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Abstract

This paper describes NaDiR (Naive DIstributional Response generation), a corpus-based system
that, from a set of word stimuli as an input, generates a response word relying on association
strength and distributional similarity. NaDiR participated in the CogALex 2014 shared task on
multiword associations (restricted systems track), operationalizing the task as a ranking problem:
candidate words from a large vocabulary are ranked by their average association or similarity to
a given set of stimuli. We also report on a number of experiments conducted on the shared
task data, comparing first-order models (based on co-occurrence and statistical association) to
second-order models (based on distributional similarity).

1 Introduction

This paper describes NaDiR, a corpus-based system designed for the reverse association task. NaDiR
is an acronym for Naive Distributional Response generation. NaDiR is naive because it is based on a
very simple algorithm that operationalizes the multiword association task as a ranking problem: candi-
date words from a large vocabulary are ranked by their average statistical association or distributional
similarity to a given set of stimuli, then the highest-ranked candidate is selected as NaDiR’s response.

We compare models based on collocations (first-order models, see Evert (2008) for an overview) to
models based on distributional similarity (second-order models; see Sahlgren (2006), Turney and Pan-
tel (2010), and reference therein for a review). Previous work on this task showed that co-occurrence
models outperform distributional semantic models (henceforth, DSMs), and that using rank measures
improves performance because it accounts for directionality of the association/similarity (e.g., the asso-
ciation from stimulus to response may be larger than the association from response to stimulus). Our
results corroborate both claims.

The paper is structured as follows: section 2 provides an overview of the task and of the problems
we encountered in its implementation; section 3 summarizes related work; section 4 describes NaDiR in
detail; section 5 reports the results of our experiments on the shared task training and test data; section 6
describes ongoing and future work on NaDiR.

2 The Task and its Problems

The shared task datasets are derived from the Edinburgh Associative Thesaurus (Kiss et al., 1973)1. The
Edinburgh Associative Thesaurus (henceforth, EAT) contains free associations to approximately 8000
English cue words. For each cue (e.g., visual) EAT lists all associations collected in the survey (e.g., aid,
eyes, aids, see, eye, seen, sight, etc.) sorted according to the number of subjects who responded with the
respective word. The CogALex shared task on multiword association is based on the EAT dataset, and
is in fact a reverse association task (Rapp, 2014). The top five responses for a target word are provided
as stimuli (e.g., aid, eyes, aids, see, eye), and the participating systems are required to generate the
original cue as a response (e.g., visual). The training and the test sets are random extracts of 2000 EAT

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1http://www.eat.rl.ac.uk/
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items each, with minimal pre-processing (only items containing multiword units and non-alphabetical
characters were discarded).

A key problem we had to tackle while developing our system was the unrestricted set of possible re-
sponses in combination with a discrete association task, which requires the algorithm to pick exactly the
right answer out of tens of thousands of possible responses. This feature makes this task much more dif-
ficult than the multiple-choice tasks often used to evaluate distributional semantic models. The problem
is further complicated by the fact that the response may be an inflected form and only a prediction of the
exact form was accepted as a correct answer. The need for a solution to these issues motivates various
aspects of the NaDiR algorithm, described in section 4.

3 Related Work

Previous studies based on free association norms differ considerably in terms of the type of task (regular
free association task – one stimulus, one response vs. multiword association task – many stimuli, one
response), gold standards, and key features of the evaluated models (e.g., source corpora used and choice
of a candidate vocabulary from which responses are selected).

In regular free association tasks (one stimulus, one response), responses are known to contain both
paradigmatically and syntagmatically related words. Rapp (2002) proposes to integrate first-order (co-
occurrence lists) and second-order (bag-of-words DSMs) information to distinguish syntagmatic from
paradigmatic relations by exploiting the comparison of most salient collocates and nearest neighbors.

A task derived from the EAT norms was used in the ESSLLI 2008 shared task2. Results from first-
order co-occurrence data turned out to be much better than those from second-order DSMs, in line with
the findings made by Rapp (2002) and Wettler et al. (2005).

