford Lemmatizer
for each sentence. It is important to build the dependency tree before lemmatization as swapping the two
steps results in several imprecisions caused by the lower grammatical accuracy of lemmatized sentences.

3.3 Aspect Parser
3.3.1 Implicit aspect lexicon
We use the implicit aspect corpus developed by Cruz-Garcia et al. (Cruz-Garcia et al., 2014), where
IACs are indicated and manually labeled by their corresponding aspect categories. For our task, we
extracted the sentences having implicit aspects and then extracted IACs for each of them, along with
their corresponding labeled categories. For example, in “The car is expensive” the IAC is expensive and
it is labeled by the category price. Below is the list of the aspect categories extracted from the corpus:

• functionality

• weight

• price

• appearance

• behavior

• performance

• quality

• service

• size

For each IAC under every aspect category, synonyms and antonyms were obtained from WordNet (Fell-
baum, 1998) and stored under the same aspect category. For example, expensive and its antonym inex-
pensive both have the same category price. Semantics extracted from SenticNet (Cambria et al., 2014b)
have also been exploited to enlarge the set of conceptually related IACs. Thus, a lexicon of 1,128 IACs
categorized into the above categories was built.

3.3.2 Opinion Lexicon
We use SenticNet 3 as a concept-level opinion lexicon. The common-sense knowledge base contains
30,000 multi-word expressions labeled by their polarity scores. The proposed aspect parser is based on
two general rules:

• Rules for the sentences having subject verb.

• Rules for the sentences which do not have subject verb.
3http://nlp.stanford.edu:8080/parser
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A dependency relation is a binary relation characterized by the following features:

• The type of the relation that specifies the nature of the (syntactic) link between the two elements in
the relation.

• The head of the relation: this is the element that is the pivot of the relation. Core syntactic and
semantics properties (e.g., agreement) are inherited from the head.

• The dependent is the element that depends on the head and which usually inherits some of its
characteristics (e.g., number, gender in the case of agreement).

Most of the times, the active token is considered in a relation if it acts as the head of the relation, although
there are exceptions. Once the active token has been identified as the trigger for a rule, there are several
ways to compute its contribution, depending on how the dependency relation and the properties of the
tokens match with the rules. The preferred way is not to consider the contribution of the token alone,
but in combination with the other elements in the dependency relation. First of all, Stanford parser is
used to obtain the dependency parse structure of each sentence. Then, hand-crafted dependency rules are
employed on the parse trees to extract aspects.

3.3.3 Subject Noun Rule
Trigger: when the active token is found to be the syntactic subject of a token. Behavior: if an active
token h is in a subject noun relationship with a word t then:

1. if t has any adverbial or adjective modifier and the modifier exists in SenticNet, then t is extracted
as an aspect.

2. if the sentence does not have auxiliary verb, i.e., is, was, would, should, could, then:

• if the verb t is modified by an adjective or an adverb or it is in adverbial clause modifier relation
with another token, then both h and t are extracted as aspects. In (1), battery is in a subject
relation with lasts and lasts is modified by the adjective modifier little, hence both the aspects
last and battery are extracted.

(1) The battery lasts little.

• if t has any direct object relation with a token n and the POS of the token is Noun and n is not
in SenticNet, then n is extracted as an aspect. In (2), like is in direct object relation with lens
so the aspect lens is extracted.

(2) I like the lens of this camera.

• if t has any direct object relation with a token n and the POS of the token n is Noun and n exists
in SenticNet, then the token n extracted as aspect term. In the dependency parse tree of the
sentence, if another token n1 is connected to n using any dependency relation and the POS of
n1 is Noun, then n1 is extracted as an aspect. In (3), like is in direct object relation with beauty
which is connected to screen via a preposition relation. So the aspects screen and beauty are
extracted.

(3) I like the beauty of the screen.

• if t is in open clausal complement relation with a token t1, then the aspect t-t1 is extracted if t-t1
exists in the opinion lexicon. If t1 is connected with a token t2 whose POS is Noun, then t2 is
extracted as an aspect. In (4), like and comment is in clausal complement relation and comment
is connected to camera using a preposition relation. Here, the POS of camera is Noun and,
hence, camera is extracted as an aspect.

(4) I would like to comment on the camera of this phone.
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3. A copula is the relation between the complement of a copular verb and the copular verb. If the
token t is in copula relation with a copular verb and the copular verb exists in the implicit aspect
lexicon, then t is extract as aspect term. In (5), expensive is extracted as an aspect.

(5) The car is expensive.

4. If the token t is in copula relation with a copular verb and the POS of h is Noun, then h is extracted
as an explicit aspect. In (6), camera is extracted as an aspect.

(6) The camera is nice.

5. If the token t is in copula relation with a copular verb and the copular verb is connected to a token
t1 using any dependency relation and t1 is a verb, then both t1 and t are extracted as implicit aspect
terms, as long as they exist in the implicit aspect lexicon. In (7), lightweight is in copula relation
with is and lightweight is connected to the word carry by open clausal complement relation. Here,
both lightweight and carry are extracted as aspects.

(7) The phone is very lightweight to carry.

3.3.4 Sentences which do not have subject noun relation in their parse tree
For sentences that do not have noun subject relation in their parse trees, aspects are extracted using the
following rules:

1. if an adjective or adverb h is in infinitival or open clausal complement relation with a token t and h
exists in the implicit aspect lexicon, then h is extracted as an aspect. In (8), big is extracted as an
aspect as it is connected to hold using a clausal complement relation.

(8) Very big to hold.

2. if a token h is connected to a noun t using a prepositional relation, then both h and t are extracted as
aspects. In (9) sleekness is extracted as an aspect.

(9) Love the sleekness of the player.

3. if a token h is in a direct object relation with a token t, t is extracted as aspect. In (10), mention is in
a direct object relation with price, hence price is extracted as an aspect.

(10) Not to mention the price of the phone.

3.3.5 Additional Rules
• For each aspect term extracted above, if an aspect term h is in co-ordination or conjunct relation

with another token t, then t is also extracted as an aspect. In (11), amazing is firstly extracted as an
aspect term. As amazing is in conjunct relation with easy, then use is also extracted as an aspect.

(11) The camera is amazing and easy to use.

• A noun compound modifier of an NP is any noun that serves to modify the head noun. If t is
extracted as an aspect and t has noun compound modifier h, then the aspect h-t is extracted and t
is removed from the aspect list. In (12), as chicken and casserole are in noun compound modifier
relation, only chicken casserole is extracted as an aspect.

(12) We ordered the chicken casserole, but what we got were a few small pieces of chicken, all
dark meat and on the bone.
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4 Novelty of the proposed work

First of all, the proposed method is fully unsupervised and depends on the accuracy of the dependency
parser and the opinion lexicon, rather then a training corpus and supervised learning accuracy. Only
(Qiu et al., 2011) follow an unsupervised learning approach but the proposed method uses an enhanced
set of rules and opinion lexicon. The proposed method also outperforms (Qiu et al., 2011) on the same
dataset they used. Implicit aspects extracted through the proposed method differ from implicit aspect
expressions defined by Liu (Liu, 2012) as “aspect expressions that are not nouns or noun phrases” in that
implicit aspects extracted by the proposed algorithm semantically refer to the values of the pre-defined
aspects, irrespective of their own surface POS. Below are listed some examples where the implicit aspect
terms are either noun or noun phrases.
In (13), the IAC deal is extracted.

(13) Even if I had paid full price I would have considered this phone a good deal.

In (14), sleekness is extracted as an IAC.

(14) Not to mention the sleekness of this phone.

In (15), the IAC errors is extracted by the algorithm.

(15) The player keeps giving random errors.

In (16), piece of crap is a noun phrase and is extracted as an IAC by the proposed algorithm.

(16) This phone is a piece of crap.

A demo of the developed aspect parser is freely available at http://sentic.net/demo.

Table 2: Results on the DVD-player review dataset provided by (Hu and Liu, 2004)
Algorithm Precision Recall
Hu and Liu 75.00% 82.00%
Popescu and Etzioni 89.00% 80.00%
Dependency propagation method 87.00% 81.00%
Proposed approach 89.25% 91.25%

Table 3: Results on the Canon G3 review dataset provided by (Hu and Liu, 2004)
Algorithm Precision Recall
Hu and Liu 71.00% 79.00%
Popescu and Etzioni 87.00% 74.00%
Dependency propagation method 90.00% 81.00%
Proposed approach 90.15% 92.25%

Table 4: Results on the Jukebox review dataset provided by (Hu and Liu, 2004)
Algorithm Precision Recall
Hu and Liu 72.00% 76.00%
Popescu and Etzioni 89.00% 74.00%
Dependency propagation method 90.00% 86.00%
Proposed approach 92.25% 94.15%
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Table 5: Results on the Nikon Coolpix review dataset provided by (Hu and Liu, 2004)
Algorithm Precision Recall
Hu and Liu 69.00% 82.00%
Popescu and Etzioni 86.00% 80.00%
Dependency propagation method 81.00% 84.00%
Proposed approach 82.15% 86.15%

Table 6: Results on the Nokia-6610 review dataset provided by (Hu and Liu, 2004)
Algorithm Precision Recall
Hu and Liu 74.00% 80.00%
Popescu and Etzioni 90.00% 78.00%
Dependency propagation method 92.00% 86.00%
Proposed approach 93.25% 93.32%

5 Experiments and Results

5.1 Experiment on the dataset provided by (Hu and Liu, 2004)

Experimental evaluation was carried out on the dataset derived from (Hu and Liu, 2004). As discussed
in Section 3, the proposed method is able to extract both explicit and implicit aspects. To the best of our
knowledge, there is no state-of-the-art benchmark to evaluate implicit aspect extraction.

We compare the proposed framework with those in Hu and Liu (Hu and Liu, 2004), Qiu et al. (Qiu et
al., 2011), and Popescu and Etzioni (Popescu and Etzioni, 2005) (which only carried out explicit aspect
extraction). Table 2, Table 3, Table 4, Table 5 and Table 6 show that the proposed framework outperforms
all existing methods in terms of both precision and recall.

6 Conclusion

We have illustrated a method for extracting both explicit and implicit aspects from opinionated text.
The proposed framework only leverages on common-sense knowledge and on the dependency structure
of sentences and, hence, is unsupervised. As future work, we aim to discover more rules for aspect
extraction. Another key future effort is to combine existing rules for complex aspect extraction. To
obtain the aspect categories of IACs, we have developed an aspect knowledge base using WordNet and
SenticNet. We will focus on extending the scalability of such knowledge base and on making it as much
noise-free as possible.

6.1 Experiment on Semeval 2014 dataset

We also carried out experiments on Semeval 2014 aspect based sentiment analysis data obtained from
http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools. Re-
sults are shown in Table 7. We cannot perform a comparative evaluation of such experimental results as
there is no state-of-art approach yet which used this dataset for the same kind of experiment. Overall,
results show high accuracy.

Table 7: Results on the Semeval 2014 dataset
Domain Precision Recall
Laptop 82.15% 84.32%
Restaurants 85.21% 88.15%
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Abstract

Social networking sites have flooded the Internet with posts containing shared opinions, moods,
and feelings. This has given rise to a new wave of research to develop algorithms for emotion
detection and extraction on social data. As the desire to understand how people feel about certain
events/objects across countries or regions grows, the need to analyze social data in different lan-
guages grows with it. However, the explosive nature of data generated around the world brings
a challenge for sentiment-based information retrieval and analysis. In this paper, we propose a
multilingual system with a computationally inexpensive approach to sentiment analysis of so-
cial data. The experiments demonstrate that our approach performs an effective multi-lingual
sentiment analysis of microblog data with little more than a 100 emotion-bearing patterns.

1 Introduction

Web 2.0 and the rise of social networking platforms such as microblogs have brought new ways to
share opinions in a global setting. Microblogging sites represent a new way to share information about
everything, such as new products, places of interest or popular culture in some ways replacing traditional
word-of-mouth communication. Those sites have become rich repositories of opinions from audiences
diverse in culture, race, location, and language. They represent, for people and businesses, a potential
opportunity to understand what the global community thinks about them, helping them to make better
informed decisions when improving their image and products. They may also offer the general public a
way to find useful information and opinions before purchasing a product or service.

Vast swathes of the global population have access to nearly the same products and services. For
that reason, being aware of opinions from around the world, regardless of the languages, is no longer
ambitious but necessary. Systems which are able to aggregate opinionated data in multiple languages
could highlight a global trend around a target query. This is desirable as targets may have different
impacts depending on the area. The possibilities are huge but the challenges are many. As in every major
endeavor, it is necessary to start with the basics, such as language detection and sentiment analysis.

With the explosive nature of subjective data in the Web, several patterns analysis techniques such as
the ones bye Yi et al. (2003) and Davidov et al. (2010) have been proposed to extract opinionated and
emotion-bearing data. Most works have focused on English language, except the technique proposed
in (Sascha Narr and Albayrak, 2012) which utilizes n-grams as language independent features to classify
tweets by their polarity in 4 different languages. However, since this technique relies solely on frequency
statistics, it would need large training datasets.

In this paper, we propose a language independent approach to emotion-bearing patterns retrieval in
microblog data. Each extracted pattern and its related words can also be considered as n-grams, however,
selected in a way that makes them more semantically related to the domain of sentiment and emotion
analysis. The proposed multi-lingual framework consists of two stages: Filter and Refine approach. In
the Filter stage, the language and a hint of the polarity of a microblog post are detected based on the

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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n-gram classification approach. Our approach is different from the one proposed in (Sascha Narr and
Albayrak, 2012) in that the n-grams are used at the character-level instead of the word-level.

In the Refine stage, language-independent emotion-bearing words and patterns (using an adaptation
of extraction methods by Davidov and Rappoport (2006)) are employed. Our approach differs from the
method of Davidov et al. (2010) in that we use words belonging to empirically defined psychological and
structural categories (emotion, cognition, etc.)1. These words are used as seeds to restrict the features
extracted to emotion bearing patterns and words.

Our experimental results show that our approach can extract relevant patterns. With only about 100
patterns employed of about 31,500 n-gram candidates, the approach presented in this paper outperforms
a state-of-the-art classifier for the French language. These results validate the potential of the proposed
technique.

2 Related Work

Patterns have been extensively used for many Information Retrieval tasks. Pantel and Pennacchiotti
(2006) extract semantic relations using generic patterns (with broad coverage but low precision). The
key assumption is that in very large corpora like the Web, correct instances generated by a generic pat-
tern will be instantiated by some reliable patterns, where reliable patterns are patterns that have high
precision but often very low recall. Wang et al. (2007) propose a topical n-gram (TNG) model that au-
tomatically determines unigram words and phrases based on context, and assigns a mixture of topics to
both individual words and n-gram phrases. They present an Information Retrieval (IR) application with
better performance on an ad-hoc retrieval task over a TREC collection. Davidov and Rappoport (2006)
have proposed an approach to unsupervised discovery of word categories based on symmetric patterns.
A symmetric pattern is one in which co-occurring words can potentially belong to the same semantic
category.

With the speed at which subjective data is generated on the Web, and its potential usage, patterns
have also been applied to extract opinionated data. Yi et al. (2003) use a Sentiment Pattern Database
to match sentiment phrases related to a subject from online texts. The system was verified using online
product review articles. Dave et al. (2003) tried statistical and linguistic substitutions to transform specific
patterns into more general ones. They also used an algorithm based on suffix trees to determine substrings
that provide optimal classification. The extracted features were applied to opinion extraction of product
reviews. In their work, Davidov et al. (2010) use their pattern definition (Davidov and Rappoport, 2006)
to identify diverse sentiment types in short microblog texts.

Most of the work with patterns for sentiment extraction has focused on English language. Although,
a few studies have identified patterns as a tool for bridging the gap between languages. Cui et al. (2011)
automatically extracted different types of word level patterns (denoted emotion tokens), and labeled
their sentiment polarities with an unsupervised propagation algorithm. Sascha Narr and Albayrak (2012)
utilized n-grams as language independent features to classify tweets by their polarity in 4 different lan-
guages.

The main drawback of features such as n-grams is that, to capture the semantics of a specific domain,
they rely solely on frequency statistics. This impacts less when large training data is available, but can
be a considerable disadvantage when the data is scarce. Another drawback of such features is the large
number of n-grams that need to be included in the features set. Larger feature spaces have a big impact
on the efficiency of systems.

3 Methodology

The objective of this work is to propose an effective multi-lingual emotion-bearing patterns extraction
approach. To test the relevance of the extracted features, a multi-lingual sentiment analysis system for
microblog data is defined. The proposed framework illustrated in Figure 1 consists of two stages: the
Filter stage and the Refine stage. Given a set of microblog posts containing a query term, the Filter stage
utilizing n-gram patterns first detects the language of all the microblog posts. Then it obtains the polarity

1See the study by James W. Pennebaker and Booth (2007) and Tausczik and Pennebaker (2010)
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(negative, positive) by utilizing a classifier trained with n-gram features at the character level. The Refine
stage utilizing symmetric patterns performs a finer analysis of the posts to classify the ones that the Filter
stage left out. It utilizes extracted emotion-bearing patterns as described in Section 3.1 and related words
as features.

Microblog 
Database

Query

Filter Module

N-gram 
patterns

Refine Module

Subjective posts

Query Engine

Emotion 
patterns

Conf. > THpol

Conf. < THpol

Figure 1: System Overview

3.1 Candidate Emotion-Bearing Surface Patterns Construction

The intuition of the construction method is based on psychological studies (James W. Pennebaker and
Booth, 2007) proposing that emotional cues can be found in a person’s utterances and texts, providing
windows into their emotional and cognitive worlds. Based on this idea, the following method that can
capture the textual emotion cues in the form of patterns and words is introduced.

The proposed extraction technique in this paper adapted the unsupervised word categories discovery
technique introduced by Davidov and Rappoport (2006). To guarantee that the retrieved features are
relevant to the sentiment analysis task here presented, the proposed emotion-bearing pattern extraction
technique requires the following adaptations.

Other than the HW and CW word types introduced by Davidov and Rappoport (2006), the psycho-
logical word type (PW) is introduced as seeds for extracting more emotion-related patterns. Words in
PW are content-bearing, and pertain to psychological categories related to emotion, cognition, affection,
social, perception, etc. The PW set should include words like, “peace”, “abandon”, and “dream”. By the
symmetric nature of the patterns, the PW words can be naturally expanded from the extraction dataset .
In order to drive the extraction towards more emotion-related patterns, it is also enforced that at least one
of the CW words of a pattern contains a word from the PW set. For example, “peace is a dream” is an
instance of a pattern “CW HW HW CW”.

The result of the extraction is a large list of word subsequences related to different emotion-bearing
patterns. There are two main reasons not to employ all extracted subsequences from a large corpus
as features. First, the current list is usually huge (around 150,000 unique subsequences found in the
experiments with English data), making the training process inefficient. Second, it is necessary to account
for the fact that the dataset used for features extraction may be completely different from the training, and
testing sets. Additionally, the PW set can also vary greatly in size and psychological categories included.
This can potentially impact the coverage/accuracy due to unseen words.

3.2 Graph-Based Relevant Patterns Selection

The following reduction method based on the graph representation for patterns described in (Davidov
and Rappoport, 2006) is introduced to reduce the features space, and to account for unseen words. First,
infrequent subsequences are ignored. Then, the subsequences are grouped by pattern based on their HW
words. Subsequences having the same HW word in the same positions are grouped together and their
CW words are replaced by “*”.2 Finally, as proposed by Davidov and Rappoport (2006), the directed

2“*” is a wild card that matches any word
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graph G(p) = (V(G),E(G)) for each pattern p is constructed. For example, subsequences “love my niece”
and “hate my boss” from the meta-pattern “CW HW CW” are both grouped together as part of the pattern
“* my *”.

Two different scores are proposed to measure the degree of emotion expressed by each pattern. The
intuition of the following definitions is, the higher the proportion of PW words appearing in subsequences
belonging to a given pattern, the higher the degree of emotion of this pattern.

Definition 1 (SC1)
The number of out-links of the vertex with max. number of out-links in the graph for pattern p.

SC1 = max(|{(x, y)|x ∈ V (G(p)}|) (1)

Definition 2 (SC2)
The number of in-links of the vertex with max. number of in-links in the graph for pattern p.

SC2 = max(|{(x, y)|y ∈ V (G(p)}|) (2)

Patterns with high SC1 and SC2 scores ensure a good coverage as they capture more PW words from
the corpus. For each score, a ranked list of patterns is obtained. Patterns in top THtop in at least one
list and not in bottom THbottom in any list are retained. The final list of features is composed of all
the retained patterns, and all the CWs it captured from the corpus through its related subsequences.
This approach significantly reduces the features space by using only the relevant patterns, and not the
subsequences (n-grams) as features. It also helps the coverage, as unseen words can still be captured by
a pattern through the “* ” wild card.

3.3 Multi-lingual Sentiment Analysis on Microblog Data
The following Filter and Refine approach is employed to determine the polarity of posts from microblog
data. Given a post, the Filter stage firsts detects its language. It does so by training language models
using n-grams at the character-level. Next, the corresponding polarity models are used to determine the
polarity of the post. The polarity models are also constructed with the same method.

A confidence value is obtained as follows.

Conf(p) =
∣∣∣∑(Freqpositive(ng)− Freqnegative(ng))

∣∣∣ (3)

where ng is an n-gram entry and Freq gets its frequency count in a polarity model.
We define experimentally two thresholds THpol for pol ∈ {positive, negative}. For a given detected

class pol we say the post has that polarity only if Conf (p) > THpol else we send the post to the Refine
stage.