A similar picture emerges from studies on the multiword association task. Models based on first-order
co-occurrence (collocations) outperform models based on vector similarity. This superiority, however, is
not validated via a direct comparison: results were obtained by studies with different features and goals
(see Rapp (2014) for a review; see Griffiths et al. (2007) and Smith et al. (2013) for evaluations of
models based on Latent Semantic Analysis). A specific feature of successful studies on the multiword
association task is that they introduce an element of directionality (Rapp, 2013; Rapp, 2014), which
allows a correct implementation of the directionality of the modeled effects (from stimulus to response).

Our survey of related studies motivated the choice to base NaDiR on first-order or second-order co-
occurrence statistics, and to use collocate or neighbor rank to account for directionality. Our main contri-
bution to research on the reverse association task is a systematic experimental comparison of first-order
and second-order models (using the same gold standard, same source corpus, and same candidate vocab-
ulary), which enables us to give a sound answer to the question whether first-order models are indeed
superior for multiword association tasks.

4 NaDiR

NaDiR operationalizes the multiword association task as a ranking problem. For each set of stimuli,
the possible response words (“candidates”) are ranked according to their average association strength or
distributional similarity to the stimulus words. The top-ranked candidate is selected as NaDiR’s response.
One advantage of the ranking approach is that it provides additional insights into the experimental results:
if the model prediction is not correct, the rank of the correct answer can be used as a measure how “close”
the model came to the human associations.

Since neither a fixed set of response candidates nor an indication of the source of the training and
test data were available (and we did not google for the training sets), we compiled a large vocabulary of
possible responses. We believe that restricting the vocabulary to the 8,033 cue words in the EAT would
have improved our results considerably. More details concerning the choice of the candidate vocabulary
are reported in section 4.1.

2http://wordspace.collocations.de/doku.php/data:esslli2008:correlation with free
association norms
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NaDiR uses either first-order or second-order co-occurrence statistics to predict the association
strength between stimuli and responses. In the first case (“collocations”), we apply one of several stan-
dard statistical association measures to co-occurrence counts obtained from a large corpus. In the second
case, association is quantified by cosine similarity in a distributional semantic model built from the same
corpus. Both first-order and second-order statistics were collected from UKWaC in order to compete in
the constrained track of the shared task.

Recent experiments (Hare et al., 2009; Lapesa and Evert, 2013; Lapesa et al., to appear) suggest
that semantic relations are often better captured by neighbour ranks rather than direct use of statistical
association measures or cosine similarity values. Therefore, NaDiR can alternatively quantify association
strength by collocate rank and similarity by neighbour rank. In our experiments (section 5), we compare
the different approaches.

NaDiR is designed for the multiword association task, and it contains additional features related to the
particular design of the CogALex shared task:

• We reduce the number of candidates by selecting the most likely response POS with a machine-
learning algorithm (section 4.1);
• NaDiR operates on lemmatized data in order to reduce sparseness. We lemmatize stimuli using a

heuristic method (section 4.1), predict a response lemma, and then use machine-learning techniques
to generate a plausible word form (section 4.3).

4.1 Pre-processing and Vocabulary
Our experiments were conducted on the UKWaC3 corpus. UKWaC contains 2 billion words, web-
crawled from the .uk domain between 2005 and 2007. The release of UKWaC also contains linguistic
annotation (pos-tagging and lemmatization) performed with Tree Tagger4.

To assign a part-of-speech tag and a lemma to every word in the dataset without relying on external
tools, we adopted the following mapping strategy based on the linguistic annotation already available in
UKWaC:

1. We extracted all attested wordform/part of speech/lemma combinations from UKWaC, together
with their frequency;

2. Every word form in the training set was assigned to the most frequent part of speech/lemma combi-
nation attested in UKWaC.

We believe that the advantages of constructing distributional models based on lemmatized words over-
come the drawbacks of this type of out-of-context lemmatization and part-of-speech assignment.

The part-of-speech information added to every word in the dataset by the mapping procedure was
used to train a classifier that, given the parts of speech of the stimuli, predicts the part of speech of the
response. We trained a support-vector machine, using the svm function from the R package e10715,
with standard settings.