The posts not classified by the Filter stage are processed by the Refine stage, which is based on a
Multinomial Naı̈ve Bayes classifier. The classifier uses the emotion-patterns and words extracted using
the methods described in 3.1 and 3.2 as binary features. Each pattern is used as a regular expression to
look for matching subsequences in a post. If a match exists, the corresponding value in the vector is set
to 1 and to 0 otherwise. The same process applies for word features.

4 Experiments

4.1 Experimental Setup
Two experiments were performed to validate the approach introduced in this paper. Datasets in three
target languages (English, Spanish, and French) were utilized to test the approach. To avoid favoring
the proposed method by having similar data characteristics in both training and testing stages, different
datasets are employed in the experiments.

The larger set, SetHT , was collected using emotion-bearing hashtags as noisy labels. This set is used
during the training process. The second set, SetEmo, was collected using positive and negative emoticons
as queries to the Twitter Search API. From the collected tweets, 500 positive and 500 negative were
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manually annotated for each language by 2 volunteers. The third set SetRW , released by Sascha Narr
and Albayrak (2012), contains 739 positive and 488 negative manually annotated English tweets, and
159 positive and 160 negative French tweets.

To obtain more emotion-related patterns during the extraction phase, the psychological words (PW)
were obtained from psychological categories in a text analysis application called Linguistic Inquiry and
Word Count (LIWC) (James W. Pennebaker and Booth, 2007).

4.2 Experimental Result

Filter Refine Filter + Refine

English 84.78 81.54 83.18

Spanish 82.01 82.99 82.40

French 91.72 83.98 85.10
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Figure 2: Filter + Refine performance with SetEmo testing set

The first experiment evaluated the proposed approach using the SetEmo testing set. The results in
Figure 2 show that overall accuracies of over 80% can be obtained for all languages. Keep in mind that
neither Filter nor Refine stages process all the posts, hence the reported individual accuracies are only
over the portion of posts analyzed by each, with only the Filter+Refine result being over the totality of
the posts. Due to time limitations, the approach used to combine the results from Filter and Refine is
basic and treats both classifications as independent processes. A more elaborated approach may improve
the results further.

Method Lang Patterns Training Tweets Accuracy
Narr en N.A. ≈ 500K 81.3 %
F+R en 145 100K 79.0 %
Narr fr N.A. ≈ 100K 74.9 %
F+R fr 100 50K 75.6 %

Table 1: Filter + Refine (F+R) compared to the related work (Narr).

Language n-grams patterns
English 141,981 145
Spanish 85,683 -
French 31,428 100

Table 2: Number of the extracted subsequences (n-grams), compared to the final number of patterns used in the comparison
between Filter + Refine and Narr.

Finally, an experiment similar to the previous one was performed using SetRW as the testing set.
Table 1 shows that using a significantly lower number of features (the number of unigrams used by Narr
is not available but must be large) and a smaller training set, the performance of the introduced approach
surpasses the one reported by Narr for French and is just slightly lower for English. This is possible
thanks to the effective reduction approach used to obtain relevant patterns from extracted subsequences,
which is one of the main contributions of this paper (See Table 2). The training sizes used by Filter
+ Refine were limited due to data availability. More data would have probably helped Filter + Refine
surpass the results reported by Narr for English.
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5 Conclusion and Future Work

Two main types of language-independent features were studied in this paper: character-level n-grams,
and emotion-bearing patterns. Character-level n-grams represent a useful tool for a preliminary sentiment
classifier such as Filter. Emotion-bearing patterns can capture the emotional cues embedded in a person’s
writing. Such features can help identify subjectivity and determine the polarity of microblog posts across
significantly different datasets in ways that regular patterns based purely on frequency wouldn’t. It is
believed that such emotion-bearing patterns can be used to perform a more complex analysis such as
ambiguity and sarcasm identification, and to model other social and psychological characteristics of
human behavior.

This paper contributes the introduction of emotion-bearing patterns as language independent features
for multi-lingual sentiment analysis, and the efficient reduction approach used during their extraction.
Sentiment analysis methods could benefit from such an approach during the training phases. Moreover,
since the features obtained are very relevant to the classification task, less training examples are required,
reducing the number of features significantly. Finally, the approach here presented is highly configurable,
with both Filter and Refine relying on different thresholds. Several experiments with different sets of
values can be performed to find the optimal set for a given language and show the full potential of the
approach.

As a future work, it is planned to study the applicability of the presented approach to Asian languages
such as Chinese and Vietnamese. Additionally, a deeper analysis of the patterns will be performed to
extend the classification from the classic binary approach to a multi-class approach (using 8 different
emotions). More difficult tasks such as detecting ambiguity and sarcasm will also be addressed.
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Abstract

Currently 19%-28% of Internet users participate in online health discussions. In this work, we 
study sentiments expressed on online medical forums. As well as considering the predominant 
sentiments expressed in individual posts, we analyze sequences of sentiments in online discus-
sions. Individual posts are classified into one of the five categories encouragement, gratitude, 
confusion, facts, and endorsement. 1438 messages from 130 threads were annotated manually 
by two annotators with a strong inter-annotator agreement (Fleiss kappa = 0.737 and 0.763 for 
posts in sequence and separate posts respectively). The annotated posts were used to analyse 
sentiments in consecutive posts. In automated sentiment classification, we applied HealthAf-
fect, a domain-specific lexicon of affective words.

1 Introduction

      Development of effective health care policies relies on the understanding of opinions expressed by 
the general public on major health issues.  Successful vaccination during pandemics and the incorpora-
tion of healthy choices in everyday life style are examples of policies that require such understanding. 
As online media becomes the main medium for the posting and exchange of information, analysis of 
this online data can contribute to studies of the general public’s opinions on health-related matters.  
Currently 19%-28% of Internet users participate in online health discussions (Balicco and Paganelli, 
2011). Analysis of the information posted online contributes to effectiveness of decisions on public 
health (Paul and Drezde, 2011; Chee et al., 2009).  
Our interest concentrates on sequences of sentiments in the forum discourse. It has been shown that 
sentiments expressed by a forum participant affect sentiments in messages written by other partici-
pants posted on the same discussion thread (Zafarani et al., 2010). Shared online emotions can im-
prove personal well-being and empower patients in their battle against an illness (Malik and Coulson, 
2010).  We aimed to identify the most common sentiment pairs and triads and to observe their interac-
tions. We applied our analysis to data gathered from the In Vitro Fertilization (IVF) medical forum.1

Below is an example of four consecutive messages from an embryo transfer discussion: 
Alice: Jane - whats going on??
Jane: We have our appt. Wednesday!! EEE!!!   
Beth: Good luck on your transfer! Grow embies grow!!!!
Jane: The transfer went well - my RE did it himself which was comforting. 2 embies (grade 1 but slow in devel-
opment) so I am not holding my breath for a positive. This really was my worst cycle yet!!
In automated recognition of sentiments, we use HealthAffect, a domain-specific affective lexicon.
The paper is organized as follows: Section 2 presents related work in sentiment analysis, Section 3 
introduces the data set and the annotation results, Section 4 presents HealthAffect, Section 5 describes
the automated sentiment recognition experiments, and Section 6 discusses the results.

                                               
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer 

are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

1 http://ivf.ca/forums
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2 Related Work

The availability of emotion-rich text has helped to promote studies of sentiments from a boutique sci-
ence into the mainstream of Text Data Mining (TDM). The “sentiment analysis” query on Google 
Scholar returns about 16,800 hits in scholarly publications appearing since 2010.  Sentiment analysis 
often connects its subjects with specific online media (e.g., sentiments on consumer goods are studied 
on Amazon.com).  Health-related emotions are studied on Twitter (Chew and Eysenbach, 2010; 
Bobicev et al, 2012) and online public forums (Malik and Coulson, 2010; Goeuriot et al, 2012).   

Reliable annotation is essential for a thorough analysis of text. Multiple annotations of topic-
specific opinions in blogs were evaluated in Osman et al. (2010). Sokolova and Bobicev (2013) evalu-
ated annotation agreement achieved on messages gathered from a medical forum. Bobicev et al. 
(2012) used multiple annotators to categorize tweets into positive, negative and neutral tweets. Merits 
of reader-centric and author-centric annotation models were discussed in (Balahur, Steinberger, 2009). 
In this work, we apply the reader-centric annotation model. We use Fleiss Kappa (Nichols et al, 2010)
to evaluate inter-annotator agreement. 
     An accurate sentiment classification relies on electronic sources of semantic information.  In 
(Sokolova and Bobicev, 2013; Goeuriot et al, 2011), the authors showed that the sentiment categories
of SentiWordNet2, WordNetAffect3 and the Subjectivity lexicon4 are not fully representative of health-
related emotions. In the current work, we use HealthAffect, a domain-specific lexicon, to automatical-
ly classify sentiments.  The lexicon has been introduced in (Sokolova and Bobicev, 2013).
Although there is a correlation between emotions expressed in consecutive posts (Chmiel et al, 2011; 
Tan et al, 2011; Hassan et al, 2012),  so far health-related sentiment classification has focused on indi-
vidual messages. Our current work goes beyond individual messages and studies sequences of senti-
ments in consecutive posts.

3 The IVF Data and Annotation Results

We worked with online messages posted on a medical forum. The forum communication model pro-
motes messages which disclose the emotional state of the authors.  We gathered data from the In Vitro 
Fertilization (IVF) website dedicated to reproductive technologies, a hotly debated issue in the modern 
society. Among the IVF six sub-forums, we selected the IVF Ages 35+ sub-forum5  as it contained a 
manageable number of topics and messages, i.e., 510 topics and 16388 messages, where the messages 
had 128 words on average 6. All topics were initiated by the forum participants. Among those, 340 top-
ics contained < 10 posts. These short topics often contained one initial request and a couple of replies 
and were deemed too short to form a good discussion. We also excluded topics containing > 20 posts.  
This exclusion left 80 topics with an average of 17 messages per topic for a manual analysis by two 
annotators. First, we used 292 random posts to verify whether the messages were self-evident for sen-
timent annotation or required an additional context.  The annotators reported that posts were long 
enough to convey emotions and in most cases there was no need for a wider context. We applied an 
annotation scheme which was successfully applied in (Sokolova and Bobicev, 2013). 

We started with 35 sentiment types found by annotators and generalized them into three groups: 

 confusion, which included worry, concern, doubt, impatience, uncertainty, sadness, anger, 
embarrassment, hopelessness, dissatisfaction, and dislike;

 encouragement, which included cheering, support, hope, happiness, enthusiasm, excitement, 
optimism;

 gratitude, which included thankfulness.

A special group of sentiments was presented by expressions of compassion, sorrow, and pity. Ac-
cording to the WordNetAffect classification, these sentiments should be considered negative. However, 

                                               
2 http://sentiwordnet.isti.cnr.it/
3 http://wndomains.fbk.eu/wnaffect.html
4 http://mpqa.cs.pitt.edu/#subj_lexicon
5 http://ivf.ca/forums/forum/166-ivf-ages-35/
6 We harvested the data in July 2012.
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in the context of health discussions, these emotional expressions appeared in conjunction with moral 
support and encouragement. Hence, we treated them as a part of encouragement.  Posts presenting on-
ly factual information were marked as facts. Some posts contained factual information and strong
emotional expressions; those expressions almost always conveyed encouragement (“hope, this helps”, 
“I wish you all the best”, “good luck”). Such posts were labeled endorsement. Note that the final cate-
gories did not manifest negative sentiments. In lieu of negative sentiments, we considered confusion
as a non-positive label. Encouragement and gratitude were considered positive labels, facts and en-
dorsement - neutral. It should be mentioned that the posts were usually long enough to express several 
sentiments. However, annotators were requested to mark messages with one sentiment category.

The posts that both annotators labelled with the same label were assigned to this category; 1256 
posts were assigned with a class label.  The posts labelled with two different sentiment labels were 
marked as ambiguous; 182 posts were marked as ambiguous.

Despite the challenging data, we obtained Fleiss Kappa = 0.737 which indicated a strong agreement 
between annotators (Osman et al, 2010). This value was obtained on 80 annotated topics. Agreement 
for the randomly extracted posts was calculated separately in order to verify whether annotation of 
separate posts was no more difficult than annotation of the post sequences. Contrary to our expecta-
tions, the obtained Fleiss Kappa = 0.763 was slightly higher than on the posts in discussions.  The final 
distribution of posts among sentiment classes is presented in Table 2. 

Classification category Num of posts Per-cent
Facts 494 34.4%
Encouragement 333 23.2%
Endorsement 166 11.5%
Confusion 146 10.2%
Gratitude 131 9.1%
Ambiguous 168 11.7%
Total 1438 100%

Table 2:  Class distribution of the IVF posts.

We computed the distribution of sentiment pairs and triads in consecutive posts. We found that the 
most frequent sequences consisted mostly of facts and/or encouragement: 39.5% in total. Confusion
was far less frequent and was followed by facts and encouragement in 80% of cases.  That sentiment 
transition shows a high level of support among the forum participants.  Approximately 10% of senti-
ment pairs are factual and/or encouragement followed by gratitude. Other less frequent sequences ap-
pear when a new participant added her post in the flow. Tables 3 and 4 list the results.

Sentiment pairs Occurrence Percent
facts,   facts 170 19.5%
encouragement, encouragement 119 13.7%
facts, encouragement 55 6.3%
endorsement,  facts 53 6.1%
encouragement, facts 44 5.1%

Table 3:  The most frequent sequences of two sentiments and their occurrence in the data. 

Sentiment triads Occurrence Percent
factual,  factual,  factual 94 12.8%
encouragement, encouragement, encouragement 63 8.6%
encouragement, gratitude, encouragement 18 2.4%
factual,  endorsement,  factual 18 2.4%
confusion,  factual,  factual 17 2.3%

Table 4:  The most frequent triads of sentiments and their occurrences in the data. 
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4 HealthAffect

General affective lexicons were shown to be ineffective in sentiment classification of health related 
messages.  To build a domain-specific lexicon, named HealthAffect, we adapted the Pointwise Mutual 
Information (PMI) approach (Turney, 2002). The initial candidates consisted of unigrams, bigrams 
and trigrams of words with frequency ≥ 5 appearing in unambiguously annotated posts (i.e., we omit-
ted posts marked as uncertain). For each class and each candidate, we calculated PMI(candidate, 
class) as 

PMI(candidate, class) = log2( p(candidate in class)/( p(candidate) p(class))).

Next, we calculated Semantic Orientation (SO) for each candidate and for each class as

SO (candidate, class) = PMI(candidate, class)
- Σ PMI(candidate, other_classes)

where other_classes include all the classes except the class that Semantic Orientation is calculated for.
After all the possible SO were computed, each HealthAffect candidate was assigned with the class that 
corresponded to its maximum SO.   

Domain-specific lexicons can be prone to data over-fitting (since, for example, they might contain 
personal and brand names).  To avoid the over-fitting pitfall, we manually reviewed and filtered out 
non-relevant elements, such as personal and brand names, geolocations, dates, stop-words and their 
combinations (since_then, that_was_the, to_do_it, so_you). Table 5 presents the lexicon profile.   Note 
that we do not report the endorsement profile as it combines facts and encouragement. 

Class unigrams bigrams trigrams total Examples

Facts 204 254 78 536
round_of_ivf, 
hearbeat, 
a_protocol

Encourage-
ment

127 107 68 302

congratula-
tions,  
is_hard, 
only_have_one 

Confusion 63 143 34 240
crying, 
away_from,
any_of_you

Gratitude 37 51 34 122
appreciate, 
a_huge, 
thanks_for_your

Table 5: Statistics of the HealthAffect lexicon.

5 Sentiment Recognition

Our task was to assess HealthAffect’s ability to recognise sentiments of health-related messages. We 
used the sentiment categories described in Section 3.  In the experiments, we represented the messages 
by the HealthAffect terms. There were 1200 distinct terms, and each term was assigned to one senti-
ment. 

Our algorithm was straightforward: it calculated the number of HealthAffect terms from each cat-
egory in the post and classified the post in the category for which the maximal number of terms was 
found. Table 5 demonstrates that the number of terms was quite different for each category. Hence, the 
algorithm tended to attribute posts to the classes with a larger numbers of terms. To overcome the bias, 
we normalised the number of the terms in the post by the total number of terms for each category.   
The algorithm’s performance was evaluated through two multiclass classification results: 
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 4-class classification where all 1269 unambiguous posts are classified into (encouragement, 
gratitude, confusion, and neutral, i.e., facts and endorsement), and 

 3-class classification (positive: encouragement, gratitude; negative: confusion, neutral: facts
and endorsement).

We computed micro- and macro-average Precision (Pr), Recall (R) and F-score (F) (Table 6).  

Metrics 4-class classification 3-class classification
microaverage F-score 0.633 0.672
macroaverage Precision 0.593 0.625
macroaverage Recall 0.686 0.679
macroaverage F-score 0.636 0.651

Table 6: Results of 4-class and 3-class classification.

For additional assessment of HealthAffect, we ran simple Machine Learning experiments using Naïve 
Bayes and representing the texts through the lexicon terms. The obtained results of F-score=0.44, Pre-
cision=0.49, Recall=0.47 supported our decision to use HealthAffect in the straight-forward manner as 
presented above.  For each sentiment class, our results were as follows:

 The most accurate classification occurred for gratitude. It was correctly classified in 83.6% of 
its occurrences.  It was most commonly misclassified as encouragement (9.7%). Posts classi-
fied as gratitude are mostly the shortest ones containing only some words of gratitude and ap-
preciation of others’ help. As they usually do not contain any more information than this, there 
were fewer chances for them to be misclassified. 

 The second most accurate result was achieved for encouragement. It was correctly classified 
in 76.7% of cases. It was misclassified as neutral (9.8%) because the latter posts contained 
some encouraging with the purpose of cheering up the interlocutor.

 The least often correctly classified class was neutral (50.8%). One possible explanation is the 
presence of the sentiment bearing words in the description of facts in a post which is in gen-
eral objective and which was marked as factual by the annotators.

Recall from Section 3, that we consider encouragement and gratitude to be positive sentiments and 
confusion to be a negative one. The reported results show that positive sentiments were most misclas-
sified within the same group or with neutral, e.g., encouragement was misclassified more as neutral or 
gratitude than as confusion, gratitude - more as encouragement or neutral than as confusion. On the 
other hand, confusion and negative sentiments were most often misclassified as neutral.

6 Discussion and Future Work

We have presented results of sentiment recognition in messages posted on a medical forum. Sentiment 
analysis of online medical discussions differs considerably from polarity studies of consumer-written 
product reviews, financial blogs and political discussions. While in many cases positive and negative 
sentiment categories are powerful enough, such a dichotomy is not sufficient for medical forums. We 
formulate our medical sentiment analysis as a multi-class classification problem in which posts were 
classified into encouragement, gratitude, confusion, facts and endorsement. 

In spite of sentiment annotation being highly subjective, we obtained a strong inter-annotator 
agreement between two independent annotators (i.e., Fleiss Kappa = 0.73 for posts in discussions and 
Fleiss Kappa = 0.76 for separate posts). The Kappa values demonstrated an adequate selection of clas-
ses of sentiments and appropriate annotation guidelines. However, many posts contained more than 
one sentiment in most cases mixed with some factual information. The possible solutions in this case 
would be (a) to allow multiple annotations for each post; (b) to annotate every sentence of the posts. 
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A specific set of sentiments on the IVF forum did not support the use of general affective lexicons 
in automated sentiment recognition.  Instead we applied the PMI approach to build a domain-specific 
lexicon HealthAffect and then manually reviewed and generalized it.

In our current work we went beyond analysis of individual messages: we analyzed their sequences 
in order to reveal patterns of sentiment interaction. Manual analysis of a sample of data showed that 
topics contained a coherent discourse. Some unexpected shifts in the discourse flow were introduced 
by a new participant joining the discussion. In future work, we may include the post’s author infor-
mation in the sentiment interaction analysis. The information is also important for analysis of influ-
ence, when one participant is answering directly to another one citing in many cases the post which 
she answered to. 

We plan to use the results obtained in this study for analysis of discussions related to other highly 
debated health care policies.  One future possibility is to construct a Markov model for the sentiment 
sequences. However, in any online discussion there are random shifts and alternations in discourse 
which complicate application of the Markov model. 

In the future, we aim to annotate more text, enhance and refine HealthAffect, and use it to achieve 
reliable automated sentiment recognition across a spectrum of health-related issues. 
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Abstract 

Persuasive communication is an essential component of our daily lives, whether it is negotiat-
ing, reviewing a product, or campaigning for the acceptance of a point of view. With the rapid 
expansion of social media websites such as YouTube, Vimeo and ExpoTV, it is becoming ev-
er more important and useful to understand persuasiveness in social multimedia content. In 
this paper we present a novel analysis of verbal behavior, based on lexical usage and para-
verbal markers of hesitation, in the context of predicting persuasiveness in online multimedia 
content. Toward the end goal of predicting perceived persuasion, this work also explores the 
potential differences in verbal behavior of people expressing a positive opinion (e.g., a posi-
tive movie review) versus a negative one. The analysis is performed on a multimedia corpus 
of 1,000 movie review videos annotated for persuasiveness. Our results show that verbal be-
havior can be a significant predictor of persuasiveness in such online multimedia content. 