The part-of-speech classifier is based on a coarse part-of-speech tagset with only five tags: N (noun),
J (adjective), V (verb), R (adverb), other (closed-class words). We considered each row of the dataset
as an observation, with the part of speech of the response as predicted value, and the part of speech of
the stimulus words as predictors. Every observation is represented as a bag of tags, i.e., a vector listing
for each of the five tags how often it occurs among the stimuli. For example, if a set of stimuli contains
3 nouns, one verb and one adjective, the corresponding bag-of-tags vector looks as follows: {N = 3; V =
1; J = 1; R = 0; other = 0}. On the training set, the part-of-speech classifier achieves an accuracy of
72%.

The vocabulary of our models only contains lemmatized open-class words (this information is avail-
able in the annotation of the corpus). By inspecting the frequencies of stimuli and response words in the
training dataset, we established a reasonable minimum frequency threshold for candidate words of 100
occurrences in UKWaC. With this threshold, only 10 response words and 16 stimulus words from the

3wacky.sslmit.unibo.it/doku.php?id=corpora
4http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
5http://cran.r-project.org/web/packages/e1071/index.html
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training dataset are excluded from the vocabulary. Given the large size of the dataset, we decided that
a minimal loss in coverage would be justified by the reduced computational complexity. The resulting
candidate vocabulary contains 155,811 words.

4.2 First- and Second-order Statistics

The aim of this section is to describe the parameters involved in the collection of first-order and second-
order statistics from UKWaC. All models have been built and evaluated using the UCS toolkit6 and the
wordspace package for R (Evert, to appear)7.

First-order Models
Collocation data are compiled from UKWaC based on the vocabulary described in section 4.1. Both
nodes (rows of the co-occurrence matrix) and collocates (columns of the co-occurrence matrix) are cho-
sen from this vocabulary. Collection of first-order models involved the manipulation of a number of
parameters, briefly summarized below.
We adopted three different window sizes:

• symmetric window, 2 words to the left and to the right of the node;
• asymmetric window, 3 words to the left of the node;
• asymmetric window, 3 words to the right of the node.

We tested the following association scores (Evert, 2008):

• co-occurrence frequency;
• simple log-likelihood (similar to local MI used by Baroni and Lenci (2010));
• conditional probability.

Our experiments involved a third parameter, the index of association strength, which determines al-
ternative ways of quantifying the degree of association between targets and contexts in the first-order
model. Given two words a and b represented in a first-order model, we propose two alternative ways of
quantifying the degree of association between a and b. The first option (and standard in corpus-based
modeling) is to compute the association score between a and b. The alternative choice is based on rank
among collocates. Given two words a and b, in our task stimulus and potential response, we consider:

• forward rank: the rank of the potential response among the collocates of the stimulus;
• backward rank: the rank of the stimulus among the collocates of the potential response;
• average rank: the average of forward and backward rank.

Second-order Models
Based on the results of a large-scale evaluation of DSM parameters (Lapesa and Evert, under review)
and the modeling of semantic priming effects (Lapesa and Evert, 2013; Lapesa et al., to appear), we
identified a robust configuration of parameters for second-order models that we decided to adopt in this
study. Second-order models involved in our experiments share the following parameter settings:

• The target words (rows) are defined by the vocabulary described in section 4.1.
• The context words (columns) are the 50,000 most frequent context words in the respective co-

occurrence matrices. The 50 most frequent words in UKWaC are discarded.
• Co-occurrence vectors are scored with a sparse version of simple-log likelihood, in which negative

values clamped to zero in order to preserve the sparseness of the co-occurrence matrix. Scored
vectors are rescaled by applying a logarithmic transformation.
• We reduce the scored co-occurrence matrix to 1000 latent dimensions using randomized SVD

(Halko et al., 2009).
• We adopt cosine distance (i.e. the angle between vectors) as a distance metric for the computation

of vector similarity.

6http://www.collocations.de/software.html
7http://r-forge.r-project.org/projects/wordspace/
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Our experiments on second-order models involved the manipulation of two parameters: window size
and index of association strength.