 

1 Introduction 

A message that is “intended to shape, reinforce or change the responses of another or others” is cate-
gorized as persuasive communication (Miller, 1980), and it is particularly important for the role it 
plays in creating social influence and altering other people’s opinions (Reardon, 1991; Zimbardo and 
Leippe, 1991). For instance, a persuasive advertisement could be a potential profit churner. 

The growth of social networking sites on the Internet has resulted in an explosion of online content 
with the purpose of delivering persuasive messages. Websites such as YouTube, Vimeo and ExpoTV 
are examples of online media in which these messages propagate mainly in the form of videos. 
ExpoTV, in particular, is a repository of a large number of videos dedicated for product reviews in 
which people try to convince others in favor of or against the use of various products. This raises an 
interesting research problem as to what it is that makes certain speakers have a substantial impact on 
others’ opinions while other speakers are ignored. 

In this paper, we present a novel analysis of spoken persuasion in online multimedia content. Our 
work is motivated by prior research findings in psychology indicating that verbal behavior is a prom-
ising indicator for persuasive communication (Chaiken and Eagly, 1979; Werner, 1982). Such prior 
findings allow us to hypothesize that two primary types of verbal features will be predictive of per-
suasion: lexical features and paraverbal markers of hesitation. Additionally we explore the relation-
ship of the sentiment of the content and perceived persuasion, by hypothesizing that speakers’ exhibit 
different verbal behavior when expressing a positive opinion versus a negative one and taking into 
account these differences will improve prediction performance. We conduct several experiments in 
order to validate these hypotheses using a multimedia corpus of 1,000 movie review videos obtained 
from ExpoTV.com, which is a great source of online reviews. Our experiments followed by a detailed 
analysis also reveal a set of predictive features which characterize persuasive online presentations. 

In the following section, we present an overview of related work. Section 3 elaborates on our re-

* Both authors contributed equally to this work. 
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer 
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/ 
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search hypotheses. In Section 4, we present our multimedia corpus. The details of the experiments 
with computational descriptors and methodology are described in Section 5. We discuss the results 
and findings in Section 6, and finally we conclude our paper and present some future directions of 
research in Section 7.  

2 Related Work 

Content in the form of written text are omnipresent in our society. Starting from books, magazines 
and newspapers to the now prevalent emails and blog posts, text-based content are an invaluable 
component for effective communication. Prior research reports possibly greater persuasiveness in 
written messages compared to visual or acoustic modalities in certain situations (Chaiken and Eagly, 
1979; Werner, 1982). Past research has also revealed that for sophisticated messages, such as those 
used in a martial setting, written messages are more persuasive (Chaiken and Eagly, 1979).  

Although the importance of studying verbal behavior for determining persuasiveness has been un-
derscored in prior work in the field of communication sciences (O’Keefe, 2002) and this line of re-
search gives us useful pointers to the factors that contribute to persuasiveness in text or verbal com-
munication, they present no computational aspect, which is where we put our emphasis in the paper. 

In the field of natural language processing, text classification based on bag-of-words has been a 
long standing approach (Lewis and Gale, 1994; Mitchell, 1997; Dave et al., 2003). In fact, Young et 
al. (2011) have explored lexical features in the specific context of predicting persuasion, but they fo-
cus their attention on studying persuasion in dialogue. Our work draws inspiration from such ap-
proaches but explores it in the specific context of predicting persuasiveness in online multimedia con-
tent using lexical and paraverbal features. 

3 Research Hypotheses 

Motivated by prior works and theoretical background, we designed our experiments to validate three 
hypotheses. 

Since multiple prior works point to the usefulness of the text modality in persuasive communication 
and also to the power of text classification with lexical features in various tasks, we explored the fea-
sibility of capturing the difference in verbal behavior between persuasive and unpersuasive expres-
sions of opinions in online social multimedia content (specifically, movie reviews). The following is 
the hypothesis that we specifically tested with our experiments: 
Hypothesis 1: Verbal behavior, as captured by lexical usage, is indicative of persuasiveness in online 
social multimedia content, irrespective of whether the opinion expressed is positive or negative. 

Paraverbal behaviors indicative of hesitation can constitute important information for predicting 
persuasiveness. For instance, a speaker’s stuttering or breaking his/her speech with filled pauses (such 
as um and uh) has influence on how other people perceive his/her persuasiveness. Although previous 
work (DeVault et al, 2013) suggests paraverbal behavior may be indicative of depression, another 
work on emotion prediction however, (Devillers et al., 2006) raised questions about its predictive 
power when compared to using standard cues derived from lexical usage. This leads us to our second 
hypothesis on paraverbal behaviors in the context of predicting persuasiveness: 
Hypothesis 2: Paraverbal behaviors related to hesitation are indicative of persuasiveness in online 
social multimedia content.  

Past research highlights the importance of the knowledge of the affective state of a document 
towards its perceived persuasiveness (Murphy, 2001). We therefore hypothesize the following: 
Hypothesis 3: Knowledge of the sentiment polarity of a movie review improves classification of the 
speaker’s perceived persuasiveness. 

4 Dataset 

ExpoTV.com is a popular website housing videos of product reviews. Each product review has a vid-
eo of a speaker talking about a particular product as well as the speaker’s direct rating of the product 
on an integral scale from 1 star (for most negative review) to 5 stars (for most positive review). This 
direct rating is useful for the purpose of our study because this allows us to study perceived persua-
sion under different directions of persuasion (in favor of or against). For instance, the speaker in a 5-
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star movie review video would most likely try to persuade his/her audience in favor of watching the 
movie while the speaker in a 1-star movie review video would argue against watching the movie. We 
therefore collected a total of 1,000 movie review videos that were either highly positive or negative. 
The dataset consists of the following: 

 
• Positive Reviews: 500 movie review videos with 5-star rating (315 males and 185 females). 

• Negative Reviews: 500 movie review videos with 1 or 2-star rating, consisting of 216 1-star 
videos (151 males and 65 females) and 284 2-star videos (212 males and 72 females). We included 
2-star videos due to the lack of enough 1-star videos on the website. 

 
Each video in the corpus has a frontal view of one person talking about a particular movie, and the 
average length of the videos is about 94 seconds. The corpus contains 372 unique speakers and 600 
unique movie titles and is available to the community for purposes of academic research1. 

4.1 Evaluation of Persuasiveness 

Amazon Mechanical Turk (AMT), which is a popular online crowdsourcing platform, was used to 
obtain subjective evaluation of each speaker’s perceived persuasiveness, following a similar annota-
tion scheme as (Mohammadi et al., 2013). For each video in the corpus, we obtained 3 repeated eval-
uations on the level of persuasiveness of the speaker by asking the workers to give direct rating on 
each speaker’s persuasiveness on a Likert scale from 1 (very unpersuasive) to 7 (very persuasive). A 
total of 50 native English-speaking workers based in the United States participated in the evaluation 
process online, and the task was evenly distributed among the 50 workers. To minimize gender influ-
ence, the task was distributed such that the workers only evaluated speakers of the same gender. The 
correlation between the mean score of every movie and the individual ratings was found to be 0.7 on 
the average (Pearson’s Correlation Coefficient). 

Once the evaluation was complete, we used the mean persuasiveness score for each video as the 
ground-truth measure of the speaker’s perceived persuasiveness. In this initial effort, we focused on 
videos that were extremely persuasive or not persuasive at all. Hence, videos with a mean score of 
equal to or greater than 5.5 were taken as persuasive while those with a mean score of equal to or less 
than 2.5 were taken as unpersuasive. After this, we ended up with a total of 300 videos, specifically 
157 videos of positive reviews (75 persuasive and 82 unpersuasive) and 143 videos of negative re-
views (62 persuasive and 81 unpersuasive). 

4.2 Transcriptions 

Using AMT and 18 participants from the same worker pool for persuasiveness evaluation, we ob-
tained verbatim transcriptions of these filtered 300 videos, including transcriptions for filled pauses 
and stutters. Each transcription was reviewed and edited by multiple in-house experienced transcribers 
for accuracy. We do not use automatic speech recognition techniques in order to avoid noisy tran-
scriptions. 

5 Experiments 

In this section, we give details on the design of our computational descriptors followed by the experi-
mental methodology. 

5.1 Computational Descriptors 

In our experiments, our main focus was on devising computational descriptors for verbal behaviors in 
terms of lexical usage and also in terms of paraverbal markers of hesitation that can capture indica-
tions of persuasiveness of the speaker. 

 
Verbal (Lexical) Descriptors: As in many text classification tasks, we designed our verbal de-
scriptors based on the bag-of-words representation using term frequency of both unigrams and bi-

                                                
1 Dataset available online: http://multicomp.ict.usc.edu/  
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grams. Using the 300 filtered videos (see Section 4.1) and without feature selection, the numbers of 
unigrams reach around 4,500 and bigrams around 24,000. We did not proceed further with higher or-
der n-grams because empirical evidence has shown that trigrams and other higher order n-grams do 
not always show improvement because they introduce problems related to the sparsity of features 
(Dave et al., 2003).  

 
Paraverbal Descriptors of Hesitation: From the verbatim transcriptions of our corpus, we observed 
a set of frequent paraverbal cues that could potentially be associated with the level of persuasiveness. 
The set of descriptors is inspired from the findings of DeVault et al. (2013), who explored a similar 
set of generic paraverbal features in an interactive dialogue setting. However, we are interested 
specifically in the ones that capture signs of hesitation. The following were the descriptors that were 
used:  

• Pause-Fillers: The verbal behaviors of reviewers are often characterized with various pause-
fillers, such as um or uh. In order to account for the varying length of each review, we normalized 
the count of all instances of filled pauses by the number of words spoken in the video. 

• Disfluency Markers: A prominent marker of disfluency in human speech is stuttering. To capture 
this disfluency, we counted all instances of stuttering in each video and normalized them by the 
number of words spoken in the video. 

• Articulation Rate: Articulation rate is defined as the rate of speaking in which all pauses are 
excluded from calculation (Dankovicova, 1999). This descriptor was computed by taking the ratio 
of the number of spoken words in each video to the actual time spent speaking.  

• Mean Span of Silence: Human speech is often interspersed with pauses. We therefore computed 
this descriptor, by measuring the total duration of silence during speech, normalized by the total 
length of the video. 

5.2 Methodology 

We processed all the videos in our dataset and automatically extracted the indicated lexical and 
paraverbal features. The extracted features were then used for several classification experiments under 
three different settings to test our hypotheses: only positive reviews, only negative reviews (called  the 
sentiment-dependent classifiers) and a combined set of positive and negative reviews (called  the 
sentiment-independent classifiers). For each such setting, we divided the set of samples (transcription 
of movie reviews) into 5 balanced folds that were both speaker-independent and movie-independent. 
In other words, in all our experiments, no 2 folds contained samples from the same speaker or movie 
title. This was done to remove any form of bias in the classifier based on either the speaker or the 
movie.  

We then performed classification experiments using 5-fold cross-validation using the lexical fea-
tures (unigrams and bigrams) on this combined set of reviews (positive and negative reviews togeth-
er), each time leaving 1 fold for hold-out testing. Here, we note that for constructing the dictionary, 
only data from the training set was used. On average across 5-fold cross-validation, the number of 
unigrams was around 4,560 and bigrams around 23,701 for the combined set of movie reviews. 

However, since such a feature design typically suffers from problems arising out of the sparsity of 
the entries of the dictionary in the dataset, we employed a feature selection step. For feature selection 
and analysis, we used Information Gain (IG), which is a measure of the number of bits of information 
obtained for category prediction by knowing the presence of a term in a document. Prior evaluation of 
feature-selection methods for text classification has revealed the superiority of IG as a metric over 
other ones such as Mutual Information, Term Strength or a simple Document Frequency thresholding 
for document classification tasks (Yang and Pedersen, 1997). This serves as an inspiring basis for us-
ing IG as a metric for feature selection. 

The gain score G(t) obtained from IG is a non-zero positive value for features that are strongly in-
dicative of the extent of persuasiveness of the document, while ones that are not so informative have a 
value of 0. We therefore select only those lexical features (unigrams and bigrams) which have an IG > 
0 based on the distribution obtained from the training set. This allows us to trim the dictionary signifi-
cantly and use only meaningful features for classification. 

53



This was then followed up by a 5-fold cross-validation using only the paraverbal features (no fea-
ture selection was used here since they were too few in number). The accuracy of classification based 
on paraverbal features was then compared with that obtained by classification using only the lexical 
descriptors and by a majority baseline classifier. 

Furthermore, we also tried an early-fusion approach, where we simply use both lexical and para-
verbal features together. Such an approach to fusion seemed more promising here than a decision-
level fusion approach because of the few categories of features used (just lexical and paralinguistic, as 
motivated by the findings of (Gunes and Piccardi, 2005)). 

5.3  Classification Model 

For performing classification experiments we used the Naïve Bayes classifier. A well-known issue 
with using the Naïve Bayes classifier is its incapability of handling new features, which is handled by 
performing a conditional uniform smoothing (Puurula, 2012). 

6 Results and Discussion 

Table 1 shows the results for our classification experiments, which confirm the predictive power of 
lexical features. 

Hypothesis 1: The lexical features (unigrams and bigrams) are predictive of persuasiveness. This is 
manifested by the fact that they perform significantly better than a majority baseline, which is only 
51.04% accurate on the combined set of positive and negative reviews, while the lexical features 
achieved an accuracy of around 77% (Figure 1). Considering the positive and the negative reviews 
individually, we note that the lexical features were accurate for nearly 82% of the test samples for the 
positive reviews and for 86% of the test samples for the negative reviews, again outperforming a sim-
ple majority baseline classifier (Table 1). 

An analysis of the features (Table 2) reveals that certain lexical features contribute to the predicta-
bility of the persuasiveness of a speaker. The presence of unigrams such as character or make or bi-
grams such as to make or this movie for instance, contributes to the predictability of persuasiveness of 
the speaker, even though they are not emotionally salient terms. The high IG scores of such features 
irrespective of the setting we conduct our experiments in (positive reviews only, negative reviews on-
ly or a combined set of positive and negative reviews), highlights their importance. Moreover, a (+) 
sign for most of these unigrams or bigrams show that their presence contributes favorably to the 
speaker being perceived as persuasive. On the other hand a (-) sign for an informative bigram such as 
it says is indicative of lack of speaker’s persuasiveness. This can be explained by the context of the 
usage of such features. For instance, the bigram it says in it says that the movie duration is… is a bi-

 

Feature Group Sentiment Dependent Classifier Sentiment Independent 
Classifier Mean Positive Reviews Negative Reviews 

Lexical Features 
(Unigrams and 

Bigrams) 
83.92% 81.74% 86.09% 76.73% 

• Unigrams 
Only 77.70% 74.78% 80.62% 73.77% 

• Bigrams  
Only 84.05% 81.64% 86.46% 75.81% 

Para-Linguistic 
Features 64.23% 65.22% 63.23% 63.04% 

Early Fusion 84.54% 82.61% 86.46% 78.56% 
Majority Baseline 52.14% 50.43% 53.85% 51.09% 

 
Table 1: Accuracies for our experiments using a Naïve Bayes classifier. The scores in bold indi-
cate the dominance of the sentiment-dependent classifier under all circumstances. 
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gram that is uttered by the reviewers when they refer to the DVD cover of the movie to give some 
more detailed information about it. This is identified as a sign of an unpersuasive reviewer. Such re-
sults confirm that the verbal behaviors, as captured by lexical usage, are extremely predictive of per-
suasiveness irrespective of whether the opinion expressed is positive or negative, which validates Hy-
pothesis 1. 

 
Hypothesis 2: Moreover, our experiments show that while the designed paraverbal features that are 
markers of hesitation can classify only about 63% of the speakers correctly (see Table 1), however 

 
 

Figure 1: Bar graph visualization of the classification accuracies using different types of fea-
tures on the combined set of reviews (i.e. sentiment-independent classifier). ** indicates 2-
samples t-test results with p < 0.01 and *** indicates p < 0.001. The error bars show 1 SD. 

 
 

Feature Positive Reviews Negative Reviews Both Combined 
Word IG Score Word IG Score Word IG Score 

Unigrams 

The (+) 0.1183 Even (+) 0.11 Make  (+) 0.1117 
Make  (+) 0.0816 Make  (-) 0.1082 Just  (+) 0.0728 

Everything  (+) 0.0806 Movie  (+) 0.0969 Very  (+) 0.0669 
Just  (+) 0.0806 Real  (+) 0.0873 Character  (+) 0.0573 

Dollars (+) 0.0722 Not  (+) 0.0867 Becomes  (+) 0.0558 
Character  (+) 0.0685 Big  (+) 0.0858 Even (+) 0.0524 

Can  (+) 0.0685 One  (+) 0.0817 One  (+) 0.051 
Product  (+) 0.0685 Avoid  (+) 0.079 Yourself  (+) 0.05 
Famous (+) 0.0609 Feel  (+) 0.079 You  (+) 0.04571 
Enjoy  (+) 0.0566 Character  (+) 0.0773 Lot  (+) 0.0456 

Bigrams 
 
 
 
 
 
 

There are  (+) 0.1183 This movie  (+) 0.1083 To make  (+) 0.0905 
This movie  (+) 0.0816 Do not  (+) 0.1032 A lot  (+) 0.0617 

I can’t  (+) 0.0806 I think  (+) 0.1032 This movie  (+) 0.0578 
To make  (+) 0.0806 To make  (+) 0.0989 Lot of  (+) 0.0443 

Good movie  (+) 0.0722 Not even  (+) 0.091 It says (-) 0.0417 
Buy it  (+) 0.0685 Don’t even  (+) 0.091 You will (-) 0.0417 

Really a  (+) 0.0685 The story  (+) 0.079 Twenty dollars (+) 0.0368 
Definitely one  (+) 0.0685 The film  (+) 0.0672 The character (+) 0.0386 
Best movies  (+) 0.0609 At all  (+) 0.0672 So many (+) 0.033 
It’s awesome  (+) 0.0566 It’s so (+) 0.0672 See it (+) 0.033 

 
Table 2: Important unigrams and bigrams when they are used individually as lexical features. 
(+) indicates that it increases persuasiveness while (-) indicates it contributes to the lack of per-
suasiveness. 
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they are statistically significant features, in terms of their p-values (Figure 2). While classification 
performance is lower than that obtained with purely lexical features, it is still far above a majority 
baseline, and thus confirms our second hypothesis. 

Additionally, it is interesting to note from Table 1 that, although a feature-level fusion of the lexical 
features and paraverbal features gives us an improvement in classification performance, the difference 
between the results obtained with fusion and those with lexical features alone was minor and was not 
statistically significant. 
 
Hypothesis 3: We also observe that a sentiment-dependent classifier trained individually on positive 
reviews or on negative reviews outperforms one that is trained on a combined set of reviews. This is 
supported by our empirical results in Table 1 which show that when classification is performed with 
any of the lexical features, the accuracies are significantly higher for the classifier trained only on the 
positive or only on the negative reviews (sentiment-dependent classifiers) than for the classifier 
trained on the combined set of reviews (sentiment-independent classifiers). For instance, when 
unigrams and bigrams were both used as our lexical features, we observed that for a sentiment-
dependent classifier the classification accuracy jumps to over 84% on average. This is significantly 
better than the scenario where the classifier is not aware of the sentiment of the review. Figure 3 
demonstrates this phenomenon. 
    We resort to feature analysis for an explanation of such an observation (Table 2). The analysis re-
veals that certain sentiment-based lexical features, i.e. emotionally salient terms, assume an important 
role in magnifying the discriminative power of language use in persuasiveness prediction, when prior 
knowledge about the speaker’s opinion is known. For instance, in the case of a classifier trained only 
on the positive reviews, unigrams such as enjoy and famous and bigrams such as good movie or it’s 
awesome become significant. In the context of persuading against watching the movie prominent sen-
timent-based unigrams are not and avoid while bigrams are do not, don’t even and at all. This pro-
vides empirical support for our third hypothesis. 

7 Conclusion and Future Work 

This work presents several interesting findings about perceived persuasiveness prediction in online 
social multimedia content by analyzing the verbal behavior of the speaker, modeled using lexical fea-
tures and paraverbal features of hesitation. We conducted experiments and showed that verbal behav-
ior as captured by lexical descriptors is a strong indicator of persuasiveness, irrespective of whether 
we persuade in favor of or against something. Much of this is due to the presence of certain unigrams 
and bigrams that are either indicative of strong persuasiveness or of lack of persuasiveness. Our ex-
periments further reveal the superiority of classifying with lexical features as compared to with para-

 
 
Figure 2: Boxplots for the paralinguistic hesitation markers for a classifier trained on the para-
linguistic features only. * and *** indicate p <= 0.05 and 0.001, respectively. 

 
 

56



verbal features alone.  Moreover we empirically validate the hypothesis that a sentiment-aware classi-
fier outperforms a sentiment-independent one. As future work, we intend to explore more paraverbal 
features for persuasiveness prediction and also try more sophisticated prediction models which explic-
itly model the temporal dynamic. 
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Abstract

Twitter users demonstrate many characteristics via their online presence. Connections, commu-
nity memberships, and communication patterns reveal both idiosyncratic and general properties
of users. In addition, the content of tweets can be critical for distinguishing the role and impor-
tance of a user. In this work, we explore Twitter user classification using context and content
cues. We construct a rich graph structure induced by hashtags and social communications in
Twitter. We derive features from this graph structure—centrality, communities, and local flow of
information. In addition, we perform detailed content analysis on tweets looking at offensiveness
and topics. We then examine user classification and the role of feature types (context, content)
and learning methods (propositional, relational) through a series of experiments on annotated
data. Our work contrasts with prior approaches in that we use relational learning and alterna-
tive, non-specialized feature sets. Our goal is to understand how both content and context are
predictive of user characteristics. Experiments demonstrate that the best performance for user
classification uses relational learning with varying content and context features.