The size of the context window quantifies the amount of shared context involved in the computation of
similarity. We expect the manipulation of window size to be crucial in determining model performance,
as different context windows will enable the model to capture different types of relations between re-
sponse and stimulus words (Sahlgren, 2006; Lapesa et al., to appear). In our experiments with NaDiR,
we adopted three different window sizes:

• symmetric window, 2 words to the left and to the right of the target;
• symmetric window, 4 words to the left and to the right of the target;
• symmetric window, 16 words to the left and to the right of the target.

The values for index of association strength are the same as for the first-order models, computing ranks
among the nearest neighbors of the stimulus or response word. The use of rank-based measures is of
particular interest, because: (i) it allows us to model directionality (while, for example, cosine distance is
symmetric); (ii) it already proved successful in modeling behavioral data (Hare et al., 2009; Lapesa and
Evert, 2013); (iii) since the vocabulary of first-order and second-order models are identical, rank-based
measures allow a direct comparison between the two classes of models, as well as experiments based on
their combination.

4.3 Response Generation
To generate a response for a set of stimuli in the training/test dataset, we apply the following procedure:

1. For each set of stimuli, we compute association strengths or similarities between each stimulus and
each response candidate, adopting one of the measures described in section 4.2.

2. From the set of potential responses, we select the words whose POS agrees with the predictions of
the classifier described in section 4.1. Stimulus words are discarded from the potential answers.

3. We compute the average association strength or similarity across all five stimuli; if a stimulus does
not appear in the model, it is simply omitted from the average.

4. The top-ranked candidate is the POS-disambiguated lemma suggested as a response by NaDiR.
5. We generate a suitable word form by inverting the heuristic lemmatization; if the full Penn tag (e.g.,

NNS: noun, common, plural; NN: noun, common, singular or mass, etc.) of the response is known,
this step can be implemented as a deterministic lookup (since a word form is usually determined
uniquely by lemma and Penn tag). We therefore trained a second SVM classifier that predicts the
full Penn tag of the response based on the full tags of the stimuli. On the training set, this part-of-
speech classifier reaches an accuracy of 68%.

5 Experiments

In our experiments, we compared first-order (collocations) and second-order (DSM) models; for each
class of models, we evaluated the different parameter values described in section 4.2. Table 1 summarizes
the evaluated parameters for first-order and second-order models.

Model Window Score Relatedness Index
first-order symmetric, 2 frequency association score

left 3, right 0 simple log-likelihood forward rank
left 0, right 3 conditional probability backward rank

average rank
second-order symmetric, 2 simple log-likelihood distance

symmetric, 4 forward rank
symmetric, 16 backward rank

average rank

Table 1: Evaluated Parameters for First- and Second-order Models
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Tables 2 to 5 display the results of our experiments on the training data, separately for first-order (tables
2-4) and second-order models (table 5). Parameter configurations are reported in the Parameter column8.
The number of correct responses in the lemmatized version is reported in the column Lemma (showing
how often our system predicted the correct lemma). The column Wordform reports the number of correct
responses for which, before inverting the lemmatization, the inflected form was already identical to the
lemma. As the task of predicting exactly one word is particularly difficult, we further characterize the
performance of our evaluated models by reporting the number of cases in which the correct answer from
the training set was among the first 10 (< 10), 50 (< 50), or 100 (< 100) ranked candidates. In the last
column, we report the average rank of the correct responses (Avg correct).

The results reported in tables 2 to 5 allowed us to identify best parameter configurations for the first-
order (symmetric 2 words window, frequency, backward rank) and second-order models (2 words win-
dow, distance). We evaluated these configurations on the test data (table 6). Table 7 compares the
performance of the best first-order and the best second-order model on the training and test datasets,
both for lemmatized response (Training-Lemma, Test-Lemma) and generation of the correct word form
(Training-Inflected, Test-Inflected).

A considerable portion of the experiments reported in this paper were conducted after the submission
deadline of the CogALex shared task. As a consequence, our submitted results do not correspond to the
best overall configuration found in the evaluation study. The submission was based on a second order
model, a 4-word window, and cosine distance as index of distributional similarity. In this configuration,
NaDiR generated 262 correct responses, corresponding to an accuracy of 13%.

Parameters Lemma Wordform < 10 < 50 < 100 Avg correct
Freqass 2 2 85 372 561 1400
Freqfwd 0 0 77 359 550 6258
Freqbwd 555 464 973 1269 1369 1546
Freqavg 424 322 677 848 934 5969
Simple-llass 33 28 237 721 985 933
Simple-llfwd 405 319 760 916 947 12031
Simple-llbwd 531 444 914 1141 1253 1971
Simple-llavg 490 388 785 918 950 11645
Cond.probass 18 16 329 746 970 978
Cond.probfwd 0 0 77 359 550 6258
Cond.probbwd 422 359 856 1129 1255 1719
Cond.probavg 343 256 611 860 971 5948

Table 2: First Order Models - Symmetric Window: 2 words to the left/right of the node - Training Data

5.1 Discussion

The results of our experiments are in line with the tendencies identified in the literature (see section
3). First-order models based on direct co-occurrence (high scores are assigned to words that co-occur),
outperform second-order models based on distributional similarity (smaller distances between words that
occur in similar contexts).

For the first-order models, the best index of association strength is backward rank (the rank of the
stimulus among the collocates of the potential response), fully congruent with the experimental setting
(in the EAT norm, subjects produced the stimuli as free associations of the expected response). Surpris-
ingly, frequency outperforms simple-log likelihood (which is usually considered to be among the best
association measures for the identification of collocations). In line with the results achieved by Rapp
(2014), a symmetric window of 2 words to the left and to the right of the target achieves best results.

For the second-order models, the smallest context window (2 words) achieves the best performance.

8Abbreviations used in the tables: ass = association score; dist = distance; fwd = forward rank; bwd = backward rank; avg
= average rank.
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Parameters Lemma Wordform < 10 < 50 < 100 Avg correct
Freqass 1 1 63 279 450 1733
Freqfwd 0 0 32 219 395 7575
Freqbwd 358 292 789 1124 1247 1974
Freqavg 277 191 515 690 793 7251
Simple-llass 23 18 196 618 878 1259
Simple-llfwd 271 196 605 789 842 14177
Simple-llbwd 369 296 737 1002 1135 2848
Simple-llavg 346 251 636 798 845 13760
Cond.probass 7 6 209 588 806 1234
Cond.probfwd 0 0 32 219 395 7575
Cond.probbwd 284 230 659 974 1109 2318
Cond.probavg 201 137 462 711 851 7230

Table 3: First Order Models – Asymmetric Window: 3 words to the left of the node – Training Data

Parameters Lemma Wordform < 10 < 50 < 100 Avg correct
Freqass 1 1 63 279 450 1733
Freqfwd 0 0 32 219 395 7575
Freqbwd 358 292 789 1124 1247 1974
Freqavg 277 191 515 690 793 7251
Simple-llass 25 22 220 643 891 1168
Simple-llfwd 321 250 708 895 936 12244
Simple-llbwd 507 424 884 1142 1246 2223
Simple-llavg 402 314 740 901 939 11868
Cond.probass 26 20 279 665 864 1282
Cond.probfwd 0 0 59 298 498 7543
Cond.probbwd 381 319 791 1094 1201 1981
Cond.probavg 278 209 535 800 922 7214

Table 4: First Order Models – Asymmetric Window: 3 words to the right of the node – Training Data

Parameters Lemma Wordform < 10 < 50 < 100 Avg correct
2dist 264 208 686 1077 1224 936
2fwd 127 83 380 703 849 1560
2bwd 73 56 275 584 720 3524
2avg 157 106 436 750 911 1507
4dist 255 200 665 1037 1195 997
4fwd 108 73 338 651 824 1750
4bwd 77 57 254 545 694 3843
4avg 129 87 397 710 862 1694
16dist 206 158 546 910 1062 1433
16fwd 63 40 252 512 667 2481
16bwd 49 37 188 449 581 4949
16avg 79 56 282 560 713 2416