1 Introduction

In recent years, Twitter has become an extremely prolific social media engine, attracting an extremely
diverse user base, ranging from teenagers discussing the latest in pop culture, to businesses looking
for free advertising space, to the president of the United States trying to reach a broader audience than
traditional media will allow. Twitter is the place to say whatever you want to whoever you want..., as
long as it is less than 140 characters. This conciseness constraint forced the Twitter user base to develop
innovative ways of maximizing the information content of each letter. As such, the resulting tweets
constitute a vast data set of rich textual content. Additionally, these tweets traverse through and define a
social network comprised of all kinds of people tweeting to people about people.

In this work, we try to identify who some of these people are by performing user classification. Several
prior methods have been proposed. Teng and Chen (2006) performed a similar study on bloggers in
order to classify them by interest type. Twitter, however, provides a much richer feature set due to the
denser network structure and nearly ubiquitous adoption of user profiles. Romero et al. (2011) defined a
social graph structure for Twitter data. While this was the first paper of its kind to explore the benefits
of extracting a network structure from textual data, they only considered a limited graph comprising
the retweet structure. Rao et al. (2010) and Pennacchiotti and Popescu (2011) expanded the notion of
a Twitter graph to more broadly encompass social communication and used this jointly with content
features to predict some attributes of Twitter users. Only limited graph analysis was performed and
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learning was based on the user and not relational methods. In (Wu et al., 2011), a special feature, Twitter
lists, was used as a simple approach to user classification.

Our goal is to explore the role of different features and learning methods in user classification. The
motivation for this study is multifold. First, prior work has only performed limited analysis on Twitter
graph structures and their role in user characterization. Second, the interplay between content, context,
and learning method (relational versus propositional) has not been fully explored. Third, user classifica-
tion using profile information or specific Twitter features may not always be available or accurate. In our
study, we find 20% of the users do not have an accessible profile. Additionally, since profile information
contains self-reported fields, its accuracy is questionable.

In this paper, our contribution consists of multiple parts. First, we develop a rich network repre-
sentation of Twitter data that combines the traditionally exploited social network features (retweeting,
at-mentions), user tweeting behaviors (hashtag usage), and hashtag co-occurrence without requiring stor-
age of all tweets. We perform network analysis on this graph and show that community structure and
centrality in the network are qualitatively interesting and relevant for user classification. Second, we per-
form tweet level topic clustering and offensiveness detection. We propose a new method for propagating
posterior class probabilities to both hashtag and at-mention graph nodes. This provides topic and offen-
siveness associations for both users and hashtags in the Twitter graph. Finally, in constrast to prior work,
we perform relational learning on the Twitter graph and show significant improvements in performance
by using information from hashtag-neighbors and user-neighbors of a user node.

2 Corpus Collection

Over the 8 month period from September 2012 to March 2013, we used Twitter’s streaming API to collect
a < 1% sample of the entire twitter feed, totaling approximately 686 million tweets, which (Morstatter
et al., 2013) showed to be a representative sample of the entire Twitter space. These tweets contain basic
information—tweet id, date and time, user id, user location, and tweet text. The tweets are representative
of the Twitter population and display a wide variety of user accounts, topics, languages, and locations.

In addition to collecting a corpus of tweets, we used Twitter’s REST API to collect the user profiles
for all users who were either an author of or at-mentioned in at least one of the previously collected
tweets. User profiles contain both user generated and automatically generated content. The user gen-
erated content includes information such as webpage link, location, time zone, screen name, language,
and a textual description of the account. Since these are self-reported attributes, their veracity is often
noisy or over-generalized—e.g., location reported as “all around the world.” The automatically generated
user account content consists of account information and statistics such as number of followers, date of
account creation, number of tweets (statuses count), verified status, and favorite count.

We augmented our tweet + profile corpus by labeling a subset of user profiles with their user type.
Annotation was performed by multiple annotators. We considered the following partitioning of user
profiles into user classes. individual:famous : Famous person: writer, actor, former politician, etc.
individual:generic : Generic (everyday) user tweeting. individual:other : An individual that doesn’t
fall into the categories above. organization : Business, non-profit, government organization. fake :
Fictional characters, celebrity impersonations, deceased individuals, etc. info : Information source–
news, trivia, jokes, quotes. bots : Produces automated posts via Twitter. missing : User doesn’t exist
(deleted page or misspelled user id). dontcare : Spam, offensive services. other : Not in one of the
above categories. We selected this schema as an initial exploration of interesting categories and many
alternate schema are possible.

3 Twitter Graph Construction

In order to construct an analytics platform, we applied a mapping that converts a corpus of tweets and
corresponding user profiles into a Twitter graph. There are several methods of representing Twitter data
as a graph which capture diferent levels of data richness at inversely proportional computational expense
(both in processing and storage requirements). In this work, we consider a graph with multityped nodes
in one-to-one correspondence with the union of the set of user profiles (e.g., @blueman) and the set of
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Table 1: Example communities obtained from Infomap community detection with the Twitter Graph
Communities and High-Pagerank Members Highest Pagerank Node

#me, #cute, #instagood, #beautiful, #fashion #love

#500aday, #tfb, #instantfollowback, #teamfollowback

#teamautofollow, #followback

#breakoutartist, #musicfans, #peopleschoice

#onedirection, #popartist, #celebrityjudge

#android, #androidgames, #ipad, #ipadgames, #iphone #gamesinsight

@harry styles, @real liam payne, @louis tomlinson, @niallofficial

@zaynmalik, @onedirection

#football, #49ers, #packers, #ravens, #redskins #nfl

#p2, #teaparty, #tlot, #gop, #obama #tcot

#believecoustic, #believe, #believetour, #kiss, @alfredoflores @justinbieber

hashtags (e.g., #yankees) that occur in one or more of the collected tweets. We chose not to include
individual tweets as nodes in the graph in order to maintain tractability.

In addition to the two classes of nodes, we considered five classes of edges. There are three classes
of edges that connect two user profile nodes. The first is a directed, weighted edge corresponding to
the number of times one user at-mentions another user (e.g., @blueman writes a tweet containing
@greenman). The second type of user to user edge is a directed, weighted edge corresponding to
the number of times one user retweets another user (e.g., @blueman writes a tweet containing RT
@greenman). Unlike the at-mentions and retweets edges, the third type of user to user edge doesn’t
map to communication between users; rather this edge classification refers to an undirected, weighted
count of the number of times at-mentions of two users co-occur in the same tweet (e.g., @redman writes
a tweet containing @greenman and @blueman). Similarly to the user to user co-occurence edge clas-
sification, there is an undirected, weighted edge classification corresponding to the co-occurrence of two
hashtags. The final class of edges are weighted, directed edges corresponding to the number of times a
given user tweets a particular hashtag.

4 Graph Features

We extracted network features from the Twitter graph based on community detection and centrality
(Pagerank). We partitioned the node set into commuties by leveraging the infomap approach (Rosvall
and Bergstrom, 2008). We use Pagerank to calculate the centrality of each node and we define community
centrality as the sum of the Pageranks for all nodes in the community. The community “Pagerank” allows
us to rank communities by centrality. After computing both Pagerank and communities, we added these
node features to the original (directed) graph.

Optimizing the communities in the Twitter graph yields communities with both user and hashtag
nodes. Nodes with high-pagerank in a community serve as a community summarizations. We show
a summary of some of the largest Pagerank sum communities in Table 1. Cursory analysis reveals that
qualitatively the communities are very interpretable—user Justin Bieber is associated with the Believe
tour, the hashtag #gameinsight is associated with different platforms and game types, followbacks
are grouped together, and the #love community has the highest community Pagerank.

5 Content Analysis

Content analysis uses natural language processing to extract additional structured features from unstruc-
tured tweets. We discussed simple content analysis based on parsing tweets in order to identify com-
munication (at-mentions and retweets) and content (hashtags) in a previous section. In this section, we
cover more advanced techniques—topic modeling and offensiveness detection.

Before covering the details of content analysis, we describe the general framework for incorporating
content features into our classification framework. We assume that content analysis produces a vector of
posterior probabilities,

cj =
[
p(ωi|tweetj)

]
(1)
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where ωi is the indicator for the class label i. In general, including all tweets as nodes in a graph for
classification leads to a graph of prohibitive size. Instead, we propagate the information contained in
tweets to corresponding user and hashtag nodes and compute the expected posterior probability; i.e., we
average all of the vectors propagated to a certain node.

The rules for propagating cj for at-mentions are as follows. If user @blueman tweets with no recip-
ient or multiple recipients, then cj is propagated to the @blueman node. If user @blueman retweets
from user @greenman, then cj is propagated to both @blueman and @greenman. Similarly for
hashtags nodes, we propagate the cj vector to all hashtags used in tweetj .

Averaging the content vectors that were propagated to user and hashtag nodes defines representative
content vectors for those nodes. A drawback of this aggregation strategy is that the average estimator can
have a variable variance proportional to the number of vectors propagated to a node, which can introduce
noise into the classification process.

5.1 Topic Modeling

Our topic modeling is based upon probabilistic latent semantic analysis (PLSA). PLSA models the joint
probability between documents and words by introducing a latent variable z representing possible topics
in a document. We trained the PLSA model with an EM algorithm.

An analysis of the topics produced by PLSA provides meaningful interpretation of many of the high
scoring topics. For instance, topics such as money, sleep habits, the ubiquitous Justin Bieber, birth-
days and Valentine’s day, and love are easily seen. Expressions of happiness via emoticons are also a
topic. The topics in general represent broad categories (love, football) and specific events (video awards,
Valentine’s day). In addition, topics that represent common linguistic phenomena—African American
vernacular English (AAVE), various expletives, and teen lifestyle (class, teacher, parents, ...). We remark
that the topics are related to but not the same as the community detection applied to the Twitter graph.
Qualitatively, the Twitter graph communities appear to be better defined and more easily interpreted than
their PLSA counterparts.

5.2 Offensiveness

Another significant attribute of a tweet is linguistic register—the variation due to the social setting. In
an attempt to capture some of the phenomena that occurs due to formality, familiarity, etc., we trained
an offensiveness detector. The goal of building this detector is that variations in offensiveness might
distinguish user type (e.g., politician versus generic user).