Table 5: Second order models – Training data

Considering the good results from collocation-based models, we would have expected a better perfor-
mance from larger windows, traditionally considered to be more sensitive to syntagmatic relations. A
significant difference between first-order and second-order models is the fact that neighbor rank works
less well than the distance between vectors, while collocate rank outperformed the association scores.
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Model Lemma Wordform < 10 < 50 < 100 Avg correct
first-order 572 490 1010 1303 1408 1366
second-order 304 246 734 1119 1256 569

Table 6: Best models (first order and second order) – Performance on test data

Model Training-Lemma Training-Inflected Test-Lemma Test-Inflected
first-order 27.7% (555) 26.9% (538) 28.6% (572) 27.7% (554)
second-order 13.2% (264) 12.0% (241) 15.0% (304) 14.0% (279)

Table 7: Performance (% accuracy and number of correct responses) of the best first-order and second-
order model on training vs. test dataset (lemmatized response vs. response with restored inflection)

The observation for second-order models contrasts with previous work showing that rank consistently
outperforms distance in modeling priming effects (Lapesa and Evert, 2013; Lapesa et al., to appear) and
also in standard tasks such as prediction of similarity ratings and noun clustering (Lapesa and Evert, un-
der review). Among the standard tasks, the only case in which the use of neighbor rank did not produce
significant improvements with respect to vector distance was the TOEFL multiple-choice synonymy task.
Despite clear differences, the TOEFL task and the reverse association task share the property that they
involve multiple stimuli. The results presented in this paper, together with those achieved on the TOEFL
task, seem to suggest that a better strategy for the use of neighbor rank needs to be developed when
multiple stimuli are involved.

6 Conclusions and Future Work

The results of the evaluation reported in this paper confirmed the tendencies identified in previous studies:
first-order models, based on direct co-occurrence, outperform second-order models, based on distribu-
tional similarity. We consider the experimental results described in this paper as a first exploration into
the dynamics of the reverse association task, and we believe that our systematic evaluation of first- and
second-order models represents a good starting point for future work, which targets improvements of
NaDiR at many levels.

The first point of improvement concerns the size of the vocabulary. We aim at finding a more op-
timal cutoff on the training data, for example by implementing a frequency bias similar to Wettler et
al. (2005). We are confident that NaDiR will significantly benefit from a smaller range of potential
responses (compared to the 155,811 lemmatized candidate words in the current version).

We are also conducting experiments using log ranks instead of plain ranks: since we compute an arith-
metic mean of the rank values, a single very high rank (from a poorly matched stimulus) will dominate
the average. We therefore assume that log ranks will improve results and make NaDiR’s responses more
robust.

An interesting research direction targets the integration of first- and second-order statistics in the pro-
cess of response generation. The evaluation results reported in this paper revealed that a very small
context window achieves the best performance for second-order models: as widely acknowledged in the
literature (Sahlgren, 2006; Lapesa et al., to appear), smaller context windows highlight paradigmatic
relations. First-order models, on the other hand, highlight syntagmatic relations (Rapp, 2002). The best
second-order and first-order models from the evaluation reported in this paper are likely to focus on dif-
ferent types of relations between response and stimulus words: this leads us to believe that an integration
of the two sources may produce improvements in NaDiR’s performance.

At a general level, we plan to make more elaborate use of the training data. In the experiments
presented in this paper, training data were used to set a frequency threshold for potential responses, train
the part-of-speech classifiers, and find the best configuration for first- and second-order models.

A possible new application of NaDiR is the modeling of datasets containing semantic norms or concept
properties, such as the McRae norms (McRae et al., 2005) or BLESS (Baroni and Lenci, 2011). Those
datasets are standard in DSM evaluation, and their modeling can be implemented in terms of a reverse
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association task, with the additional advantage that the relations between concepts and properties in those
datasets are labelled with property types for the McRae norms (e.g., encyclopedic, taxonomic, situated)
or semantic relations (e.g., hypernymy, meronymy, event-related) for BLESS. This allows a specific
evaluation for each property type or semantic relation, which will in turn give new insights into the
semantic knowledge encoded in the different corpus-based representations (first order vs. second order
vs. hybrid) and how model parameters affect these representations (e.g., window size in the comparison
of syntagmatic vs. paradigmatic relations).
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