Offensiveness is a broad term and could be defined in many different ways. We define offensiveness
using a pragmatic two-stage approach. First, we obtained a set of offensive tweets by issuing queries
via Lucene of offensive terms. To obtain a set of putative non-offensive tweets, we took a random
sample of the remaining tweets from a large pool, assuming that in this case offensiveness has a lower
prior. We then trained a classifier with the offensive and non-offensive data sets. The resulting output of
the detector yields a consistent definition of offensiveness. Additionally, training a detector rather than
using just a dictionary approach captures some of the additional co-occurring terms and allows learning
appropriate weightings of terms.

We split the annotated data into distinct train and test sets for performance measurement and cali-
bration of the detector. Approximately 14000 tweets were in both sets. We trained an SVM by using
normalized word-count vectors and a linear kernel. The SVM regularization parameter was tuned for
optimal performance to c = 0.1. The equal error rate is 12.4% for the detector. The detector appears to
produce consistent results. Given that tweets are short messages, this performance level appears reason-
able.

We needed two additional steps in order to apply the detector to all English tweets. First, we converted
the output of the SVM to a posterior probability using the standard approach in Platt (Platt, 2000) and
optimized by using a conjugate gradient method. Second, there were numerous cases in the data where
unseen vocabulary in the training set resulted in a zero-vector for vi. In these cases, we used an imputed
posterior of offensiveness by taking the average value across all nodes.
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6 User Classification

Our goal in this work is to identify the saliency of network and content features as well as relational versus
propositional learning methods for classifying Twitter users. We cast the user classication problem as a
detection problem; i.e., for each label (verified, generic, etc.), we build a 1-versus-rest detector to predict
that attribute of the user.

Since our representation of the Twitter data involves user-user, user-hashtag, and hashtag-hashtag re-
lationships, we apply a relational learning approach to user classification. Relational learning techniques
leverage the structure of the neighborhood around a user of interest as well as the attributes of that user
and its neighbors. In this work, we construct queries consisting of the user of interest, and the nodes ad-
jacent to and edges incident to that user. We use relational probability trees (RPTs) (Neville et al., 2003)
to leverage these subgraphs for classification. An RPT is a decision tree which automatically calculates
and considers aggregate features within the subgraphs.

7 Experiments

7.1 Experimental Setup

From a 1% sample of raw tweets, we created a Twitter graph combining content and network features.
We included network structure in the graph by letting edges indicate retweets, communication and co-
occurance of users in tweets, or co-occurrence of hashtags within tweets. In addition, we annotated each
edge with counts for each interaction type. We added additional content features for topic and offensive-
ness as well as network features for cluster and cluster pagerank for each user and hashtag. Topic vectors
were assigned using a PLSA approach, and offensiveness was determined using an SVM. Clustering
and pagerank were achieved using the infomap approach. In addition, we hand-annotated approximately
1300 users (individual:famous, individual:generic, individual:other, organization, info source, bot, etc.)
by examining their profiles and tweets. The resulting graph had 252K nodes (189K users and 64K hash-
tags), and 1.16M edges.

We performed experiments using multiple feature subsets (content, network and content+network)
and different learning methods (propositional, relational). The content features we generated for users
and hashtags are topic and offensiveness. We include the top three most likely topics for each user and
hashtag in our feature set for these experiments. Our network features for users and hashtags are cluster
and cluster pagerank. We cast the user classification process as a detection problem. For each user label
(verified, generic, etc.), we create a detector using an RPT that uses a one-versus-rest labeling.

To predict whether or not a user has a verified account, we learn decision trees with Proximity∗ with
varying features included in the analysis. There were a total of 84k users with a verified label in our
graph from downloaded Twitter profiles. We subsampled 10% of this data set to give reasonable run
times for Proximity.

For the remaining hand-annotated classes, we used all available labeled data. We learned decision
trees using Proximity with a maximum tree depth of 3. For some user types, there were not enough
labeled users to make reliable models and predictions; we excluded user types with probability less than
or equal to 1% (fake, other, spam). We also found prediction of organization to be unreliable. Therefore,
we focused our experiments on high-prior hand-annotated classes—generic, info, and famous.

For both relational and propositional (user-only) learning, we divided the data into 5 random splits
with 80% of the data in training and 20% of the data in test. For each split, we measured the area under
the curve (AUC) from the trained detector on the heldout test set. Results are reported in terms of the
mean and standard deviation (SD) of the AUC across all splits.

Relational learning was somewhat complicated by the varying structure of user neighborhoods. Ide-
ally, we would like our graph queries to return subgraphs that consist of a central labeled user, and all
users and hashtags that are immediate neighbors of this labeled user. However, the RPTs need to be able
to calculate the same aggregate features for each subgraph. A problem arises because some labeled user
nodes only have neighbors that are users, while other user nodes have only hashtag neighbors, and still

∗Software and documentation is available at http://kdl.cs.umass.edu/proximity
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more nodes have both user and hashtag neighbors. There is also an unusual case where some users do
not have any neighbors. We find that user nodes from these four neighborhood structure cases (no neigh-
bors, only user neighbors, only hashtag neighbors, and both user and hashtag neighbors) cannot all be
mixed together in the same training and test sets. This diffculty occurs because aggregate attributes that
are well-defined on the users with only hashtag neighbors, such as average offensiveness of neighboring
hashtags, are undefined for nodes with only user neighbors. We handle this by running separate sets of
experiments for each of these four neighborhood structure cases.

7.2 User Classification Experiments
7.2.1 Verified User Results
Table 2 shows average AUC results for propositional and relational prediction of account verification.
Note that an AUC of 0.5 indicates chance performance. From the table, we see that we can perform
reasonable user classification of verified users using our extracted features.

From the table, we can reach multiple conclusions. First, propositional learning performs similarly
with either network-only or content-only features. Second, content and network features together pro-
vide a significant boost in performance. This observation has been noted in other domains such as Enron
e-mail (Coppersmith and Priebe, 2012). Third, the introduction of relational learning gives substantial
performance improvements over propositional learning. For instance, the performance of content fea-
tures is substantially increased in the relational case with “users only.” A fourth observation is that “not
all neighbors are created equal.” In all cases, the use of information about user neighbors is substan-
tially more important than hashtag neighbors. We found that most neighborhoods contained users; the
distribution was none (11%), user only (43%), hashtag only (9%), and both (37%).

7.2.2 Hand-Annotated Results
Additional experiments on the three labels famous, generic, and info were also performed and results
are shown in Table 2. Note that the small number of labels is most likely impacting two aspects of
performance. First, since we have a smaller training set size, best absolute AUC is typically lower than
the verified case. Also, in some cases performance is worse than chance showing that it is difficult to
generalize well from a small training set. In general, though, similar trends in AUC performance are
similar to the verified case.

For both the famous and generic labels with propositional learning, we found that network-only fea-
tures work substantially better than content-only features. For info labels, content-only features are
slightly better demonstrating that info is a unique case.

Further examination of relational results shows similar trends to the verified user case. Relational
methods are superior to propositional methods. In addition, using both network and content features is
helpful or at least not detrimental to performance. The case of the info user class is interesting from the
viewpoint of neighbors; we see that the gap in performance between hashtag-only neighbors and user-
only neighbors is less than other user classes. In terms of features appearing in the RPTs, we found that
all features were valuable in user classification. Aggregate features were common as decision points in
the relational case.

8 Conclusions

Twitter contains a rich set of social network, content, and individual user cues that give insight into user
characteristics. In this paper, we explored features that captured these characteristics via topic cluster-
ing, offensiveness detection, and network analytics. Additionally, we examined various classification
strategies which used both propositional and relational methods. Our different approaches demonstrated
that the different feature types are complementary and all indicative of user classification. For example,
finding “interesting” Twitter accounts (the opposite of generic users) can be accomplished with content
and network features. This process emphasizes the fact that user classification can be accomplished
with many strategies. Possible future work includes performing alternative classification studies, ana-
lyzing the effects of different sample sizes, extending to other languages, and predicting additional user
classes.
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Table 2: Average and standard deviation AUC for detection of verified and annotated accounts. Proposi-
tional results are indicated by a “-” in neighborhood structure.

Feature Neighborhood Verified Famous Generic Info
Sets Structure AUC Avg (SD) AUC Avg (SD) AUC Avg (SD) AUC Avg (SD)

Content - 0.6201 ( 0.0219 ) 0.5549 ( 0.0215 ) 0.5725 ( 0.0390 ) 0.7716 ( 0.0436 )
Network - 0.6916 ( 0.0339 ) 0.7685 ( 0.0529 ) 0.7110 ( 0.0468 ) 0.6438 ( 0.0791 )

Content+Network - 0.7443 ( 0.0349 ) 0.7901 ( 0.0136 ) 0.7301 ( 0.0290 ) 0.7002 ( 0.1682 )
Content No Neighbors 0.5935 ( 0.0306 ) 0.5970 ( 0.1583 ) 0.5842 ( 0.1535 ) 0.4006 ( 0.1777 )
Content Users Only 0.8945 ( 0.0248 ) 0.8172 ( 0.0375 ) 0.7558 ( 0.0560 ) 0.6813 ( 0.1321 )
Content Hashtags Only 0.6501 ( 0.0416 ) 0.4939 ( 0.1548 ) 0.5557 ( 0.1518 ) 0.6153 ( 0.1151 )
Content Users and Hashtags 0.9213 ( 0.0202 ) 0.8420 ( 0.0564 ) 0.7790 ( 0.0589 ) 0.5583 ( 0.0954 )
Network No Neighbors 0.5123 ( 0.1292 ) 0.6227 ( 0.1707 ) 0.4085 ( 0.0505 ) 0.4040 ( 0.1224 )
Network Users Only 0.8760 ( 0.0310 ) 0.8383 ( 0.0262 ) 0.7708 ( 0.0527 ) 0.6433 ( 0.1336 )
Network Hashtags Only 0.4821 ( 0.0657 ) 0.4502 ( 0.1418 ) 0.5995 ( 0.0576 ) 0.5778 ( 0.1241 )
Network Users and Hashtags 0.9091 ( 0.0257 ) 0.8437 ( 0.0157 ) 0.8014 ( 0.0559 ) 0.8038 ( 0.0760 )

Content+Network No Neighbors 0.5939 ( 0.0801 ) 0.5654 ( 0.1141 ) 0.6572 ( 0.1299 ) 0.3917 ( 0.1487 )
Content+Network Users Only 0.8823 ( 0.0317 ) 0.8019 ( 0.0520 ) 0.7566 ( 0.0474 ) 0.5815 ( 0.1708 )
Content+Network Hashtags Only 0.6699 ( 0.0525 ) 0.4510 ( 0.1312 ) 0.5543 ( 0.0954 ) 0.4260 ( 0.2057 )
Content+Network Users and Hashtags 0.9325 ( 0.0087 ) 0.8431 ( 0.0535 ) 0.7831 ( 0.0192 ) 0.8021 ( 0.0608 )
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